請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30753完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 胡孟君(Meng-Chun Hu) | |
| dc.contributor.author | Hsiang-Tsan Hsieh | en |
| dc.contributor.author | 謝祥燦 | zh_TW |
| dc.date.accessioned | 2021-06-13T02:14:32Z | - |
| dc.date.available | 2009-06-23 | |
| dc.date.copyright | 2007-06-23 | |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2007-05-08 | |
| dc.identifier.citation | Amir, R., Ciechanover, A. and Cohen, S. (2001) [The ubiquitin-proteasome system: the relationship between protein degradation and human diseases]. Harefuah, 140, 1172-1176, 1229.
Annicotte, J.S., Fayard, E., Swift, G.H., Selander, L., Edlund, H., Tanaka, T., Kodama, T., Schoonjans, K. and Auwerx, J. (2003) Pancreatic-duodenal homeobox 1 regulates expression of liver receptor homolog 1 during pancreas development. Mol Cell Biol, 23, 6713-6724. Aravind, L. and Koonin, E.V. (2000) SAP - a putative DNA-binding motif involved in chromosomal organization. Trends Biochem Sci, 25, 112-114. Asher, G., Reuven, N. and Shaul, Y. (2006) 20S proteasomes and protein degradation 'by default'. Bioessays, 28, 844-849. Asher, G., Tsvetkov, P., Kahana, C. and Shaul, Y. (2005) A mechanism of ubiquitin-independent proteasomal degradation of the tumor suppressors p53 and p73. Genes Dev, 19, 316-321. Bartova, E., Pachernik, J., Harnicarova, A., Kovarik, A., Kovarikova, M., Hofmanova, J., Skalnikova, M., Kozubek, M. and Kozubek, S. (2005) Nuclear levels and patterns of histone H3 modification and HP1 proteins after inhibition of histone deacetylases. J Cell Sci, 118, 5035-5046. Becker-Andre, M., Andre, E. and DeLamarter, J.F. (1993) Identification of nuclear receptor mRNAs by RT-PCR amplification of conserved zinc-finger motif sequences. Biochem Biophys Res Commun, 194, 1371-1379. Boerboom, D., Pilon, N., Behdjani, R., Silversides, D.W. and Sirois, J. (2000) Expression and regulation of transcripts encoding two members of the NR5A nuclear receptor subfamily of orphan nuclear receptors, steroidogenic factor-1 and NR5A2, in equine ovarian cells during the ovulatory process. Endocrinology, 141, 4647-4656. Bohan, A., Chen, W.S., Denson, L.A., Held, M.A. and Boyer, J.L. (2003) Tumor necrosis factor alpha-dependent up-regulation of Lrh-1 and Mrp3(Abcc3) reduces liver injury in obstructive cholestasis. J Biol Chem, 278, 36688-36698. Botrugno, O.A., Fayard, E., Annicotte, J.S., Haby, C., Brennan, T., Wendling, O., Tanaka, T., Kodama, T., Thomas, W., Auwerx, J. and Schoonjans, K. (2004) Synergy between LRH-1 and beta-catenin induces G1 cyclin-mediated cell proliferation. Mol Cell, 15, 499-509. Boulikas, T. (1993) Nuclear localization signals (NLS). Crit Rev Eukaryot Gene Expr, 3, 193-227. Brendel, C., Gelman, L. and Auwerx, J. (2002) Multiprotein bridging factor-1 (MBF-1) is a cofactor for nuclear receptors that regulate lipid metabolism. Mol Endocrinol, 16, 1367-1377. Burke, L.J. and Baniahmad, A. (2000) Co-repressors 2000. Faseb J, 14, 1876-1888. Carreau, S., Bourguiba, S., Lambard, S., Silandre, D. and Delalande, C. (2004) The promoter(s) of the aromatase gene in male testicular cells. Reprod Biol, 4, 23-34. Chalkiadaki, A. and Talianidis, I. (2005) SUMO-dependent compartmentalization in promyelocytic leukemia protein nuclear bodies prevents the access of LRH-1 to chromatin. Mol Cell Biol, 25, 5095-5105. Chauchereau, A., Amazit, L., Quesne, M., Guiochon-Mantel, A. and Milgrom, E. (2003) Sumoylation of the progesterone receptor and of the steroid receptor coactivator SRC-1. J Biol Chem, 278, 12335-12343. Chen, F., Ma, L., Dawson, P.A., Sinal, C.J., Sehayek, E., Gonzalez, F.J., Breslow, J., Ananthanarayanan, M. and Shneider, B.L. (2003) Liver receptor homologue-1 mediates species- and cell line-specific bile acid-dependent negative feedback regulation of the apical sodium-dependent bile acid transporter. J Biol Chem, 278, 19909-19916. Chen, X., Chi, Y., Bloecher, A., Aebersold, R., Clurman, B.E. and Roberts, J.M. (2004) N-acetylation and ubiquitin-independent proteasomal degradation of p21(Cip1). Mol Cell, 16, 839-847. Chinnadurai, G. (2002) CtBP, an unconventional transcriptional corepressor in development and oncogenesis. Mol Cell, 9, 213-224. Chun, T.H., Itoh, H., Subramanian, L., Iniguez-Lluhi, J.A. and Nakao, K. (2003) Modification of GATA-2 transcriptional activity in endothelial cells by the SUMO E3 ligase PIASy. Circ Res, 92, 1201-1208. Chung, C.D., Liao, J., Liu, B., Rao, X., Jay, P., Berta, P. and Shuai, K. (1997) Specific inhibition of Stat3 signal transduction by PIAS3. Science, 278, 1803-1805. Clyne, C.D., Kovacic, A., Speed, C.J., Zhou, J., Pezzi, V. and Simpson, E.R. (2004) Regulation of aromatase expression by the nuclear receptor LRH-1 in adipose tissue. Mol Cell Endocrinol, 215, 39-44. Clyne, C.D., Speed, C.J., Zhou, J. and Simpson, E.R. (2002) Liver receptor homologue-1 (LRH-1) regulates expression of aromatase in preadipocytes. J Biol Chem, 277, 20591-20597. del Castillo-Olivares, A. and Gil, G. (2001) Suppression of sterol 12alpha-hydroxylase transcription by the short heterodimer partner: insights into the repression mechanism. Nucleic Acids Res, 29, 4035-4042. Desclozeaux, M., Krylova, I.N., Horn, F., Fletterick, R.J. and Ingraham, H.A. (2002) Phosphorylation and intramolecular stabilization of the ligand binding domain in the nuclear receptor steroidogenic factor 1. Mol Cell Biol, 22, 7193-7203. Falender, A.E., Lanz, R., Malenfant, D., Belanger, L. and Richards, J.S. (2003) Differential expression of steroidogenic factor-1 and FTF/LRH-1 in the rodent ovary. Endocrinology, 144, 3598-3610. Fayard, E., Auwerx, J. and Schoonjans, K. (2004) LRH-1: an orphan nuclear receptor involved in development, metabolism and steroidogenesis. Trends Cell Biol, 14, 250-260. Fernandes, I., Bastien, Y., Wai, T., Nygard, K., Lin, R., Cormier, O., Lee, H.S., Eng, F., Bertos, N.R., Pelletier, N., Mader, S., Han, V.K., Yang, X.J. and White, J.H. (2003) Ligand-dependent nuclear receptor corepressor LCoR functions by histone deacetylase-dependent and -independent mechanisms. Mol Cell, 11, 139-150. Forman, B.M. (2005) Are those phospholipids in your pocket? Cell Metab, 1, 153-155. Fowkes, R.C., Desclozeaux, M., Patel, M.V., Aylwin, S.J., King, P., Ingraham, H.A. and Burrin, J.M. (2003) Steroidogenic factor-1 and the gonadotrope-specific element enhance basal and pituitary adenylate cyclase-activating polypeptide-stimulated transcription of the human glycoprotein hormone alpha-subunit gene in gonadotropes. Mol Endocrinol, 17, 2177-2188. Galarneau, L., Pare, J.F., Allard, D., Hamel, D., Levesque, L., Tugwood, J.D., Green, S. and Belanger, L. (1996) The alpha1-fetoprotein locus is activated by a nuclear receptor of the Drosophila FTZ-F1 family. Mol Cell Biol, 16, 3853-3865. Gilbert, S., Galarneau, L., Lamontagne, A., Roy, S. and Belanger, L. (2000) The hepatitis B virus core promoter is strongly activated by the liver nuclear receptor fetoprotein transcription factor or by ectopically expressed steroidogenic factor 1. J Virol, 74, 5032-5039. Gill, G. (2005) Something about SUMO inhibits transcription. Curr Opin Genet Dev, 15, 536-541. Goodwin, B., Jones, S.A., Price, R.R., Watson, M.A., McKee, D.D., Moore, L.B., Galardi, C., Wilson, J.G., Lewis, M.C., Roth, M.E., Maloney, P.R., Willson, T.M. and Kliewer, S.A. (2000) A regulatory cascade of the nuclear receptors FXR, SHP-1, and LRH-1 represses bile acid biosynthesis. Mol Cell, 6, 517-526. Gross, M., Liu, B., Tan, J., French, F.S., Carey, M. and Shuai, K. (2001) Distinct effects of PIAS proteins on androgen-mediated gene activation in prostate cancer cells. Oncogene, 20, 3880-3887. Gross, M., Yang, R., Top, I., Gasper, C. and Shuai, K. (2004) PIASy-mediated repression of the androgen receptor is independent of sumoylation. Oncogene, 23, 3059-3066. Hammer, G.D., Krylova, I., Zhang, Y., Darimont, B.D., Simpson, K., Weigel, N.L. and Ingraham, H.A. (1999) Phosphorylation of the nuclear receptor SF-1 modulates cofactor recruitment: integration of hormone signaling in reproduction and stress. Mol Cell, 3, 521-526. Hinshelwood, M.M., Repa, J.J., Shelton, J.M., Richardson, J.A., Mangelsdorf, D.J. and Mendelson, C.R. (2003) Expression of LRH-1 and SF-1 in the mouse ovary: localization in different cell types correlates with differing function. Mol Cell Endocrinol, 207, 39-45. Hinshelwood, M.M., Shelton, J.M., Richardson, J.A. and Mendelson, C.R. (2005) Temporal and spatial expression of liver receptor homologue-1 (LRH-1) during embryogenesis suggests a potential role in gonadal development. Dev Dyn, 234, 159-168. Hochstrasser, M. (2001) SP-RING for SUMO: new functions bloom for a ubiquitin-like protein. Cell, 107, 5-8. Jackson, P.K. (2001) A new RING for SUMO: wrestling transcriptional responses into nuclear bodies with PIAS family E3 SUMO ligases. Genes Dev, 15, 3053-3058. Joazeiro, C.A. and Weissman, A.M. (2000) RING finger proteins: mediators of ubiquitin ligase activity. Cell, 102, 549-552. Kaiser, P. and Huang, L. (2005) Global approaches to understanding ubiquitination. Genome Biol, 6, 233. Kim, J.W., Havelock, J.C., Carr, B.R. and Attia, G.R. (2005) The orphan nuclear receptor, liver receptor homolog-1, regulates cholesterol side-chain cleavage cytochrome p450 enzyme in human granulosa cells. J Clin Endocrinol Metab, 90, 1678-1685. Kim, J.W., Peng, N., Rainey, W.E., Carr, B.R. and Attia, G.R. (2004) Liver receptor homolog-1 regulates the expression of steroidogenic acute regulatory protein in human granulosa cells. J Clin Endocrinol Metab, 89, 3042-3047. Kipp, M., Gohring, F., Ostendorp, T., van Drunen, C.M., van Driel, R., Przybylski, M. and Fackelmayer, F.O. (2000) SAF-Box, a conserved protein domain that specifically recognizes scaffold attachment region DNA. Mol Cell Biol, 20, 7480-7489. Kotaja, N., Karvonen, U., Janne, O.A. and Palvimo, J.J. (2002) PIAS proteins modulate transcription factors by functioning as SUMO-1 ligases. Mol Cell Biol, 22, 5222-5234. Krylova, I.N., Sablin, E.P., Moore, J., Xu, R.X., Waitt, G.M., MacKay, J.A., Juzumiene, D., Bynum, J.M., Madauss, K., Montana, V., Lebedeva, L., Suzawa, M., Williams, J.D., Williams, S.P., Guy, R.K., Thornton, J.W., Fletterick, R.J., Willson, T.M. and Ingraham, H.A. (2005) Structural analyses reveal phosphatidyl inositols as ligands for the NR5 orphan receptors SF-1 and LRH-1. Cell, 120, 343-355. Lambard, S., Silandre, D., Delalande, C., Denis-Galeraud, I., Bourguiba, S. and Carreau, S. (2005) Aromatase in testis: expression and role in male reproduction. J Steroid Biochem Mol Biol, 95, 63-69. Lee, M.B., Lebedeva, L.A., Suzawa, M., Wadekar, S.A., Desclozeaux, M. and Ingraham, H.A. (2005) The DEAD-box protein DP103 (Ddx20 or Gemin-3) represses orphan nuclear receptor activity via SUMO modification. Mol Cell Biol, 25, 1879-1890. Lee, Y.K., Choi, Y.H., Chua, S., Park, Y.J. and Moore, D.D. (2006) Phosphorylation of the hinge domain of the nuclear hormone receptor LRH-1 stimulates transactivation. J Biol Chem, 281, 7850-7855. Lee, Y.K. and Moore, D.D. (2002) Dual mechanisms for repression of the monomeric orphan receptor liver receptor homologous protein-1 by the orphan small heterodimer partner. J Biol Chem, 277, 2463-2467. Li, L.A., Chiang, E.F., Chen, J.C., Hsu, N.C., Chen, Y.J. and Chung, B.C. (1999) Function of steroidogenic factor 1 domains in nuclear localization, transactivation, and interaction with transcription factor TFIIB and c-Jun. Mol Endocrinol, 13, 1588-1598. Li, M., Xie, Y.H., Kong, Y.Y., Wu, X., Zhu, L. and Wang, Y. (1998) Cloning and characterization of a novel human hepatocyte transcription factor, hB1F, which binds and activates enhancer II of hepatitis B virus. J Biol Chem, 273, 29022-29031. Liu, B., Gross, M., ten Hoeve, J. and Shuai, K. (2001) A transcriptional corepressor of Stat1 with an essential LXXLL signature motif. Proc Natl Acad Sci U S A, 98, 3203-3207. Liu, B., Liao, J., Rao, X., Kushner, S.A., Chung, C.D., Chang, D.D. and Shuai, K. (1998) Inhibition of Stat1-mediated gene activation by PIAS1. Proc Natl Acad Sci U S A, 95, 10626-10631. Liu, D.L., Liu, W.Z., Li, Q.L., Wang, H.M., Qian, D., Treuter, E. and Zhu, C. (2003) Expression and functional analysis of liver receptor homologue 1 as a potential steroidogenic factor in rat ovary. Biol Reprod, 69, 508-517. Long, J., Matsuura, I., He, D., Wang, G., Shuai, K. and Liu, F. (2003) Repression of Smad transcriptional activity by PIASy, an inhibitor of activated STAT. Proc Natl Acad Sci U S A, 100, 9791-9796. Lu, T.T., Makishima, M., Repa, J.J., Schoonjans, K., Kerr, T.A., Auwerx, J. and Mangelsdorf, D.J. (2000) Molecular basis for feedback regulation of bile acid synthesis by nuclear receptors. Mol Cell, 6, 507-515. Luo, Y., Liang, C.P. and Tall, A.R. (2001) The orphan nuclear receptor LRH-1 potentiates the sterol-mediated induction of the human CETP gene by liver X receptor. J Biol Chem, 276, 24767-24773. Mangelsdorf, D.J., Thummel, C., Beato, M., Herrlich, P., Schutz, G., Umesono, K., Blumberg, B., Kastner, P., Mark, M., Chambon, P. and Evans, R.M. (1995) The nuclear receptor superfamily: the second decade. Cell, 83, 835-839. Matsuura, T., Shimono, Y., Kawai, K., Murakami, H., Urano, T., Niwa, Y., Goto, H. and Takahashi, M. (2005) PIAS proteins are involved in the SUMO-1 modification, intracellular translocation and transcriptional repressive activity of RET finger protein. Exp Cell Res, 308, 65-77. Nandi, D., Tahiliani, P., Kumar, A. and Chandu, D. (2006) The ubiquitin-proteasome system. J Biosci, 31, 137-155. Nelson, V., Davis, G.E. and Maxwell, S.A. (2001) A putative protein inhibitor of activated STAT (PIASy) interacts with p53 and inhibits p53-mediated transactivation but not apoptosis. Apoptosis, 6, 221-234. Nishida, T., Terashima, M. and Fukami, K. (2006) PIASy-mediated repression of the Ets-1 is independent of its sumoylation. Biochem Biophys Res Commun, 345, 1536-1546. Nitta, M., Ku, S., Brown, C., Okamoto, A.Y. and Shan, B. (1999) CPF: an orphan nuclear receptor that regulates liver-specific expression of the human cholesterol 7alpha-hydroxylase gene. Proc Natl Acad Sci U S A, 96, 6660-6665. Okubo, S., Hara, F., Tsuchida, Y., Shimotakahara, S., Suzuki, S., Hatanaka, H., Yokoyama, S., Tanaka, H., Yasuda, H. and Shindo, H. (2004) NMR structure of the N-terminal domain of SUMO ligase PIAS1 and its interaction with tumor suppressor p53 and A/T-rich DNA oligomers. J Biol Chem, 279, 31455-31461. Orlowski, M. and Wilk, S. (2003) Ubiquitin-independent proteolytic functions of the proteasome. Arch Biochem Biophys, 415, 1-5. Pare, J.F., Malenfant, D., Courtemanche, C., Jacob-Wagner, M., Roy, S., Allard, D. and Belanger, L. (2004) The fetoprotein transcription factor (FTF) gene is essential to embryogenesis and cholesterol homeostasis and is regulated by a DR4 element. J Biol Chem, 279, 21206-21216. Pare, J.F., Roy, S., Galarneau, L. and Belanger, L. (2001) The mouse fetoprotein transcription factor (FTF) gene promoter is regulated by three GATA elements with tandem E box and Nkx motifs, and FTF in turn activates the Hnf3beta, Hnf4alpha, and Hnf1alpha gene promoters. J Biol Chem, 276, 13136-13144. Peng, N., Kim, J.W., Rainey, W.E., Carr, B.R. and Attia, G.R. (2003) The role of the orphan nuclear receptor, liver receptor homologue-1, in the regulation of human corpus luteum 3beta-hydroxysteroid dehydrogenase type II. J Clin Endocrinol Metab, 88, 6020-6028. Pezzi, V., Sirianni, R., Chimento, A., Maggiolini, M., Bourguiba, S., Delalande, C., Carreau, S., Ando, S., Simpson, E.R. and Clyne, C.D. (2004) Differential expression of steroidogenic factor-1/adrenal 4 binding protein and liver receptor homolog-1 (LRH-1)/fetoprotein transcription factor in the rat testis: LRH-1 as a potential regulator of testicular aromatase expression. Endocrinology, 145, 2186-2196. Poukka, H., Karvonen, U., Janne, O.A. and Palvimo, J.J. (2000) Covalent modification of the androgen receptor by small ubiquitin-like modifier 1 (SUMO-1). Proc Natl Acad Sci U S A, 97, 14145-14150. Rausa, F.M., Galarneau, L., Belanger, L. and Costa, R.H. (1999) The nuclear receptor fetoprotein transcription factor is coexpressed with its target gene HNF-3beta in the developing murine liver, intestine and pancreas. Mech Dev, 89, 185-188. Sablin, E.P., Krylova, I.N., Fletterick, R.J. and Ingraham, H.A. (2003) Structural basis for ligand-independent activation of the orphan nuclear receptor LRH-1. Mol Cell, 11, 1575-1585. Sachdev, S., Bruhn, L., Sieber, H., Pichler, A., Melchior, F. and Grosschedl, R. (2001) PIASy, a nuclear matrix-associated SUMO E3 ligase, represses LEF1 activity by sequestration into nuclear bodies. Genes Dev, 15, 3088-3103. Savkur, R.S. and Burris, T.P. (2004) The coactivator LXXLL nuclear receptor recognition motif. J Pept Res, 63, 207-212. Schmidt, D. and Muller, S. (2003) PIAS/SUMO: new partners in transcriptional regulation. Cell Mol Life Sci, 60, 2561-2574. Schoonjans, K., Annicotte, J.S., Huby, T., Botrugno, O.A., Fayard, E., Ueda, Y., Chapman, J. and Auwerx, J. (2002) Liver receptor homolog 1 controls the expression of the scavenger receptor class B type I. EMBO Rep, 3, 1181-1187. Sheaff, R.J., Singer, J.D., Swanger, J., Smitherman, M., Roberts, J.M. and Clurman, B.E. (2000) Proteasomal turnover of p21Cip1 does not require p21Cip1 ubiquitination. Mol Cell, 5, 403-410. Shuai, K. and Liu, B. (2005) Regulation of gene-activation pathways by PIAS proteins in the immune system. Nat Rev Immunol, 5, 593-605. Sirianni, R., Seely, J.B., Attia, G., Stocco, D.M., Carr, B.R., Pezzi, V. and Rainey, W.E. (2002) Liver receptor homologue-1 is expressed in human steroidogenic tissues and activates transcription of genes encoding steroidogenic enzymes. J Endocrinol, 174, R13-17. Suzuki, T., Kasahara, M., Yoshioka, H., Morohashi, K. and Umesono, K. (2003) LXXLL-related motifs in Dax-1 have target specificity for the orphan nuclear receptors Ad4BP/SF-1 and LRH-1. Mol Cell Biol, 23, 238-249. Tallec, L.P., Kirsh, O., Lecomte, M.C., Viengchareun, S., Zennaro, M.C., Dejean, A. and Lombes, M. (2003) Protein inhibitor of activated signal transducer and activator of transcription 1 interacts with the N-terminal domain of mineralocorticoid receptor and represses its transcriptional activity: implication of small ubiquitin-related modifier 1 modification. Mol Endocrinol, 17, 2529-2542. Tan, J.A., Hall, S.H., Hamil, K.G., Grossman, G., Petrusz, P. and French, F.S. (2002) Protein inhibitors of activated STAT resemble scaffold attachment factors and function as interacting nuclear receptor coregulators. J Biol Chem, 277, 16993-17001. Tugwood, J.D., Issemann,I. and Green,S. (1991) LRH-1: A nuclear hormone receptor active in the absence of exogenous ligands. GenBank M81385. Ueda, H., Sun, G.C., Murata, T. and Hirose, S. (1992) A novel DNA-binding motif abuts the zinc finger domain of insect nuclear hormone receptor FTZ-F1 and mouse embryonal long terminal repeat-binding protein. Mol Cell Biol, 12, 5667-5672. Wang, Z.N., Bassett, M. and Rainey, W.E. (2001) Liver receptor homologue-1 is expressed in the adrenal and can regulate transcription of 11 beta-hydroxylase. J Mol Endocrinol, 27, 255-258. Warnmark, A., Treuter, E., Wright, A.P. and Gustafsson, J.A. (2003) Activation functions 1 and 2 of nuclear receptors: molecular strategies for transcriptional activation. Mol Endocrinol, 17, 1901-1909. Whitby, R.J., Dixon, S., Maloney, P.R., Delerive, P., Goodwin, B.J., Parks, D.J. and Willson, T.M. (2006) Identification of small molecule agonists of the orphan nuclear receptors liver receptor homolog-1 and steroidogenic factor-1. J Med Chem, 49, 6652-6655. White, J.H., Fernandes, I., Mader, S. and Yang, X.J. (2004) Corepressor recruitment by agonist-bound nuclear receptors. Vitam Horm, 68, 123-143. Xu, P.L., Kong, Y.Y., Xie, Y.H. and Wang, Y. (2003a) Corepressor SMRT specifically represses the transcriptional activity of orphan nuclear receptor hB1F/hLRH-1. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai), 35, 897-903. Xu, P.L., Liu, Y.Q., Shan, S.F., Kong, Y.Y., Zhou, Q., Li, M., Ding, J.P., Xie, Y.H. and Wang, Y. (2004) Molecular mechanism for the potentiation of the transcriptional activity of human liver receptor homolog 1 by steroid receptor coactivator-1. Mol Endocrinol, 18, 1887-1905. Xu, P.L., Shan, S.F., Kong, Y.Y., Xie, Y.H. and Wang, Y. (2003b) Characterization of a strong repression domain in the hinge region of orphan nuclear receptor hB1F/hLRH-1. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai), 35, 909-916. Yamamoto, H., Ihara, M., Matsuura, Y. and Kikuchi, A. (2003) Sumoylation is involved in beta-catenin-dependent activation of Tcf-4. Embo J, 22, 2047-2059. Yu, F.Q., Han, C.S., Yang, W., Jin, X., Hu, Z.Y. and Liu, Y.X. (2005) Activation of the p38 MAPK pathway by follicle-stimulating hormone regulates steroidogenesis in granulosa cells differentially. J Endocrinol, 186, 85-96. 吳美伶. (2006) LRH-1轉錄活性調控之研究. 生理學研究所. 臺灣大學. 邱岱瑋. (2005) 以大鼠黃體初代培養細胞探討類固醇生成基因之調控. 生理學研究所. 臺灣大學. 潘建廷. (2005) LRH-1抗體製備及LRH-1調控CYP11A1之研究. 生理學研究所. 臺灣大學. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30753 | - |
| dc.description.abstract | 肝受體同源體-1 (liver receptor homolog, LRH-1) 為轉錄因子,屬於核受體NR5A家族的一員,主要表現在由內胚層分化而成的肝腸組織及卵巢。mLRH-1可以促進人類類固醇生成基因CYP11A1啟動子的轉錄作用,當mLRH-1的羧基端轉錄活性作用區 (activation function-2, AF-2) 被除去之後,mLRH-1即喪失其對人類CYP11A1啟動子的轉錄活性。我們發現mLRH-1促進CYP11A1啟動子的轉錄作用會受到PIASy所抑制,且具有劑量依存性。PIASy蛋白質具有兩個可能的抑制區RD1與RD2,去除RD1使得PIASy無法抑制mLRH-1轉錄活性,而刪除RD2則沒有影響,因此PIASy可能藉由RD1來抑制mLRH-1轉錄之進行。給予組蛋白去乙醯酶抑制劑,或是共同轉染組蛋白去乙醯酶 (histone deaceylase) 皆不影響PIASy對mLRH-1的抑制能力,說明了PIASy並非經由招募組蛋白去乙醯酶來抑制mLRH-1轉錄活性。將PIASy與mLRH-1分別接上螢光蛋白轉染至細胞,我們觀察到mLRH-1在細胞核中分布不因PIASy的存在而改變,說明PIASy不是藉由改變mLRH-1在細胞核中分布位置來影響mLRH-1的轉錄作用。GST pull down的實驗則顯示PIASy的胺基酸158-510片段與mLRH-1有直接的交互作用。
我們將不同片段的mLRH-1接上螢光蛋白,分析其在細胞表現之分布,由結果推測其nuclear localization signal (NLS) 可能位於mLRH-1胺基酸序列117-167以及169-193兩處。另外,給予蛋白酶體 (proteasome) 抑制劑MG-132會增加mLRH-1在細胞的蛋白質總量,表示mLRH-1可能經由蛋白酶體降解路徑分解,但此路徑可能與泛素化修飾作用無關。去除羧基端後,會提高mLRH-1的蛋白質總量,且其蛋白質總量不再因MG-132作用而增加,說明了羧基端可能參與了蛋白酶體降解路徑。 | zh_TW |
| dc.description.abstract | Liver receptor homolog-1 (LRH-1) is a transcription factor and belongs to nuclear receptor 5A subfamily. LRH-1 is mainly expressed the tissues of endodermal origin, such as liver and intestine and also in the ovary. Our previous studies indicated that mLRH-1 stimulated the activity of the human steroidogenic gene CYP11A1 promoter. When the C-terminal activation function-2 (AF-2) was truncated, mLRH-1 lost the ability to induce the transcriptional activity of CYP11A1 promoter. We found that PIASy could repress mLRH-1-mediated CYP11A1 activity in a dosage dependent manner. It is indicated that PIASy contains two transcriptional repression domains, RD1 and RD2. Deletion of the RD1, but not RD2, failed to repress mLRH-1 transcriptional activity, indicating that RD1 is essential for PIASy-mediated inhibition of mLRH-1. Treatment with histone deaceylase (HDAC) inhibitors or overexpression of HDAC did not influence the repression activity of PIASy. It is suggested that HDAC recruitment is not essential for PIASy-mediated repression of mLRH-1. In addition, the distribution of mLRH-1 in the nucleus was not changed by cotransfection with PIASy. GST pull down assay showed that residues 158-510 of PIASy are responsible for interacting with mLRH-1.
A series deletion of mLRH-1 was fused to fluorescent protein to analyze the subcellular distribution of these proteins. The results revealed that two nuclear localization signal (NLS) were located in the residues 117 to 167 and 169 to 193. Treatment of cells with proteasome inhibitor MG-132 clearly increased the protein levels, suggesting that mLRH-1 could be destroyed via proteasomal degradation pathway. Deletions of the C-terminal enhance the level of mLRH-1 protein expression. Treatment with MG-132 had no effect on the protein expression of C-terminal truncation mutants. The results indicated that the C-terminus of mLRH-1 was required for proteasomal degradation pathway. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T02:14:32Z (GMT). No. of bitstreams: 1 ntu-96-R93441005-1.pdf: 1104527 bytes, checksum: 736f09825249694635950bcc44f4fed7 (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | 目錄
誌謝 .............................................................................................................. Ⅰ 目錄 .............................................................................................................. Ⅲ 圖次 ……....................................................................................................... Ⅵ 中文摘要 ........................................................................................................ Ⅶ 英文摘要 ........................................................................................................ Ⅷ 第一章、序論 …............................................................................................ 1 一、LRH-1簡介 ………………………................................................. 1 1. LRH-1之結構 ………………....................................................... 1 2. LRH-1的轉譯後修飾作用 ………………...................................... 2 3. LRH-1的輔調控因子 ………………….......................................... 3 4. LRH-1之功能 ……………...……………..................................... 4 二、PIASy簡介 ……………………...................................................... 5 1. PIASy的結構 ................................................................................ 5 2. PIASy的功能 ………………...……….......................................... 6 三、泛素 (ubiquitin) –蛋白酶體 (proteasome) 系統 …….……............ 7 四、研究動機 …………….………....................................................... 7 第二章、材料與方法 ..................................................................................... 9 一、細胞培養 ........................................................................................ 9 二、質體建構 ………........................................................................... 9 三、暫時轉染法 (Transient transfection) …………………………… ... 13 四、Luciferase活性分析 ……..........................…................................. 13 五、DAPI染色法 ……………..…........................................................ 14 六、細胞萃取 …………......................................................................... 14 七、西方墨點法 (Western blotting) …………........................................ 14 八、Coomassie Brilliant Blue R-250染色 ………………….................... 15 九、誘導大腸桿菌表現重組蛋白 ……....................................................... 15 十、胞外轉錄轉譯作用 (In vitro transcription/translation) …….…......... 16 十一、GST pull down ........………….…………………………………..... 16 十二、藥品 ...................…………..……………………………………..... 16 第三章、結果 …………............................................................................... 17 一、mLRH-1的轉錄活性調控 ………………....................................... 17 1. mLRH-1轉錄活性依賴Activation Function-2區域 ........................ 17 2. PIASy抑制mLRH-1對人類CYP11A1基因啟動子的轉錄活性 ….. 17 3. PIASy抑制mLRH-1的轉錄活性作用具有劑量依存性 (dose-dependent) …………………………………….................... 17 4. PIASy的RD1區域對於PIASy抑制mLRH-1的轉錄活性具有 功能性 ………………………………………………………….... 18 5. PIASy抑制mLRH-1的轉錄活性與招募組蛋白去乙醯酶 (HDACs) 無關 ………………………………………………… ... 18 6. PIASy不影響mLRH-1於細胞核中的分布情形 ………................. 19 7. PIASy與mLRH-1有直接交互作用 ……………………................ 20 二、mLRH-1的特性 ……………………………………...................... 21 1. mLRH-1具有兩個nuclear localization signal (NLS) 分別位於 胺基酸序列117-168與169-193處 …….......................…........ 21 2. mLRH-1經由蛋白酶體 (proteasome) 降解 (degradation) ……...... 21 第四章、討論 ………….............................................................................. 23 一、PIASy抑制mLRH-1轉錄活性機制 ……………………............... 23 二、mLRH-1的NLS ….………………………………………............. 25 三、mLRH-1的AF-2 ……………………………………………… ... 26 四、mLRH-1的降解機制 ……………………………………............. 27 參考文獻 ....................….…......................................................................... 29 圖 .................................................................................................................. 38 | |
| dc.language.iso | zh-TW | |
| dc.subject | 肝受體同源體-1 | zh_TW |
| dc.subject | PIASy | en |
| dc.subject | LRH-1 | en |
| dc.title | LRH-1特性及其轉錄活性受PIASy調控之探討 | zh_TW |
| dc.title | Characterization of LRH-1 and its regulation of transcriptional activity by PIASy | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張淑芬(Shwu-Fen Chang),郭應誠(Ing-Cherng Guo),吳鈺琳(Yuh-Lin Wu) | |
| dc.subject.keyword | 肝受體同源體-1, | zh_TW |
| dc.subject.keyword | LRH-1,PIASy, | en |
| dc.relation.page | 50 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2007-05-08 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 生理學研究所 | zh_TW |
| 顯示於系所單位: | 生理學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-96-1.pdf 未授權公開取用 | 1.08 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
