Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30878Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 賴信志 | |
| dc.contributor.author | Hui-Ching Tu | en |
| dc.contributor.author | 杜惠馨 | zh_TW |
| dc.date.accessioned | 2021-06-13T02:19:14Z | - |
| dc.date.available | 2008-02-27 | |
| dc.date.copyright | 2007-02-27 | |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2007-01-31 | |
| dc.identifier.citation | 1. Amicosante, M., L. Richeldi, G. Trenti, G. Paone, M. Campa, A. Bisetti, and C. Saltini. 1995. Inactivation of polymerase inhibitors for Mycobacterium tuberculosis DNA amplification in sputum by using capture resin. J. Clin. Microbiol. 33:629-630.
2. Andini, N. and K. A. Nash. 2006. Intrinsic macrolide resistance of the Mycobacterium tuberculosis complex is inducible. Antimicrob. Agents Chemother. 50:2560-2562. 3. Aoki, H., K. Dekany, S. L. Adams, and M. C. Ganoza. 1997. The gene encoding the elongation factor P protein is essential for viability and is required for protein synthesis. J. Biol. Chem. 272:32254-32259. 4. Aoki, H., L. Ke, S. M. Poppe, T. J. Poel, E. A. Weaver, R. C. Gadwood, R. C. Thomas, D. L. Shinabarger, and M. C. Ganoza. 2002. Oxazolidinone antibiotics target the P site on Escherichia coli ribosomes. Antimicrob. Agents Chemother. 46:1080-1085. 5. Ashtekar, D. R., R. Costa-Periera, T. Shrinivasan, R. Iyyer, N. Vishvanathan, and W. Rittel. 1991. Oxazolidinones, a new class of synthetic antituberculosis agent. In vitro and in vivo activities of DuP-721 against Mycobacterium tuberculosis. Diagn. Microbiol. Infect. Dis. 14:465-471. 6. Auckland, C., L. Teare, F. Cooke, M. E. Kaufmann, M. Warner, G. Jones, K. Bamford, H. Ayles, and A. P. Johnson. 2002. Linezolid-resistant enterococci: report of the first isolates in the United Kingdom. J. Antimicrob. Chemother. 50:743-746. 7. Behr, M. A., M. A. Wilson, W. P. Gill, H. Salamon, G. K. Schoolnik, S. Rane, and P. M. Small. 1999. Comparative genomics of BCG vaccines by whole-genome DNA microarray. Science 284:1520-1523. 8. Bemer-Melchior, P. and H. B. Drugeon. 1999. Inactivation of Mycobacterium tuberculosis for DNA typing analysis. J. Clin. Microbiol. 37:2350-2351. 9. Bobkova, E. V., Y. P. Yan, D. B. Jordan, M. G. Kurilla, and D. L. Pompliano. 2003. Catalytic properties of mutant 23 S ribosomes resistant to oxazolidinones. J. Biol. Chem. 278:9802-9807. 10. Bozdogan, B. and P. C. Appelbaum. 2004. Oxazolidinones: activity, mode of action, and mechanism of resistance. Int. J. Antimicrob. Agents 23:113-119. 11. Brickner, S. J., D. K. Hutchinson, M. R. Barbachyn, P. R. Manninen, D. A. Ulanowicz, S. A. Garmon, K. C. Grega, S. K. Hendges, D. S. Toops, C. W. Ford, and G. E. Zurenko. 1996. Synthesis and antibacterial activity of U-100592 and U-100766, two oxazolidinone antibacterial agents for the potential treatment of multidrug-resistant gram-positive bacterial infections. J. Med. Chem. 39:673-679. 12. Broccolo, F., P. Scarpellini, G. Locatelli, A. Zingale, A. M. Brambilla, P. Cichero, L. A. Sechi, A. Lazzarin, P. Lusso, and M. S. Malnati. 2003. Rapid diagnosis of mycobacterial infections and quantitation of Mycobacterium tuberculosis load by two real-time calibrated PCR assays. J. Clin. Microbiol. 41:4565-4572. 13. Brosch, R., S. V. Gordon, M. Marmiesse, P. Brodin, C. Buchrieser, K. Eiglmeier, T. Garnier, C. Gutierrez, G. Hewinson, K. Kremer, L. M. Parsons, A. S. Pym, S. Samper, D. van Soolingen, and S. T. Cole. 2002. A new evolutionary scenario for the Mycobacterium tuberculosis complex. Proc. Natl. Acad. Sci. U. S. A 99:3684-3689. 14. Buck, G. E., L. C. O'Hara, and J. T. Summersgill. 1992. Rapid, simple method for treating clinical specimens containing Mycobacterium tuberculosis to remove DNA for polymerase chain reaction. J. Clin. Microbiol. 30:1331-1334. 15. Cercenado, E., F. Garcia-Garrote, and E. Bouza. 2001. In vitro activity of linezolid against multiply resistant Gram-positive clinical isolates. J. Antimicrob. Chemother. 47:77-81. 16. Corbett, E. L., C. J. Watt, N. Walker, D. Maher, B. G. Williams, M. C. Raviglione, and C. Dye. 2003. The growing burden of tuberculosis: global trends and interactions with the HIV epidemic. Arch. Intern. Med. 163:1009-1021. 17. Corti, G., R. Cinelli, and F. Paradisi. 2000. Clinical and microbiologic efficacy and safety profile of linezolid, a new oxazolidinone antibiotic. Int. J. Antimicrob. Agents 16:527-530. 18. Cruciani, M., C. Scarparo, M. Malena, O. Bosco, G. Serpelloni, and C. Mengoli. 2004. Meta-analysis of BACTEC MGIT 960 and BACTEC 460 TB, with or without solid media, for detection of mycobacteria. J. Clin. Microbiol. 42:2321-2325. 19. Desjardin, L. E., Y. Chen, M. D. Perkins, L. Teixeira, M. D. Cave, and K. D. Eisenach. 1998. Comparison of the ABI 7700 system (TaqMan) and competitive PCR for quantification of IS6110 DNA in sputum during treatment of tuberculosis. J. Clin. Microbiol. 36:1964-1968. 20. Diraa, O., K. Fdany, M. Boudouma, N. Elmdaghri, and M. Benbachir. 2003. Assessment of the Mycobacteria Growth Indicator Tube for the bacteriological diagnosis of tuberculosis. Int. J. Tuberc. Lung Dis. 7:1010-1012. 21. Doig, C., A. L. Seagar, B. Watt, and K. J. Forbes. 2002. The efficacy of the heat killing of Mycobacterium tuberculosis. J. Clin. Pathol. 55:778-779. 22. Dye, C., S. Scheele, P. Dolin, V. Pathania, and M. C. Raviglione. 1999. Consensus statement. Global burden of tuberculosis: estimated incidence, prevalence, and mortality by country. WHO Global Surveillance and Monitoring Project. JAMA 282:677-686. 23. Eisenach, K. D., M. D. Cave, J. H. Bates, and J. T. Crawford. 1990. Polymerase chain reaction amplification of a repetitive DNA sequence specific for Mycobacterium tuberculosis. J. Infect. Dis. 161:977-981. 24. Eustice, D. C., P. A. Feldman, I. Zajac, and A. M. Slee. 1988. Mechanism of action of DuP 721: inhibition of an early event during initiation of protein synthesis. Antimicrob. Agents Chemother. 32:1218-1222. 25. Fabre, M., A. Kerleguer, P. Gerome, C. Rapp, V. Herve, and C. Soler. 2006. [Performances of the 'Amplified Mycobacterium tuberculosis Direct Test' in respiratory and non-respiratory specimens]. Pathol. Biol. (Paris) 54:537-540. 26. Fong, W. K., Z. Modrusan, J. P. McNevin, J. Marostenmaki, B. Zin, and F. Bekkaoui. 2000. Rapid solid-phase immunoassay for detection of methicillin-resistant Staphylococcus aureus using cycling probe technology. J. Clin. Microbiol. 38:2525-2529. 27. Ford, C. W., J. C. Hamel, D. M. Wilson, J. K. Moerman, D. Stapert, R. J. Yancey, Jr., D. K. Hutchinson, M. R. Barbachyn, and S. J. Brickner. 1996. In vivo activities of U-100592 and U-100766, novel oxazolidinone antimicrobial agents, against experimental bacterial infections. Antimicrob. Agents Chemother. 40:1508-1513. 28. Gori, A., F. Franzetti, G. Marchetti, L. Catozzi, and M. Corbellino. 1996. Specific detection of Mycobacterium tuberculosis by mtp40 nested PCR. J. Clin. Microbiol. 34:2866-2867. 29. Hermans, P. W., D. van Soolingen, J. W. Dale, A. R. Schuitema, R. A. McAdam, D. Catty, and J. D. van Embden. 1990. Insertion element IS986 from Mycobacterium tuberculosis: a useful tool for diagnosis and epidemiology of tuberculosis. J. Clin. Microbiol. 28:2051-2058. 30. Horsburgh, C. R., Jr. 1991. Mycobacterium avium complex infection in the acquired immunodeficiency syndrome. N. Engl. J. Med. 324:1332-1338. 31. Hsueh, P. R., Y. C. Liu, J. So, C. Y. Liu, P. C. Yang, and K. T. Luh. 2006. Mycobacterium tuberculosis in Taiwan. J. Infect. 52:77-85. 32. Johnson, A. P., L. Tysall, M. V. Stockdale, N. Woodford, M. E. Kaufmann, M. Warner, D. M. Livermore, F. Asboth, and F. J. Allerberger. 2002. Emerging linezolid-resistant Enterococcus faecalis and Enterococcus faecium isolated from two Austrian patients in the same intensive care unit. Eur. J. Clin. Microbiol. Infect. Dis. 21:751-754. 33. Jones, R. N., P. Della-Latta, L. V. Lee, and D. J. Biedenbach. 2002. Linezolid-resistant Enterococcus faecium isolated from a patient without prior exposure to an oxazolidinone: report from the SENTRY Antimicrobial Surveillance Program. Diagn. Microbiol. Infect. Dis. 42:137-139. 34. Kirschner, P., B. Springer, U. Vogel, A. Meier, A. Wrede, M. Kiekenbeck, F. C. Bange, and E. C. Bottger. 1993. Genotypic identification of mycobacteria by nucleic acid sequence determination: report of a 2-year experience in a clinical laboratory. J. Clin. Microbiol. 31:2882-2889. 35. Kozwich, D., K. A. Johansen, K. Landau, C. A. Roehl, S. Woronoff, and P. A. Roehl. 2000. Development of a novel, rapid integrated Cryptosporidium parvum detection assay. Appl. Environ. Microbiol. 66:2711-2717. 36. Lee, P. L., J. S. Jerng, Y. L. Chang, C. F. Chen, P. R. Hsueh, C. J. Yu, P. C. Yang, and K. T. Luh. 2003. Patient mortality of active pulmonary tuberculosis requiring mechanical ventilation. Eur. Respir. J. 22:141-147. 37. Liaw, Y. S., P. R. Hsueh, C. J. Yu, S. K. Wang, P. C. Yang, and K. T. Luh. 2004. Drug resistance pattern of Mycobacterium tuberculosis in a university hospital in Taiwan, 1998-2002. J. Formos. Med. Assoc. 103:671-677. 38. Lin, A. H., R. W. Murray, T. J. Vidmar, and K. R. Marotti. 1997. The oxazolidinone eperezolid binds to the 50S ribosomal subunit and competes with binding of chloramphenicol and lincomycin. Antimicrob. Agents Chemother. 41:2127-2131. 39. Livermore, D. M. 2003. Linezolid in vitro: mechanism and antibacterial spectrum. J. Antimicrob. Chemother. 51 Suppl 2:ii9-16. 40. Matassova, N. B., M. V. Rodnina, R. Endermann, H. P. Kroll, U. Pleiss, H. Wild, and W. Wintermeyer. 1999. Ribosomal RNA is the target for oxazolidinones, a novel class of translational inhibitors. RNA. 5:939-946. 41. McAdam, R. A., P. W. Hermans, D. van Soolingen, Z. F. Zainuddin, D. Catty, J. D. van Embden, and J. W. Dale. 1990. Characterization of a Mycobacterium tuberculosis insertion sequence belonging to the IS3 family. Mol. Microbiol. 4:1607-1613. 42. Michos, A. G., G. L. Daikos, K. Tzanetou, M. Theodoridou, M. Moschovi, P. Nicolaidou, G. Petrikkos, T. Syriopoulos, S. Kanavaki, and V. P. Syriopoulou. 2006. Detection of Mycobacterium tuberculosis DNA in respiratory and nonrespiratory specimens by the Amplicor MTB PCR. Diagn. Microbiol. Infect. Dis. 54:121-126. 43. Mostowy, S., A. Onipede, S. Gagneux, S. Niemann, K. Kremer, E. P. Desmond, M. Kato-Maeda, and M. Behr. 2004. Genomic analysis distinguishes Mycobacterium africanum. J. Clin. Microbiol. 42:3594-3599. 44. Mukhtar, T. A. and G. D. Wright. 2005. Streptogramins, oxazolidinones, and other inhibitors of bacterial protein synthesis. Chem. Rev. 105:529-542. 45. Mulcahy, G. M., Z. C. Kaminski, E. A. Albanese, R. Sood, and M. Pierce. 1996. IS6110-based PCR methods for detection of Mycobacterium tuberculosis. J. Clin. Microbiol. 34:1348-1349. 46. Niemann, S., T. Kubica, F. C. Bange, O. Adjei, E. N. Browne, M. A. Chinbuah, R. Diel, J. Gyapong, R. D. Horstmann, M. L. Joloba, C. G. Meyer, R. D. Mugerwa, A. Okwera, I. Osei, E. Owusu-Darbo, S. K. Schwander, and S. Rusch-Gerdes. 2004. The species Mycobacterium africanum in the light of new molecular markers. J. Clin. Microbiol. 42:3958-3962. 47. Noordhoek, G. T., J. D. van Embden, and A. H. Kolk. 1996. Reliability of nucleic acid amplification for detection of Mycobacterium tuberculosis: an international collaborative quality control study among 30 laboratories. J. Clin. Microbiol. 34:2522-2525. 48. Noskin, G. A., F. Siddiqui, V. Stosor, D. Hacek, and L. R. Peterson. 1999. In vitro activities of linezolid against important gram-positive bacterial pathogens including vancomycin-resistant enterococci. Antimicrob. Agents Chemother. 43:2059-2062. 49. O'Keeffe, M., P. Crabbe, M. Salden, J. Wichers, C. Van Peteghem, F. Kohen, G. Pieraccini, and G. Moneti. 2003. Preliminary evaluation of a lateral flow immunoassay device for screening urine samples for the presence of sulphamethazine. J. Immunol. Methods 278:117-126. 50. Parsons, L. M., R. Brosch, S. T. Cole, A. Somoskovi, A. Loder, G. Bretzel, D. Van Soolingen, Y. M. Hale, and M. Salfinger. 2002. Rapid and simple approach for identification of Mycobacterium tuberculosis complex isolates by PCR-based genomic deletion analysis. J. Clin. Microbiol. 40:2339-2345. 51. Philalay, J. S., C. O. Palermo, K. A. Hauge, T. R. Rustad, and G. A. Cangelosi. 2004. Genes required for intrinsic multidrug resistance in Mycobacterium avium. Antimicrob. Agents Chemother. 48:3412-3418. 52. Qi, C., X. Zheng, A. Obias, M. H. Scheetz, M. Malczynski, and J. R. Warren. 2006. Comparison of testing methods for detection of decreased linezolid susceptibility due to G2576T mutation of the 23S rRNA gene in Enterococcus faecium and Enterococcus faecalis. J. Clin. Microbiol. 44:1098-1100. 53. Rodriguez Diaz, J. C., M. Ruiz, M. Lopez, and G. Royo. 2003. Synergic activity of fluoroquinolones and linezolid against Mycobacterium tuberculosis. Int. J. Antimicrob. Agents 21:354-356. 54. Roth, A., T. Schaberg, and H. Mauch. 1997. Molecular diagnosis of tuberculosis: current clinical validity and future perspectives. Eur. Respir. J. 10:1877-1891. 55. Russell, D. G. 2001. Mycobacterium tuberculosis: here today, and here tomorrow. Nat. Rev. Mol. Cell Biol. 2:569-577. 56. Salo, W. L., A. C. Aufderheide, J. Buikstra, and T. A. Holcomb. 1994. Identification of Mycobacterium tuberculosis DNA in a pre-Columbian Peruvian mummy. Proc. Natl. Acad. Sci. U. S. A 91:2091-2094. 57. Shinabarger, D. L., K. R. Marotti, R. W. Murray, A. H. Lin, E. P. Melchior, S. M. Swaney, D. S. Dunyak, W. F. Demyan, and J. M. Buysse. 1997. Mechanism of action of oxazolidinones: effects of linezolid and eperezolid on translation reactions. Antimicrob. Agents Chemother. 41:2132-2136. 58. Soo, P. C., Y. T. Horng, P. R. Hsueh, B. J. Shen, J. Y. Wang, H. H. Tu, J. R. Wei, S. C. Hsieh, C. C. Huang, and H. C. Lai. 2006. Direct and simultaneous identification of Mycobacterium tuberculosis complex (MTBC) and Mycobacterium tuberculosis (MTB) by rapid multiplex nested PCR-ICT assay. J. Microbiol. Methods 66:440-448. 59. Swaney, S. M., H. Aoki, M. C. Ganoza, and D. L. Shinabarger. 1998. The oxazolidinone linezolid inhibits initiation of protein synthesis in bacteria. Antimicrob. Agents Chemother. 42:3251-3255. 60. Tato, M., E. G. de la Pedrosa, R. Canton, I. Gomez-Garcia, J. Fortun, P. Martin-Davila, F. Baquero, and E. Gomez-Mampaso. 2006. In vitro activity of linezolid against Mycobacterium tuberculosis complex, including multidrug-resistant Mycobacterium bovis isolates. Int. J. Antimicrob. Agents 28:75-78. 61. Thierry, D., M. D. Cave, K. D. Eisenach, J. T. Crawford, J. H. Bates, B. Gicquel, and J. L. Guesdon. 1990. IS6110, an IS-like element of Mycobacterium tuberculosis complex. Nucleic Acids Res. 18:188. 62. van Soolingen, D., P. E. de Haas, P. W. Hermans, P. M. Groenen, and J. D. van Embden. 1993. Comparison of various repetitive DNA elements as genetic markers for strain differentiation and epidemiology of Mycobacterium tuberculosis. J. Clin. Microbiol. 31:1987-1995. 63. van Soolingen, D., T. Hoogenboezem, P. E. de Haas, P. W. Hermans, M. A. Koedam, K. S. Teppema, P. J. Brennan, G. S. Besra, F. Portaels, J. Top, L. M. Schouls, and J. D. van Embden. 1997. A novel pathogenic taxon of the Mycobacterium tuberculosis complex, Canetti: characterization of an exceptional isolate from Africa. Int. J. Syst. Bacteriol. 47:1236-1245. 64. Verheijen, R., P. Stouten, G. Cazemier, and W. Haasnoot. 1998. Development of a one step strip test for the detection of sulfadimidine residues. Analyst 123:2437-2441. 65. Wallace, R. J., Jr., B. A. Brown-Elliott, S. C. Ward, C. J. Crist, L. B. Mann, and R. W. Wilson. 2001. Activities of linezolid against rapidly growing mycobacteria. Antimicrob. Agents Chemother. 45:764-767. 66. Wilson, P., J. A. Andrews, R. Charlesworth, R. Walesby, M. Singer, D. J. Farrell, and M. Robbins. 2003. Linezolid resistance in clinical isolates of Staphylococcus aureus. J. Antimicrob. Chemother. 51:186-188. 67. Wilson, S. M., R. McNerney, P. M. Nye, P. D. Godfrey-Faussett, N. G. Stoker, and A. Voller. 1993. Progress toward a simplified polymerase chain reaction and its application to diagnosis of tuberculosis. J. Clin. Microbiol. 31:776-782. 68. Wolter, N., A. M. Smith, D. J. Farrell, W. Schaffner, M. Moore, C. G. Whitney, J. H. Jorgensen, and K. P. Klugman. 2005. Novel mechanism of resistance to oxazolidinones, macrolides, and chloramphenicol in ribosomal protein L4 of the pneumococcus. Antimicrob. Agents Chemother. 49:3554-3557. 69. Xiong, L., P. Kloss, S. Douthwaite, N. M. Andersen, S. Swaney, D. L. Shinabarger, and A. S. Mankin. 2000. Oxazolidinone resistance mutations in 23S rRNA of Escherichia coli reveal the central region of domain V as the primary site of drug action. J. Bacteriol. 182:5325-5331. 70. Zhou, C. C., S. M. Swaney, D. L. Shinabarger, and B. J. Stockman. 2002. 1H nuclear magnetic resonance study of oxazolidinone binding to bacterial ribosomes. Antimicrob. Agents Chemother. 46:625-629. 71. Zurenko, G. E., J. K. Gibson, D. L. Shinabarger, P. A. Aristoff, C. W. Ford, and W. G. Tarpley. 2001. Oxazolidinones: a new class of antibacterials. Curr. Opin. Pharmacol. 1:470-476. 72. Zurenko, G. E., B. H. Yagi, R. D. Schaadt, J. W. Allison, J. O. Kilburn, S. E. Glickman, D. K. Hutchinson, M. R. Barbachyn, and S. J. Brickner. 1996. In vitro activities of U-100592 and U-100766, novel oxazolidinone antibacterial agents. Antimicrob. Agents Chemother. 40:839-845. 73. Zwadyk, P., Jr., J. A. Down, N. Myers, and M. S. Dey. 1994. Rendering of mycobacteria safe for molecular diagnostic studies and development of a lysis method for strand displacement amplification and PCR. J. Clin. Microbiol. 32:2140-2146. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30878 | - |
| dc.description.abstract | 造成結核病的病菌統稱為Mycobacterium tuberculosis complex(MTBC),包含有M. tuberculosis(MTB)、M. bovis、M. africanum,M. microti和M. canetti,其中在人體中造成結核病的最主要病菌為M. tuberculosis,而造成結核病的最主要部位為肺部。目前商業化的套組,以IS6110或是16S rRNA為偵測標的物,其所主要偵測的是結核分枝桿菌群而非結核分枝桿菌。經由比對基因體DNA可提供一些RD存在於MTB但是卻不在於MTBC中。其中RD9區域更是特異性地存在於MTB而不存於MTBC中。在這次的實驗當中,利用IS6110 和 Rv3618 (屬於 RD9)當做鑑定結核分枝桿菌群和結核分枝桿菌的標的物。我們發展了一種multiplex nested PCR-ICT (免疫色層分析法)來同時偵測1,500臨床痰液檢體中所存在的MTBC及MTB。試驗結果與傳統培養與生化試驗相比,這個試驗在偵測MTBC時有95.5%敏感性,97.9%特異性,2.1%偽陽性和4.5%偽陰性,在偵測MTB時有93.0%敏感性,99.8%特異性,0.2%偽陽性和7.0% 偽陰性。所以,結果顯示Multiplex PCR-ICT 試驗是一個方便、低成本、容易操作且對MTB的偵測上擁有高度的敏感性及特異性。
隨著多重抗藥性菌株的產生,一線抗結核藥物(INH、RIF)已不敷使用。這個部分的實驗是利用自台大醫院從2003~2004中所分離出的475株的結核分枝桿菌群進行moxifloxacin (MXF)、levofloxacin (LVX)、ciprofloxacin (CIP)、ofloxacin(OFX)、linezolid(LZD)及clarithromycin(CLR)等6種藥物最低抑菌濃度(MIC)測試。除了CLR外,其餘藥物的MIC90皆小於2μg/mL,結果顯示這些藥物對結核分枝桿菌皆有良好的治療效果。由實驗中,篩選了16株對linezolid非感受型菌株,為了研究這些菌株抗藥的機制,我進一步地分析23S rRNA domain V的位置,但並未發現有G2576U此一最常見突變形式的發生。 | zh_TW |
| dc.description.abstract | The M. tuberculosis complex comprises M. tuberculosis, M. bovis, M. bovis BCG, M. africanum, M. microti and M. canneti. The major pathogen for tuberculosis among M. tuberculosis complex is M. tuberculosis. The major syndrome is pulmonary tuberculosis and the most often clinical specimens are sputum. The currently commercially available molecular assays which use either IS6110 or 16S rRNA fragment as identification targets are mainly designed for identifying MTBC but not for MTB. Comparative genomic DNA analysis has provided valuable information on regions of difference (RD) present in MTB but not in other members of the MTBC. RD9 region is further suggested to be a potential target for differential identification of MTB from MTBC.
In this study, using IS6110 and Rv3618 (belong to RD9) as the specific identification targets for MTBC and MTB, respectively, we developed and tested a multiplex nested PCR-ICT (immuno-chromatography test) assay for simultaneously and directly detecting not only MTBC but also MTB from 1500 clinical sputum specimens. The results were compared with traditional culture and biochemical identification results together with patients' clinical assessments. This assay showed a 95.5% sensitivity, 97.9% specificity, 2.1% false positive rate and 4.5% false negative rate towards detection of MTBC, and 93.0% sensitivity, 99.8% specificity, 0.2% false positive rate and 7.0% false negative rate for detection of MTB. Our results showed that the multiplex nested PCR-ICT assays is a convenient, low-cost and easy-to-use detection system for identification of MTB with high sensitivity and specificity. Following the production of the multiple drug resistant bacteria strains, the first-lane of antituberculosis drug cannot be satisfied. The tests of this part were used 475 MTB strains isolated from NTUH from 2003~2004. MICs of moxifloxacin (MXF), levofloxacin (LVX), ciprofloxacin(CIP), ofloxacin(OFX), linezolid (LZD) and clarithromycin(CLR)were tested for all of MTB strains. Beside of the CLR, the MIC90 of all other drugs were smaller than 2μg/mL. The result suggests that those drugs have better inhibitory effect on MTB. On the other hand, We had screend 16 LZD-non-sensitived strains in these tests. To further adressed the resistence mechnism of these MTB strains, We had sequenced the 23S rRNA of domain V of these strains but no mutation, G2576U, the most common mutation types was observed. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T02:19:14Z (GMT). No. of bitstreams: 1 ntu-96-R93424013-1.pdf: 1143267 bytes, checksum: 04064c59bc690af67c7bd33372343935 (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 中文摘要 iii 英文摘要 iv 目錄 vi 圖目錄 viii 表目錄 ix 第一章 緒 論 第一節 Mycobacterium tuberculosis簡介 (一) 特性 1 (二) 結核菌的傳播 1 (三) 結核菌的潛伏反應2 (四) 臨床表徵與治療2 第二節 結核分枝桿菌基因體DNA萃取方法3 第三節 結核分枝桿菌診斷方法 (一)核酸擴增技術(Nucleic acid amplification) 4 (二)檢驗標的物的選擇 5 (三)色層免疫分析法6 第四節 抗藥性分析 (一)抗結核藥物7 (二)肺結核抗藥性的流行病學7 第五節 抑制細菌蛋白質合成的抗生素-Linezolid (一)蛋白質轉譯過程(Protein translation)9 (二)抑制細菌蛋白質轉譯過程的抗生素9 (三)Oxazolidinones10 第六節 實驗設計與目的 (一)結核分枝桿菌快速核酸檢測試劑之開發12 (二)改善利用RD9( Rv3618)為標的物的靈敏度問題14 (三)抗藥性分析 15 第二章 研究材料與實驗方法 第一節 結核分枝桿菌快速核酸檢測試劑的開發 (一)N-acetyl-L-cysteine-sodium hydroxide (NALC-NaOH) method 16 (二)BACTEC 960 MGIT System18 (三)萃取方法18 (四)免疫色層分析 / 測流向分析技術21 (五)DNA之定量及純度測定-Spectrophotometer定量法22 (六)PCR 反應 IS6110 based nested PCR 23 Rv3618 based nested PCR 24 Multiplex nested PCR 25 RD9 PCR 26 (七)電泳 27 第二節 抗藥性分析 (一)非一線抗結核藥物感受性試驗27 (二)Amplification of 23S rRNA domain V of Mycobacterium tuberculosis28 (三)Amplification of Riboprotein L4 of Mycobacterium tuberculosis 29 (四)Gel DNA extraction Kit 29 (五)核酸定序(Sequencing) 30 (六)MIC50 、MIC90、MIC Range計算方式30 第三章 實驗結果 第一節 結核分枝桿菌快速核酸診斷試劑的開發 (一)結核分枝桿菌基因體DNA萃取試劑的開發31 第二節Multiplex nested PCR-ICT assay (一) IS6110及Rv3618 based nested PCR敏感性評估35 (二) IS6110及Rv3618 based nested PCR特異性評估35 (三) Multiplex nested PCR 敏感性評估36 (四)Multiplex nested PCR 特異性評估36 (五)缺乏RD9的結核分枝桿菌37 (六)免疫色層分析法(ICT assay)偵測平台設計原理38 第三節 抗藥性分析 (一)非一線抗結核藥物感受性試驗39 (二)Linezolid 非感受型菌株藥物作用區定序分析40 第四章 討論 41 第五章 實驗之附表、圖 44 參考文獻 59 附錄 73 | |
| dc.language.iso | zh-TW | |
| dc.subject | 結核病 | zh_TW |
| dc.subject | Linezolid | zh_TW |
| dc.subject | 抗藥機制 | zh_TW |
| dc.subject | Rv3618 | zh_TW |
| dc.subject | 結核分枝桿菌 | zh_TW |
| dc.subject | RD9 | zh_TW |
| dc.subject | Rv3618 | en |
| dc.subject | tuberculosis | en |
| dc.subject | Mycobacterium tuberculosis | en |
| dc.subject | resistance mechanism | en |
| dc.subject | Linezolid | en |
| dc.subject | RD9 | en |
| dc.title | 結核分枝桿菌快速核酸檢測試劑之開發及抗藥性研究 | zh_TW |
| dc.title | Development of rapid DNA diagnosis kit for Mycobacterium tuberculosis and the Antimicrobial Resistance pattern | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 薛博仁 | |
| dc.contributor.oralexamcommittee | 蔡文城,鄧麗珍,舒竹青 | |
| dc.subject.keyword | 結核病,結核分枝桿菌,抗藥機制,Linezolid,RD9,Rv3618, | zh_TW |
| dc.subject.keyword | tuberculosis,Mycobacterium tuberculosis,resistance mechanism,Linezolid,RD9,Rv3618, | en |
| dc.relation.page | 73 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2007-01-31 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 醫學檢驗暨生物技術學研究所 | zh_TW |
| Appears in Collections: | 醫學檢驗暨生物技術學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-96-1.pdf Restricted Access | 1.12 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
