請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30798完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 魏國彥 | |
| dc.contributor.author | Chiao-Yun Ling | en |
| dc.contributor.author | 凌巧芸 | zh_TW |
| dc.date.accessioned | 2021-06-13T02:16:07Z | - |
| dc.date.available | 2017-02-13 | |
| dc.date.copyright | 2007-02-27 | |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2007-02-13 | |
| dc.identifier.citation | 參考文獻
中文部分 李時雨(2001)以落塵核種探討台灣東北海域之沈積動力。國立台灣大學海洋研究所碩士論文。 林庚玲(1992)台灣東北外海表層沈積物之構造、組成和黏土礦物。國立台灣大學海洋研究所碩士論文。 林殷田(2001)長江三角洲與東海陸棚沈積物內有機碳13C同位素之區域分佈與垂直變化。國立台灣大學海洋研究所碩士論文。 高樹基(1995)高剝蝕率島嶼之碳的生物地球化學:以蘭陽溪流域為例。國立台灣大學海洋研究所博士論文。 許世傑(1998)台灣東北外海沈積物來源與傳輸以及水體中微量金屬之地球化學。國立台灣大學海洋研究所博士論文。 陳民本、林庚玲、黃兆愷(1995)台灣東北外海黑潮轉向區表層沈積物之沈積性質與構造。地質,第十五卷第一期,15-47頁。 陳星光(1995)東海陸棚與陸坡之沈積速率與有機碳的埋藏。國立台灣大學海洋研究所碩士論文。 陳儀清(1997)台灣西南外海海床表層沈積現象之研究。國立台灣大學海洋研究所博士論文。 黃怡煥(2005沖繩海槽最南段與台灣北部斷層系統的分析。國立台灣海洋大學應用地球物理研究所碩士論文。 經濟部水資源局(1997)中華民國86年台灣水文年報。 廖宏儒(2006)彰雲潮流沙脊之形貌、沈積作用及演化模式。國立台灣大學海洋研究所博士論文。 劉金城(1995)台灣東北海域沈積物顆粒粒徑分布所顯示的沈積現象。國立台灣大學海洋研究所碩士論文。 蔡正翰(1992)雷射顆粒粒徑儀之介紹。地質,第十二卷第一期,81-86頁。 蔡康齡(2002)南沖繩海槽西端顆粒物質中鉛-210與釙-210之不平衡現象。國立中山大學海洋地質與化學研究所碩士論文。 蘇志杰(2000)以多示蹤劑法探討東海之沈積動力學。國立台灣大學海洋研究所博士論文。 英文部分 Adams J. (1990) Paleoseismicity of the Cascadia subduction zone: evidence from turbidites off the Oregon-Washington margin. Tectonics 9, 569-583. Bouma A. H. (1964) Notes on X-ray interpretation of sediments. Marine Geology II, 278-309. Bucher W. H. (1940) Submarine valleys and related geologic problems of the North Atlantic. Geol. Soc. America Bull. 51, 394-413. Chang, Y. H., M. D. Scrimshaw and J. N. Lester (2001) A revised Grain-Size Trend Analysis program to define net sediment transport pathways. Computers & Geosciences 27(1): 109-114. Chen, C. T. A., R. Ruo, S. C. Pai, C.T. Liu and G. T. F. Wong (1995) Exchange of water masses between the East China Sea and Kuroshio off northeastern Taiwan. Continental Shelf Research 15, 19-39. Chen Lee, Y. L. (2000) Comparisons of primary productivity and phytoplankton size structure in the margin regions of southern East China Sea. Continental Shelf Research 20, 437-458. Chung, Y. and G. W. Hung (2000) Particulate fluxes and transports on the slope between the southern East China Sea and the South Okinawa Trough. Continental Shelf Research 20, 571-597. Chung, Y. and W. C. Chang (1995) Pb-210 fluxes and sedimentation rates on the lower continental slope between Taiwan and the Southern Okinawa Trough. Continental Shelf Research 15, 149-164. Chung, Y. and W. C. Chang (1996) Uranium and thorium isotopes in marine sediments off northeastern Taiwan. Marine Geology 133, 89-102. Dadson S. J., N. Hovius, Y. G. Chen, W. B. Dade, M. L. Hsieh, S. D. Wilett, J. C. Hu, et al. (2003) Links between erosion, runoff variability and seismicity in the Taiwan orogen. Nature 426, 648-651. Duman M., M. Avci, S. Duman, E. Demirkurt and M.K. Duzbastilar (2004) Surficial sediment distribution and net sediment transport pattern in Izmir Bay, western Turkey. Continental Shelf Research 24, 965-981. Folk R. L. and W.C. Ward (1957) Brazos River bar (Texas): a study in the significance of grain size parameters. Journal of Sedimentary Research 27, 3-26. Folk R. L. (1966) A review of grain-size parameters. Sedimentology 6, 73-93. Friedman G. M., J. E. Sanders (1978) Principles of sedimentology. John Wiley & Sons, 58-81. Friend P. L., A. F. Velegrakis, P. D. Weatherston and M. Collins (2006) Sediment transport pathways in a dredged ria system, southwest England. Estuarine Coastal and Shelf Science 67, 491-502. Gao, S. (1996) A FORTRAN program for grain size trend analysis to define net sediment transport pathways. Computers and Geosciences 22, 449-552. Gao, S. and M. Collins (1991) A critique of the “McLaren Method” for defining sediment transport paths. Journal of Sedimentary Petrology 61, 143-146. Gao, S. and M. Collins (1992) Net sediment transport patterns inferred from grain-size trends, based upon definition of “transport vectors”. Sedimentary Geology 81, 47-60. Gao, S. and M. Collins (1994) Analysis of grain size trends, for defining net sediment transport patterns in marine environments. Journal of Coastal Research 10, 70-78. Gonthier E., J.-C. Faugeres, A. Viana, A. Figueiredo and P. Anschutz (2003) Upper Quaternary deposits on the Sao Tome deep-sea channel levee system (South Brazilian Basin): major turbidite versus contourite processes. Marine Geology 199, 159-180. Gregory J. W. (1929) The earthquake south of Newfoundland and submarine canyons. Nature 124, 945. Gregory J. W. (1931) The earthquake off the Newfoundland banks of 18 November 1929. Geog. Journal 77, 123-139. Hamblin W. K. (1962) X-ray radiography in the study of structures in homogeneous sediments. Journal of Sedimentary Petrology 32, 201-210. Heezen B. C. and M. Ewing (1952) Turbidity currents and submarine slumps, and the 1929 Grand Banks earthquake. American Journal of Science 250, 849-873. Hsu, S. J., F. J. Lin, W. L. Jeng and T.Y. Tang (1998) The effect of a cyclonic eddy on the distribution of lithogenic particles in the southern East China Sea. Journal of Marine Research 56, 813-832. Huang, T. C. and D. J. Stanley (1972) Weatern Alboran Sea: Sedimentdispersal, ponding, and reversal of currents. In Stanley D. J. (Ed.), The Mediterranean Sea: A Natural Sedimentation Laboratory. Dowdon, Hutchinson and Ross, Inc., Strondsburg, Penn., 521-599. Huh, C. A., C. C. Su, W. T. Liang and C. Y. Ling (2004) Linkages between turbidites in the southern Okinawa Trough and submarine earthquakes. Geophys. Res. Lett. 31, L12304, doi:10.1029/2004GL019731. Huh, C. A., C. C. Su, C. H. Wang, S. Y. Lee and I. T. Lin (2006) Sedimentation in the Southern Okinawa Trough – rate, budget and turbidites. Marine Geology 231, 129-139. Hung, J. J., C. S. Lin, G. W. Hung and Y. Chung (1999) Lateral transport of lithogenic particles from the continental margin of the Southern East China Sea. Estuarine Coastal and Shelf Science 49, 483-499. Inouchi Y., Y. Kinugasa, F. Kumon, S. Nakano, S. Yasumatsu, T. Shiki (1996) Turbidites as records of intense palaeoearthquakes in Lake Biwa, Japan. Sedimentary Geology 104, 117-125. Johnstone J. H. L. (1930) The Acadian-Newfoundland earthquake of November 18, 1929. Nova Scotian Inst. Sci. Trans. 17, 223-237. Keith A. (1930) The Grand Banks earthquake. Seismol. Soc. America, Eastern Sectio, Proc., Supplement, 5. Kuenen P. H. (1967) Emplacement of flysch-type sand beds. Sedimentology 9, 203-243. Liang, W. D., T. Y. Tang, Y. J. Yang, M. T. Ko and Chuang W. S. (2003) Upper-ocean currents around Taiwan. Deep-Sea Research II 50, 1085-1105. Lin, F. J. and J.C. Chen (1983) Textural and mineralogical studies of sediments from the southern Okinawa Trough. Acta Oceanography Taiwanica 14, 26-41. Lin, S., K. K. Liu, M. P. Chen, P. Chen and F. Y. Chang (1992) Distribution of organic carbon in the KEEP area continental margin sediments. Terrestrial, Atmospheric and Oceanic Sciences 3, 365-378. Liu, C. T., S. P. Cheng, W. S. Chuang, Y. Yang, T. N. Lee, W. E. Johns and H. W. Li (1998) Mean structure and transport of Taiwan Current (Kuroshio). Acta Oceanographica Taiwanica 36, 159-176. McLaren P. (1981) An interpretation of trends in grain size measures. Journal of Sedimentary Research 51, 611-624. McLaren P. and D. Bowles (1985) The effects of sediment transport on grain-size distribution. Journal of Sedimentary Petrology 55, 457-470. Michels K. H., J. Rogenhagen and G. Kuhn (2001) Recognition of contour-current influence in mixed contourite-turbidite sequences of the western Weddell Sea, Antarctica. Marine Geophysical Researches 22, 465-481. Middleton G. V. and M. A. Hampton (1973) Sediment gravity flows: mechanics of flow and deposition. In: Middleton G. V. and A. H. Bouma (Ed.), Turbidites and deepwater sedimentation. Soc. Econ. Paleontol Mineral Pacific Section Short Course Lecture Notes, Anaheim, 1-38. Milliman J. D., H. T. Shen, Z. S. Yang and R. H. Meade (1985) Transport and deposition of river sediment in the Changjiang estuary and adjacent continental shelf. Continental Shelf Research 4, 37-45. Mulder T. and J. Alexander (2001) The physical character of subaqueous sedimentary density currents and their deposits. Sedimentology 48, 269-299. Mulder T., O. Weber, P. Anschutz, F. J. Jorissen, J. M. Jouanneau (2001) A few months-old storm-generated turbidite deposited in the Capbreton Canyon (Bay of Biscay, SW France). Geo-Marine Letters 21, 149-156. Mutti E., R. Tinterri, E. Remacha, N. Mavilla, S. Angella, L. Fava (1999) An introduction to the analysis of ancient turbidite basins from an outcrop perspective. AAPG Continuing Education Course Note Serises 39, Tulsa, OK, 61. Nakajima T. and Y. Kanai (2000) Sedimentary features of seismoturbidites triggered by the 1983 and older historical earthquakes in the eastern margin of the Japan Sea. Sedimentary Geology 135, 1-19. Rasmussen S., H. Lykke-Andersen, A. Kuijper and S. R. Troelstra (2003) Post-Miocene sedimentation at the continental rise of Southeast Greenland: the interplay between turbidity and contour currents. Marine Geology 196, 37-52. Sanders J. E. (1965) Primary sedimentary structures formed by turbidity currents and related resedimentation mechanism. In: Middleton G. V. (Ed.), Primary Sedimentary Structures and Their Hydrodynamic Interpretation. Society of Economic Paleontologists and Mineralogists, Special Publication 12, 192-219. Seno T. (1977) The instantaneous rotation vector of the Philippine Sea Plate relative to the Eurasian Plate. Tectonophysics 42, 209-226. Seno T., S. Stein and A. E. Gripp (1993) A model for the motion of the Phillippine Sea Plate consistent with NUVEL-1 and geological data. Journal of Geophysical Research 98, 17941-17948. Shanmugam G. (2002) Ten turbidite myths. Earth-Science Reviews 58, 311-341. Sheu, D. D., W. C. Jou, Y. C. Chung, T. Y. Tang and J. J. Hung (1999) Geochemical and carbon isotopic characterization of particles collected in sediment traps from the East China Sea continental slope and the Okinawa Trough northeast of Taiwan. Continental Shelf Research 19, 183-203. St-Onge G.., T. Mulder, D. J. W. Piper, C. Hillaire-Marcel and J. S. Stoner (2004) Earthquake and flood-induced turbidites in the Saguenay Fjord (Quebec): a Holocene paleoseismicity record. Quaternary Science Reviews 23, 283-294. Stow D. A. V. (1979) Distinguish between fine-grained turbidites and contourites on distal Nova Scotian deep water margin. Sedimentology 26, 371-387. Stow D. A. V. and G. Shanmugam (1980) Sequence of structures in fine-grained turbidites: comparison of recent deep-sea and ancient Flysch sediment. Sedimentary Geology 24, 23-42. Stow D. A. V. and M. R. Townsend (1990) X-ray techniques and observations on distal Bengal Fan sediments cored during Leg116. Proceedings of the Ocean Drilling Program, Scientific Results 116, 5-14. Stow D. A. V. and A. Wetzel (1990) Hemiturbidite: A new type of deep-water sediment. Proceedings of the Ocean Drilling Program, Scientific Results 116, 5-14. Su, C. C. and C. A. Huh (2002) 210Pb,137Cs and 239,240Pu in East China Sea sediments: sources, pathways and budgets of sediments and radionuclides. Marine Geology 183, 163-178. Tang, T. Y., J. H. Tai and Y. J.Yang (2000) The flow pattern north of Taiean and the migration of Kuroshio. Continental Shelf Research 20, 349-371. Uyeda S. and H. Kanamori (1979) Back-arc opening and the model of subduction. Journal of Geophysical Research 84, 1049-1061. Visher G. S. (1969) Grain size distributions and depositional process. Journal of Sedimentary Petrology 39 (3),1074-1106. Yu, H. S. and E. Hong (1992) Physiographic characteristics of the continental margin, northeast Taiwan. Terrestrial, Atmospheric and Oceanic Sciences 3, 419-434. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30798 | - |
| dc.description.abstract | 摘要
自從Heezen and Ewing(1952)對於1929年加拿大Grand Banks地震的研究,科學家瞭解到地震會引發濁流的能力,於是濁流沈積物與古地震的研究遂展開。以往對濁流岩之研究多著重在推算地震週期、古地震強度及比較不同成因濁流沈積物間之異同。本研究希望藉由比對近代的地震與其引發濁流沈積物在岩心中的紀錄,進一步瞭解兩者間之相互關係。 南沖繩海槽為菲律賓海板塊隱沒到歐亞大陸板塊下而形成的弧後盆地,其沈積物可能來源為東海陸棚、蘭陽溪及黑潮輸入。由於南沖繩海槽具有高沈積速率且其週邊地區之地震發生頻繁,使本地區成為研究地震與濁流沈積物之關係的絕佳地點。 依據X光攝影及粒徑分析結果,南沖繩海槽沈積物岩心可分成四大類:(1)半濁流沈積(Hemiturbidite)、(2)薄層細粒濁流沈積、(3)厚層細粒濁流沈積及(4)近洋沈積。半濁流沈積之岩心之特徵為其濁流沈積物層厚度較薄,位於南沖繩海槽邊緣陸坡下部;而薄層細粒濁流沈積岩心之濁流沈積物層厚度則較前者為厚,粒徑較粗,位於棉花峽谷下部;至於厚層細粒濁流沈積之岩心,其濁流沈積物層厚度為最厚,粒徑亦最粗,位於海槽最深處,此區為濁流沈積中心。而屬於近洋沈積的岩心,不僅在X光底片上看不出有濁流沈積的構造存在,其粒徑之垂直分布剖面上也無變化。 此外,我們將代表地震事件年代之沈積物進行粒徑分析,進一步探討此區濁流沈積物可能之傳輸途徑。本研究所使用的箱型岩心中,可觀察到2002年ML6.8(24.14oN, 122.19oE, 13.8 km)、1986年ML6.8(23.99oN, 121.83oE, 15.0 km)、1966年ML7.8(24.24oN, 122.67oE, 42 km)、1959年ML7.5(25oN, 122.5oE, 150 km)、1947年ML7.2(24.8oN, 123oE, 110 km)及1922年ML 7.6(24.6oN, 122.2oE, 20 km)等地震所引發之濁流沈積物。粒徑分析結果顯示,南沖繩海槽地區地震引發之濁流沈積物,除1986年地震所引發者之外,皆發源於北坡,再往南傳輸至南沖繩海槽較深處沈積。因此在濁流沈積中心的岩心中,可觀察到厚層之濁流沈積物存在。而1986年地震所引發之濁流沈積物並無法由沈積物粒徑之空間分布辨識出其主要傳輸方向,推究其原因,可能是地震引發之沈積物崩移規模太大,而使得同時有不同方向的濁流形成。 而針對南沖繩海槽沈積物來源與傳輸問題,本研究另藉由沈積物粒徑分布之趨勢分析,以期能有更進一步的瞭解。分析結果顯示,此區沈積物搬運方向主要為由西向東傳輸,顯示蘭陽溪之輸入為主要沈積物來源。搬運方向的強度在南沖繩海槽最西端有一弱區存在,可能是由於黑潮在翻越宜蘭海脊後流向轉彎且流速突降而造成此區沈積物搬運方向較不穩定之故。 | zh_TW |
| dc.description.abstract | Abstract
Since the 1929 Grand Banks earthquake, it has been well documented that earthquakes have the potential for triggering turbidity currents. Hence, we are able to use the turbidites, an alternative way to study paleoearthquakes, as records of paleoseismicity. However, the interaction between earthquakes and turbidites is still not well understanding. The Okinawa Trough is an active, incipient, intracontinental backarc basin formed behind the Ryukyu arc-trench system in the western Pacific. Owing to its special geological and hydrological settings, it acts like an efficient receptacle for sediments from Taiwan and the East China Sea shelf. The high sediment flux let us have an opportunity to obtain a high-resolution record of the seismo-turbidites. Such a record might make it possible to identify the spatial and temporal variation of grain size between different earthquake events. All sorts of advantages enable the southern Okinawa Trough becoming an ideal place for turbidite palaeoseismology research. In this study, we utilized the grain size analysis result and X-radiographs of box cores to identify the turbidite layers and their sedimentological features. From these data, we find that the box cores which containing turbidite layers can be divided into three categories. According to their thickness and grain size analysis results, the box cores which belong to the first category are thinner than other two categories and located surrounding outside of the turbidite deposition zone. In the second category, the thickness and median grain size of the turbidite layers are larger than the first category. These cores are sited in the northern part of the turbidite deposition zone. For the last category, which located at the southern part of the turbidite deposition zone, have the thickest turbidite layers and largest median grain size than other categories. The grain size profiles also indicate that there is a fining-upward trend in thick turbidite layers. For the sake of understanding the transport of turbidites generated by the Hualien Earthquake (ML6.8) on March 31, 2002, we analyzed the sediment layers which represent the year of 2002 in our core samples. The spatial distribution of grain size reveals that the earthquake triggered turbidity current may delivered sediments from the north continental slope of southern Okinawa Trough (between the Mien-Hua Canyon and Keelung Sea Valley) and stopped at the deepest part of the southern Okinawa Trough. For the turbidites triggered by the 1966 ML 7.8 (24.24oN, 122.67oE), the 1959 ML 7.5 (25oN 122.5oE) and the 1947 ML 7.2 (24.8oN, 123oE) earthquakes show the same pattern with Hualien Earthquake. However there seems no clear transport direction for the 1986 ML 6.8 (23.99oN, 121.83oE) earthquake. Moreover, only part of our cores recorded the 1922 ML 7.6 (24.6oN, 122.2oE) earthquake, it’s insufficient for us to rebuild the transportation of these sediments. For understanding the transport of sediments in non-earthquake influence years, we also picked some samples from the non-turbidite sections for grain size trend analysis. The result suggested that the Kuroshio is the dominant factor that influences the transportation of sediments in the southern Okinawa Trough, and the Lan-Yang River and eastern Taiwan might be the major source of these sediments. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T02:16:07Z (GMT). No. of bitstreams: 1 ntu-96-R93224112-1.pdf: 6991868 bytes, checksum: f5c94bd3cb5a651490199553b48cf0a2 (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | 目 錄
中文摘要…………………………………………………………………………. i 英文摘要…………………………………………………………………………. ii 第一章 緒論…………………………………………………………………...… 1 1.1 前言……………………………………………………………………… 1 1.2 研究區域簡介………………………………………………………..….. 2 1.3 研究目的……………………………………………………………….... 4 第二章 研究方法………………………………………………………………... 7 2. 1 採樣區域………………………………………………………………... 7 2.2 沈積物採樣………..…………………………………………………..… 7 2.3 分析步驟……………………………………………………………….... 7 2.3.1 沈積物分樣………………………………………..……………... 7 2.3.2 X光攝影…………………………………………………………. 11 2.3.3 粒徑分析…………………………………………………………. 11 2.4 粒徑趨勢分析(Grain Size Trend Analysis)……………………………... 16 第三章 實驗結果與討論………………………………………………………... 19 3. 1 岩心X光攝影………………………………………………………….. 19 3.1.1 半濁流沈積(Hemiturbidite)………………………………….. 19 3.1.2 薄層濁流沈積…………………………………………………… 20 3.1.3 厚層濁流沈積…………………………………………………… 20 3.1.4 近洋沈積………………………………………………………… 21 3.2 沈積物粒徑分析結果………………………………………………….. 25 3.2.1 岩心中粒徑隨時間(深度)變化……………………………… 25 3.2.2 等時面上粒徑之空間分布……………………………………… 34 3.2.2.1 2002年ML6.8地震……………………….…………………. 34 3.2.2.2 1986年ML 6.8地震………………………………………… 35 3.2.2.3 1966年ML 7.8地震與1959年ML 7.5地震………………. 36 3.2.2.4 1947年ML 7.2地震…………………………………………. 36 3.2.2.5 1922年ML 7.6地震…………………………………………. 36 3.3 濁流沈積物與等深流沈積物之比較…………………………………… 47 3.4 粒徑趨勢分析結果……………………………………………………… 48 3.4.1 無地震發生時期南沖繩海槽沈積物淨傳輸方向………………. 48 第四章 結論……………………………………………………………………... 53 參考文獻……………………………………………………………………….….. 53 附錄I………………………………………………………………………………. 61 | |
| dc.language.iso | zh-TW | |
| dc.subject | 蘭陽溪 | zh_TW |
| dc.subject | 沖繩海槽 | zh_TW |
| dc.subject | 地震 | zh_TW |
| dc.subject | 濁流沈積物 | zh_TW |
| dc.subject | 黑潮 | zh_TW |
| dc.subject | Lan-Yang River | en |
| dc.subject | earthquake | en |
| dc.subject | Kuroshio | en |
| dc.subject | southern Okinawa Trough | en |
| dc.subject | seismo-turbidites | en |
| dc.title | 南沖繩海槽地震引發濁流沈積物之來源及分布 | zh_TW |
| dc.title | The distribution and sources of seismo-turbidites in the Southern Okinawa Trough | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 蘇志杰 | |
| dc.contributor.oralexamcommittee | 陳于高,高樹基 | |
| dc.subject.keyword | 沖繩海槽,地震,濁流沈積物,黑潮,蘭陽溪, | zh_TW |
| dc.subject.keyword | earthquake,southern Okinawa Trough,seismo-turbidites,Lan-Yang River,Kuroshio, | en |
| dc.relation.page | 74 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2007-02-14 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 地質科學研究所 | zh_TW |
| 顯示於系所單位: | 地質科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-96-1.pdf 未授權公開取用 | 6.83 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
