請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30862完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蘇鴻基,葉信宏 | |
| dc.contributor.author | "Yi-Ju, Lu" | en |
| dc.contributor.author | 呂依儒 | zh_TW |
| dc.date.accessioned | 2021-06-13T02:18:35Z | - |
| dc.date.available | 2010-11-14 | |
| dc.date.copyright | 2007-02-27 | |
| dc.date.issued | 2006 | |
| dc.date.submitted | 2007-02-01 | |
| dc.identifier.citation | Agrios, George N. 1997. Plant Pathology fourth edition, Academic Press. New York.
Ahlawat, Y.S., Pant, R. B., Lockhart, B. E. L., Srivastava, M., Chakraborty, N. K., and Varma, A. 1996. Association of a badnavirus with citrus mosaic disease in India. Plant Dis 80: 590-592. Arias, P., Dankers, C., Liu,P., and Pilkauskas, P. 2003. The world banana economy, 1985-2002. 97 pages. Berg, L. A., Bustamante, M. 1974. Heat treatment and meristem culture for the production of virus-free bananas. Phytopathology 64: 320-322. Calvin O. Qualset. 2000. Systemwide review of plant breeding methodologies in the CGIAR. pp. 17-20. IPGRI/INIBAP Sub-Panel Report. Montpellier, France. Dahal, G. and Ortiz, R. 1998. Effect of Temperature on symptom expression and reliability of banana streak badnavirus detection in naturally infected plantain and banana (Musa spp.). Plant Dis 82: 16-21. Dahal, G., Hughes, J., Gauhl, F. and Pasberg-Gauhl, C. 2000. Symptomatology and development of banana streak, a disease caused by banana streak badnavirus, under natural conditions in Ibadan, Nigeria. Acta Hort. (ISHS) 540: 361-375. Dahal, G., Ortiz, R., Tenkouano, A., Hughes, J.d’A., Thottappilly, G., Vuylsteke, D., and Lockhart, B.E.L. 2000. Relationship between natural occurrence of banana streak badnavirus and symptom expression, relative concentration of viral antigen, and yield characteristics of some micropropagated Musa spp. Plant Pathol 49: 68–79. Dallot, S., Acuna, P., Rivera, C., Ramírez, P., Côte, F., Lockhart, B. E. L., and Caruana, M. L. 2001. Evidence that the proliferation stage of micropropagation procedure is determinant in the expression of banana streak virus integrated into the genome of the FHIA 21 hybrid (Musa AAAB). Arch Virol 146: 2179-2190. Danielles, J., Thomas, J. E., and Smiths, B. J. 1995. Seed transmission of banana streak badnavirus confirmed. Infomusa 4: 7. Daniells, J.W., Geering, A.D.W., Bryde, N.J., and Thomas, J.E., 2001. The effect of banana streak virus on the growth and yield of dessert bananas in tropical Australia. Ann Appl Biol 139: 51–60. Delanoy, M., Salmon, M. and Kummert, J. 2003. Development of real-time PCR for the rapid detection of episomal banana streak virus (BSV). Plant dis 87: 33-38. Devereux, J., Haeberli, P., and Smithies, O. 1984. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Research 12: 387-395. Diekmann, M. and Putter, C. A. J. 1996. FAO/IPGRI technical guidelines for the safe movement of germplasmm. In Musa, 2nd edn, pp. 28. Fan, L. Y. 1998. Causal virus and transmission ecology of banana streak. Master thesis published by National Taiwan University, Taipei, Taiwan. Geering, A. D. W., McMichael, L. A., Dietzgen, R. G., and Thomas, J. E. 2000. Genetic diversity among banana streak virus isolates from Australia. Phytopathology 90: 921-927. Geering, A. D. W., Olszewski, N. E., Dahal, G., Thomas, J. E., and Lockhart, B. E. L. 2001. Analysis of the distribution and structure of integrated banana streak virus DNA in a range of Musa cultivars. Mol Plant Pathol 2: 207-213. Geering, A. D. W., Pooggin, M. M., Olszewski, N. E., Lockhart, B. E. L., and Thomas, J. E., 2005. Characterisation of banana streak mysore virus and evidence that its DNA is integrated in the B genome of cultivated Musa. Arch Virol 150: 787–796. Geering, A. D. W., Olszewski, N., Harper, G., Lockhart, B. E. L., Hull, R., and Thomas, J.E. 2005 Banana contains a diverse array of endogenous badnaviruses. J Gen Virol 86: 511-520. Harper, G., and Hull, R. 1998. Cloning and sequence analysis of banana streak virus DNA. Virus Genes 17: 271-278. Harper, G., Dahal, G., Thottappilly, G., and Hull, R. 1999a. Detection of episomal Banana streak badnavirus by IC-PCR. J Virol Methods 79: 1-8. Harper, G., Osuji, J. O., Heslop-Harrison, J. S. P., and Hull, R. 1999b. Integration of banana streak badnavirus into the Musa genome: molecular and cytogenetic evidence. Virol 255: 207-213. Harper, G., Hart, D., Moult, S., and Hull, R. 2002. Detection of banana streak virus in field samples of bananas from Uganda. Ann Appl Biol 141: 247-57. Helliot, B., Panis, B., Poumay, Y., Swennen, R., Lepoivre, P., and Frison, E. 2002. Cryopreservation for the elimination of cucumber mosaic or banana streak viruses from banana (Musa spp.). Plant Cell Rep. 20: 1117-1122. Helliot, B., Panis, B., Frison, E., De Clercq, E., Swennen, R., Lepoivre, P., and Neyts, J. 2003. The acyclic nucleoside phosphonate analogues, adefovir, tenofovir and PMEDAP, efficiently eliminate banana streak virus from banana (Musa spp.) Antiviral Res 59: 121-126. Http://www.ncbi.nih.gov/ Hull, R. 2002. Matthews’ plant virology, 4th ed. Academic Press, San Diego, CA. Jones, D. R. 1994. Risks involved in the transfer of banana and plantain germplasm. pp. 85-98. In: The improvement and testing of Musa: a global partnership. INIBAP, Montprllier, France. Jones, D. R. and Lockhart, B. E. L. 1993. Banana streak disease. In: Musa Disease Fact Sheet No. 1, INIBAP, Montpellier, France. Kazazian, H., and Goodier, J. 2002. LINE Drive: retrotransposition and genome instability. Cell 110: 227-280. Kunii M., Kanda M., Nagano H., Uyeda I., Kishima Y., and Sano Y. 2004. Reconstruction of putative DN virus from endogenous rice tungro bacilliform virus-like sequence in the rice genome: implications for integration and evolution. BMC Genomicc. 5 (80). LaFleur, D. A., Lockhart, B. E. L., and Olszewski, N. E., 1996. Portions of the banana streak badnavirus genome are integrated in the genome of its hosts Musa spp. Phytopathology 86: 100-101. Lassoudière, A. 1974. La mosaïque dite “à tirets” du bananier Poyo en Côte d’Ivoire. Fruits 29: 349-357. Lheureux, F., Carreel, F., Jenny, C., Lockhart, B. E. L., and Iskra-Caruana, M. L. 2003. Identification of genetic markers linked to banana streak disease expression in inter-specific Musa hybrids. Theor Appl Genet 106: 594-598. Lockhart, B. E. L. 1986. Purification and serology of a bacilliform virus associated with banana streak disease. Phytopathology 76: 995-999. Lockhart, B. E. L. 1995. Banana streak badnavirus infection in Musa: epidemiology, diagnosis, and control. Food Fert Tech Bull 143: 1-11. Lockhart, B. E. L. and Olszewski, N. E. 1993. Serological and genomic heterogeneity of banana streak badnavirus: implications for virus detection in Musa germplasm. pp. 105-113. In: Ganry J, ed. Breeding banana and plantain for resistance to diseases and pests, INIBAP ,Montpellier, France. Matile-Ferrero, D. and Williams, D. J. 1995. Recent outbreaks of mealybugs on plantain (Musa spp.) in Nigeria including a new record for Africa and a description of a new species of Planococcus (Ferris) (Homoptera: Pseudococcidae). Bull Socie´te´ Ento de France 100: 445-9. Mohan Jain, S. and Swennen, R., 2004. Banana improvement: cellular, molecular biology, and induced mutations. Science Publishers Inc., Enfield, NH, USA: 382 pp. Ndowora, T., Dahal, G., LaFleur, D., Harper, G., Hull, R., Olszewski, N., and Lockhart, B. E. L. 1999. Evidence that badnavirus infection in Musa can originate from integrated sequences. Virol 255: 214-220. Ortiz, R. 1996. The potential of AMMI analysis for field assessment of Musa genotypes to virus infection. HortScience 31: 529-532. Reichel, H., Belalcázar, S., Múnera, G., Arévalo, E. and Narváez, J. 1996. First report of banana streak virus infecting plantains (Musa spp.) in Colombia. Plant Dis 80: 463. Reichel, H., Belalcázar, S., Múnera, G., Arévalo, E. and Narváez, J. 1997. First report of banana streak virus infecting sugarcane and arrowroot in Colombia. Plant Dis 81: 552. Remans, T., Grof, C. P., Ebert, P.R., and Schenk, P. M. 2005. Identification of functional sequences in the pregenomic RNA promoter of the banana streak virus cavendish strain (BSV-Cav). Virus research 108(1-2): 177-86. Ryu. I. H. 1999. Vectorship of mealybugs transmitting banana streak badnavirus and disease ecology. Master thesis published by National Taiwan University, Taipei, Taiwan. Ryu, I. H. 2002. Pathological and molecular characterization of banana streak badnavirus strains and their transmission ecology. Ph. D. Thesis published by National Taiwan University, Taipei, Taiwan. Ryu, I. H. and Su, H. J. 1999. Vectorship of mealybugs transmitting banana streak badnavirus. Plant Path Bull. 11: 19-20. Schenk, P. M., Remans, T., Sagi, L., Elliott, A. R., Dietzgen, R. G., Swennen, R., Ebert, P. R., Grof, C. P. L., and Manners, J.M. 2001. Promoters for pregenomic RNA of banana streak badnavirus are active for transgene expression in monocot and dicot plants. Plant Mol Biol 47: 399-412. Shalla, T.A., Shepherd, R.J., and Petersen, L.J. 1980. Comparative cytology of nine isolates of Cauliflower mosaic virus. Virology 102:381–388. Su, H. J. and Wu, M. L. 1996. Detection and transmission of banana streak badnavirus in exotic and domestic cultivars of Taiwan banana. Plant Path Bull 5: 222-223. Su, H. J., Hung, T. H., and Wu, M. L. 1997. First report of banana streak virus infecting banana cultivars (Musa spp.) in Taiwan. Plant Dis 81: 550. Thompson, J. D., Higgins, D. G., and Gibson, T. J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22: 4673-4680. Thottappilly, G., Dahal, G., and Lockhart, B.E.L. 1998. Studies on a Nigerian isolate of banana streak badnavirus. I. Purification and enzyme-linked immunoassay. Ann. Appl.Biol. 132: 253-261. Van Regenmortel, M. H. V., Fauquet, C. M., Bishop, D. H. L., Carstens, E. B., Estes, M. K., Lemon, S. M., Maniloff, J., Mayo, M. A., McGeoch, D. J., Pringle, C. R., and Wickner, R. B. 2000. Virus taxonomy: seventh report of the international committee on taxonomy of viruses. Academic Press, San Diego. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30862 | - |
| dc.description.abstract | 香蕉條紋病毒(Banana streak virus, BSV)在香蕉產業上逐漸成為嚴重威脅,其特色在於其基因體可嵌入寄主基因體中,並且序列在活化後,可造成感染。本論文由香蕉研究所內具重要經濟性品種香蕉中檢驗出27個未被BSV感染之品種,在未來可用於無毒種苗的生產。並在3株含有B genome之香蕉並未檢測出含有BSV序列,與之前所報導BSV會分佈於B genome之香蕉並不一致。另外,以田間種植之北蕉、呂宋蕉、假呂宋蕉等為對象,調查香蕉條紋病之分佈。BSV在台灣分佈調查顯示Cavendish (cv. Pei Chiao, AAA)品種感染此病毒的比例極低,在130棵植株當中只有五棵有偵測到BSV,但皆無典型病徵表現。然而在呂宋蕉(Silk, Latundan, AAB)或假呂宋蕉(Silk, Mysore, AAB)中,BSV發生率極高,根據樣本病徵型態觀察中,只有一株呈現典型病徵,此與先前報導BSV序列在B genome香蕉中可嵌入寄主基因體但並未活化感染是一致的。然而目前仍然缺乏大規模快速且準確的方法可用於田間調查,來區別嵌入型與活化型之BSV,因此,本實驗根據非活化型病毒其RNA可能無法被寄主轉錄製造,發展利用RT PCR方法來進行快速檢測。為了觀察BSV所造成的細胞生理學上的變化,亦進行超薄切片,並以穿透式電子顯微鏡觀察,結果發現不論BSV活化或非活化,PCR測得病毒訊號之葉片,其葉脈附近的伴細胞中細胞核有膨大現象,且葉肉細胞中葉綠體所含之澱粉粒體積所佔比例亦較正常葉綠體中來的大。將實驗室所得之分離株進行基因體全長定序,與NCBI所發表之各BSV分離株進行比對,其序列與Banana streak mysore Virus相似(99% identity)。欲了解BSV之基因的功能,嘗試建立包含1.26倍BSV基因體全長之感染系統,接種後兩個月尚未出現BSV典型條紋病徵,以PCR檢測,只在接種葉上有測得BSV之訊號,因此,此感染系統尚有須改進及檢討之處。 | zh_TW |
| dc.description.abstract | Banana streak virus (BSV) is becoming a serious threat to banana industry. One character of BSV is that its sequence can integrate into the host genome and the episomal infection may occur after the activation of the BSV integrant. In this study, 27 out of 50 economically important banana collected in Taiwan Banana Research Institution were screened to be free of BSV by PCR detection and could be used for breeding programs. Three B genome containing bananas were BSV free which is inconsistent with previous studies that all B genome bananas contain BSV genome. Field survey in Taiwan showed that the incidence of BSV in cv. Cavendish was relatively low. Only five out of 130 cv. Cavendish contained BSV sequence and no visible symptoms were observed. In B genome containing cultivars, a high incidence of BSV was detected but only one sample showed typical streak symptoms. The result is in accordance with the prediction that the BSV integration infection occurred in B genome bananas. However, lacking of a rapid detection method that can be used in high throughput screening to differentiate integrated form and episomal form of BSV, we are not sure that how many BSV positive bananas contain episomal BSV infection. To overcome the problem, based on the report that the integrated DNA is highly methylated thus the transcription of mRNA may be inhibited, a RT-PCR method to examine the existence of RNA of integrated BSV was developed. In addition, cytopathological observation was conducted to understand ultrastrucural changes in banana leaves caused by BSV. Interestingly, in both BSV episomal infection and integrated in genome leaves, the nuclei of the companion cells enlarged. Enlargement of starch grains also appeared in the chloroplast of these plants. To reveal the phylogenetic relationships of BSV isolated in Taiwan, the complete genome of Taiwanese isolate was sequenced. Sequence analysis revealed that it shares highly sequence identity (99%) to Banana streak mysore virus. For further study of the gene function of BSV, an infectious clone containing 1.26 copies of BSV complete genome were constructed. However, the clone could not infect cv. Cavendish successfully. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T02:18:35Z (GMT). No. of bitstreams: 1 ntu-95-R93633006-1.pdf: 1610613 bytes, checksum: 57259df5df658327a31930cb3d893bc2 (MD5) Previous issue date: 2006 | en |
| dc.description.tableofcontents | Abstract (in Chinese) i
Abstract ii Chapter I. Introduction 1 1.1 Introduction 1 1.2 Discovery and distribution of BSV 2 1.3 Symptoms caused by BSV 2 1.4 Genome structure and characters of BSV 3 1.5 Integration of BSV in host genome 5 1.6 Hosts and transmissions of BSV 6 1.7 Factors affect BSV transmission 7 1.8 Identification of BSV 8 1.9 Management of BSV 9 1.10 Aims of the present study 9 Chapter II. Material and methods 10 2.1 Virus source 10 2.2 Sample collection 10 2.3 Genomic DNA extraction 11 2.4 Polymerase Chain Reaction (PCR) amplification 11 2.5 Analysis of sequence data 12 2.6 RNA isolation 13 2.7 Reverse Transcription PCR 13 2.8 Thin sections for transmission electron microscopy observation 14 2.9 Infectious clone construction 15 2.10 Preparation of A. tumefaciens competent cell 16 2.11 Electroporation and Agroinfiltration 16 Chapter III. Result 18 3.1 Screening of BSV-free economically important banana cultivars collected in Taiwan 18 3.2 Distribution of BSV in Taiwan 19 3.3 Development of RT-PCR based detection methods for differentiating BSV episomal and integrated forms 20 3.4 The complete sequence of BSV Taiwanese isolate 20 3.5 Cytopathological effects induced by BSV 21 3.6 Infectious clone construction 22 Chapter IV. Discussion 23 Reference 27 Table 35 Figure 52 Appendix 60 | |
| dc.language.iso | en | |
| dc.subject | 細胞病理學 | zh_TW |
| dc.subject | 香蕉條紋病毒 | zh_TW |
| dc.subject | banana streak virus | en |
| dc.subject | cytopathology | en |
| dc.title | 香蕉條紋病調查與細胞病理學觀察及感染系統之建立 | zh_TW |
| dc.title | Field survey, cytopathological examinations and infectious clone construction of Banana streak badnavirus | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 洪挺軒,黃新川 | |
| dc.subject.keyword | 香蕉條紋病毒,細胞病理學, | zh_TW |
| dc.subject.keyword | banana streak virus,cytopathology, | en |
| dc.relation.page | 61 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2007-02-02 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 植物病理與微生物學研究所 | zh_TW |
| 顯示於系所單位: | 植物病理與微生物學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-95-1.pdf 未授權公開取用 | 1.57 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
