請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30733
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 吳寬墩(Kwan-Dun Wu) | |
dc.contributor.author | Hong-Wei Chang | en |
dc.contributor.author | 張弘偉 | zh_TW |
dc.date.accessioned | 2021-06-13T02:13:51Z | - |
dc.date.available | 2007-07-01 | |
dc.date.copyright | 2007-06-23 | |
dc.date.issued | 2007 | |
dc.date.submitted | 2007-05-30 | |
dc.identifier.citation | 1. Abe J, Kusuhara M, Ulevitch RJ, Berk BC, Lee JD 1996 Big mitogen-activated protein kinase 1 (BMK1) is a redox-sensitive kinase. J Biol Chem 271:16586-16590
2. Akita Y 2002 Protein kinase C-epsilon (PKC-epsilon): its unique structure and function. J Biochem (Tokyo) 132:847-852 3. Al-Dujaili EA, Edwards CR 1978 The development and application of a direct radioimmunoassay for plasma aldosterone using 125I-labeled ligand--comparison of three methods. J Clin Endocrinol Metab 46:105-113 4. Alvarez BV, Fujinaga J, Casey JR 2001 Molecular basis for angiotensin II-induced increase of chloride/bicarbonate exchange in the myocardium. Circ Res 89:1246-1253 5. Aptel HB, Johnson EI, Vallotton MB, Rossier MF, Capponi AM 1996 Demonstration of an angiotensin II-induced negative feedback effect on aldosterone synthesis in isolated rat adrenal zona glomerulosa cells. Mol Cell Endocrinol 119:105-111 6. Ballantine DM, Klemm SA, Tunny TJ, Stowasser M, Gordon RD 1994 Renin gene polymorphism associated with aldosterone responsiveness to the renin-angiotensin system in patients with aldosterone-producing adenomas. Clin Exp Pharmacol Physiol 21:215-218 7. Barrett PQ, Bollag WB, Isales CM, McCarthy RT, Rasmussen H 1989 Role of calcium in angiotensin II-mediated aldosterone secretion. Endocr Rev 10:496-518 8. Barrett PQ, Ertel EA, Smith MM, Nee JJ, Cohen CJ 1995 Voltage-gated calcium currents have two opposing effects on the secretion of aldosterone. Am J Physiol 268:C985-992 9. Barrett RJ, Wright KF, Taylor DR, Proakis AG 1987 Involvement of dopamine receptor subtypes in dopaminergic modulation of aldosterone secretion in rats. Life Sci 40:1499-1506 10. Bek MJ, Eisner GM, Felder RA, Jose PA 2001 Dopamine receptors in hypertension. Mt Sinai J Med 68:362-369 11. Betancourt-Calle S, Calle RA, Isales CM, White S, Rasmussen H, Bollag WB 2001 Differential effects of agonists of aldosterone secretion on steroidogenic acute regulatory phosphorylation. Mol Cell Endocrinol 173:87-94 12. Bird IM, Lightly ER, Nicol M, Williams BC, Walker SW 1998 Dopaminergic stimulation of cortisol secretion from bovine zfr cells occurs through nonspecific stimulation of adrenergic beta-receptors. Endocr Res 24:769-772 13. Bollag WB, Barrett PQ, Isales CM, Rasmussen H 1991 Angiotensin-II-induced changes in diacylglycerol levels and their potential role in modulating the steroidogenic response. Endocrinology 128:231-241 14. Brandenburger Y, Kennedy ED, Python CP, Rossier MF, Vallotton MB, Wollheim CB, Capponi AM 1996 Possible role for mitochondrial calcium in angiotensin II- and potassium-stimulated steroidogenesis in bovine adrenal glomerulosa cells. Endocrinology 137:5544-5551 15. Buhagiar KA, Hansen PS, Bewick NL, Rasmussen HH 2001 Protein kinase Cepsilon contributes to regulation of the sarcolemmal Na(+)-K(+) pump. Am J Physiol Cell Physiol 281:C1059-1063 16. Cacace AM, Guadagno SN, Krauss RS, Fabbro D, Weinstein IB 1993 The epsilon isoform of protein kinase C is an oncogene when overexpressed in rat fibroblasts. Oncogene 8:2095-2104 17. Cai H, Smola U, Wixler V, Eisenmann-Tappe I, Diaz-Meco MT, Moscat J, Rapp U, Cooper GM 1997 Role of diacylglycerol-regulated protein kinase C isotypes in growth factor activation of the Raf-1 protein kinase. Mol Cell Biol 17:732-741 18. Calhoun DA, Nishizaka MK, Zaman MA, Thakkar RB, Weissmann P 2002 Hyperaldosteronism among black and white subjects with resistant hypertension. Hypertension 40:892-896 19. Carey RM, Drake CR, Jr. 1986 Dopamine selectively inhibits aldosterone responses to angiotensin II in humans. Hypertension 8:399-406 20. Carey RM, Thorner MO, Ortt EM 1979 Effects of metoclopramide and bromocriptine on the renin-angiotensin-aldosterone system in man. Dopaminergic control of aldosterone. J Clin Invest 63:727-735 21. Carey RM, Thorner MO, Ortt EM 1980 Dopaminergic inhibition of metoclopramide-induced aldosterone secretion in man. Dissociation of responses to dopamine and bromocriptine. J Clin Invest 66:10-18 22. Carroll J, Dluhy R, Fallo F, Pistorello M, Bradwin G, Gomez-Sanchez CE, Mortensen R 1996 Aldosterone-producing adenomas do not contain glucocorticoid-remediable aldosteronism chimeric gene duplications. J Clin Endocrinol Metab 81:4310-4312 23. Cavallotti C, Nuti F, Bruzzone P, Mancone M 2002 Age-related changes in dopamine D2 receptors in rat heart and coronary vessels. Clin Exp Pharmacol Physiol 29:412-418 24. Chen CM, Yang HF, Chen PH, Wu CT, Hsieh YF, Hsu TC, Kuo SI 1961 [The first case of Conn's disease in Taiwan. (Primary aldosteronism)]. J Formos Med Assoc 60:680-688 25. Chen XL, Bayliss DA, Fern RJ, Barrett PQ 1999 A role for T-type Ca2+ channels in the synergistic control of aldosterone production by ANG II and K+. Am J Physiol 276:F674-683 26. Chen YM, Wu KD, Hu-Tsai MI, Chu JS, Lai MK, Hsieh BS 1999 Differential expression of type 1 angiotensin II receptor mRNA and aldosterone responsiveness to angiotensin in aldosterone-producing adenoma. Mol Cell Endocrinol 152:47-55 27. Cherradi N, Bideau M, Arnaudeau S, Demaurex N, James RW, Azhar S, Capponi AM 2001 Angiotensin II promotes selective uptake of high density lipoprotein cholesterol esters in bovine adrenal glomerulosa and human adrenocortical carcinoma cells through induction of scavenger receptor class B type I. Endocrinology 142:4540-4549 28. Cherradi N, Brandenburger Y, Rossier MF, Vallotton MB, Stocco DM, Capponi AM 1998 Atrial natriuretic peptide inhibits calcium-induced steroidogenic acute regulatory protein gene transcription in adrenal glomerulosa cells. Mol Endocrinol 12:962-972 29. Cherradi N, Pardo B, Greenberg AS, Kraemer FB, Capponi AM 2003 Angiotensin II activates cholesterol ester hydrolase in bovine adrenal glomerulosa cells through phosphorylation mediated by p42/p44 mitogen-activated protein kinase. Endocrinology 144:4905-4915 30. Cherradi N, Rossier MF, Vallotton MB, Timberg R, Friedberg I, Orly J, Wang XJ, Stocco DM, Capponi AM 1997 Submitochondrial distribution of three key steroidogenic proteins (steroidogenic acute regulatory protein and cytochrome p450scc and 3beta-hydroxysteroid dehydrogenase isomerase enzymes) upon stimulation by intracellular calcium in adrenal glomerulosa cells. J Biol Chem 272:7899-7907 31. Chu TS, Peng Y, Cano A, Yanagisawa M, Alpern RJ 1996 Endothelin(B) receptor activates NHE-3 by a Ca2+-dependent pathway in OKP cells. J Clin Invest 97:1454-1462 32. Chua SC, Szabo P, Vitek A, Grzeschik KH, John M, White PC 1987 Cloning of cDNA encoding steroid 11 beta-hydroxylase (P450c11). Proc Natl Acad Sci U S A 84:7193-7197 33. Clark BJ, Combs R 1999 Angiotensin II and cyclic adenosine 3',5'-monophosphate induce human steroidogenic acute regulatory protein transcription through a common steroidogenic factor-1 element. Endocrinology 140:4390-4398 34. Clark BJ, Pezzi V, Stocco DM, Rainey WE 1995 The steroidogenic acute regulatory protein is induced by angiotensin II and K+ in H295R adrenocortical cells. Mol Cell Endocrinol 115:215-219 35. Clyne CD, White PC, Rainey WE 1996 Calcium regulates human CYP11B2 transcription. Endocr Res 22:485-492 36. Condon JC, Pezzi V, Drummond BM, Yin S, Rainey WE 2002 Calmodulin-dependent kinase I regulates adrenal cell expression of aldosterone synthase. Endocrinology 143:3651-3657 37. Conn JW 1955 Primary aldosteronism. J Lab Clin Med 45:661-664 38. Coruzzi P, Musiari L, Biggi A, Ravanetti C, Novarini A 1987 Dopamine blockade abolishes the exaggerated natriuresis of essential hypertension. J Hypertens 5:587-591 39. Davies E, Bonnardeaux A, Plouin PF, Corvol P, Clauser E 1997 Somatic mutations of the angiotensin II (AT1) receptor gene are not present in aldosterone-producing adenoma. J Clin Endocrinol Metab 82:611-615 40. Dempsey EC, Newton AC, Mochly-Rosen D, Fields AP, Reyland ME, Insel PA, Messing RO 2000 Protein kinase C isozymes and the regulation of diverse cell responses. Am J Physiol Lung Cell Mol Physiol 279:L429-438 41. Denner K, Rainey WE, Pezzi V, Bird IM, Bernhardt R, Mathis JM 1996 Differential regulation of 11 beta-hydroxylase and aldosterone synthase in human adrenocortical H295R cells. Mol Cell Endocrinol 121:87-91 42. Domalik LJ, Chaplin DD, Kirkman MS, Wu RC, Liu WW, Howard TA, Seldin MF, Parker KL 1991 Different isozymes of mouse 11 beta-hydroxylase produce mineralocorticoids and glucocorticoids. Mol Endocrinol 5:1853-1861 43. Douglas WW, Rubin RP 1961 The role of calcium in the secretory response of the adrenal medulla to acetylcholine. J Physiol 159:40-57 44. Drake CR, Jr., Ragsdale NV, Kaiser DL, Carey RM 1984 Dopaminergic suppression of angiotensin II-induced aldosterone secretion in man: differential responses during sodium loading and depletion. Metabolism 33:696-702 45. Dull T, Zufferey R, Kelly M, Mandel RJ, Nguyen M, Trono D, Naldini L 1998 A third-generation lentivirus vector with a conditional packaging system. J Virol 72:8463-8471 46. Edwards CR, Al-Dujaili EA, Boscaro M, Quyyumi S, Miall PA, Rees LH 1980 In vivo and in vitro studies on the effect of metoclopramide on aldosterone secretion. Clin Endocrinol (Oxf) 13:45-50 47. Enyeart JA, Danthi SJ, Enyeart JJ 2004 TREK-1 K+ channels couple angiotensin II receptors to membrane depolarization and aldosterone secretion in bovine adrenal glomerulosa cells. Am J Physiol Endocrinol Metab 287:E1154-1165 48. Erdmann B, Denner K, Gerst H, Lenz D, Bernhardt R 1995 Human adrenal CYP11B1: localization by in situ-hybridization and functional expression in cell cultures. Endocr Res 21:425-435 49. Farago A, Seprodi J, Spat A 1988 Subcellular distribution of protein kinase C in rat adrenal glomerulosa cells. Biochem Biophys Res Commun 156:628-633 50. Fisher ND, Hurwitz S, Ferri C, Jeunemaitre X, Hollenberg NK, Williams GH 1999 Altered adrenal sensitivity to angiotensin II in low-renin essential hypertension. Hypertension 34:388-394 51. Fitzpatrick SC, McKenna TJ 1989 Dopamine inhibition of potassium-stimulated aldosterone biosynthesis in bovine adrenal zona glomerulosa cells. J Steroid Biochem 32:715-718 52. Foster RH, MacFarlane CH, Bustamante MO 1997 Recent progress in understanding aldosterone secretion. Gen Pharmacol 28:647-651 53. Freel EM, Connell JM 2004 Mechanisms of hypertension: the expanding role of aldosterone. J Am Soc Nephrol 15:1993-2001 54. Gallo-Payet N, Chouinard L, Balestre MN, Guillon G 1991 Mechanisms involved in the interaction of dopamine with angiotensin II on aldosterone secretion in isolated and cultured rat adrenal glomerulosa cells. Mol Cell Endocrinol 81:11-23 55. Ganguly A, Chiou S, Fineberg NS, Davis JS 1992 Greater importance of Ca(2+)-calmodulin in maintenance of ang II- and K(+)-mediated aldosterone secretion: lesser role of protein kinase C. Biochem Biophys Res Commun 182:254-261 56. Ganguly A, Davis JS 1994 Role of calcium and other mediators in aldosterone secretion from the adrenal glomerulosa cells. Pharmacol Rev 46:417-447 57. Gasparo MD 2000 New basic science initiatives with the angiotensin II receptor blocker valsartan. J Renin Angiotensin Aldosterone Syst 1:3-5 58. Gomes P, Soares-da-Silva P 2003 Dopamine D2-like receptor-mediated opening of K+ channels in opossum kidney cells. Br J Pharmacol 138:968-976 59. Gordon CM, LeBoff MS, Glowacki J 2001 Adrenal and gonadal steroids inhibit IL-6 secretion by human marrow cells. Cytokine 16:178-186 60. Gordon MB, Moore TJ, Dluhy RG, Williams GH 1983 Dopaminergic blockade of the renin-angiotensin-aldosterone system: effect of high and low sodium intakes. Clin Endocrinol (Oxf) 19:415-425 61. Griffing GT, Wilson TE, Melby JC 1990 Alterations in aldosterone secretion and metabolism in low renin hypertension. J Clin Endocrinol Metab 71:1454-1460 62. Grynkiewicz G, Poenie M, Tsien RY 1985 A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260:3440-3450 63. Gu J, Wen Y, Mison A, Nadler JL 2003 12-lipoxygenase pathway increases aldosterone production, 3',5'-cyclic adenosine monophosphate response element-binding protein phosphorylation, and p38 mitogen-activated protein kinase activation in H295R human adrenocortical cells. Endocrinology 144:534-543 64. Hajnoczky G, Varnai P, Buday L, Farago A, Spat A 1992 The role of protein kinase-C in control of aldosterone production by rat adrenal glomerulosa cells: activation of protein kinase-C by stimulation with potassium. Endocrinology 130:2230-2236 65. Hamilton M, Liao J, Cathcart MK, Wolfman A 2001 Constitutive association of c-N-Ras with c-Raf-1 and protein kinase C epsilon in latent signaling modules. J Biol Chem 276:29079-29090 66. Hartigan JA, Green EG, Mortensen RM, Menachery A, Williams GH, Orme-Johnson NR 1995 Comparison of protein phosphorylation patterns produced in adrenal cells by activation of cAMP-dependent protein kinase and Ca-dependent protein kinase. J Steroid Biochem Mol Biol 53:95-101 67. Hayabuchi Y, Standen NB, Davies NW 2001 Angiotensin II inhibits and alters kinetics of voltage-gated K(+) channels of rat arterial smooth muscle. Am J Physiol Heart Circ Physiol 281:H2480-2489 68. Holland OB, Thomas C, Brown H, Schindewolf D, Hillier Y, Gomez-Sanchez C 1983 Aldosterone suppression with dopamine infusion in low-renin hypertension. J Clin Invest 72:754-766 69. Holzwarth MA, Cunningham LA, Kleitman N 1987 The role of adrenal nerves in the regulation of adrenocortical functions. Ann N Y Acad Sci 512:449-464 70. Hostetter TH, Ibrahim HN 2003 Aldosterone in chronic kidney and cardiac disease. J Am Soc Nephrol 14:2395-2401 71. Hunyady L, Baukal AJ, Bor M, Ely JA, Catt KJ 1990 Regulation of 1,2-diacylglycerol production by angiotensin-II in bovine adrenal glomerulosa cells. Endocrinology 126:1001-1008 72. Jansen AP, Dreckschmidt NE, Verwiebe EG, Wheeler DL, Oberley TD, Verma AK 2001 Relation of the induction of epidermal ornithine decarboxylase and hyperplasia to the different skin tumor-promotion susceptibilities of protein kinase C alpha, -delta and -epsilon transgenic mice. Int J Cancer 93:635-643 73. Johnson GL, Lapadat R 2002 Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 298:1911-1912 74. Johnson JA, Gray MO, Karliner JS, Chen CH, Mochly-Rosen D 1996 An improved permeabilization protocol for the introduction of peptides into cardiac myocytes. Application to protein kinase C research. Circ Res 79:1086-1099 75. Kampfer S, Windegger M, Hochholdinger F, Schwaiger W, Pestell RG, Baier G, Grunicke HH, Uberall F 2001 Protein kinase C isoforms involved in the transcriptional activation of cyclin D1 by transforming Ha-Ras. J Biol Chem 276:42834-42842 76. Kapas S, Purbrick A, Hinson JP 1995 Role of tyrosine kinase and protein kinase C in the steroidogenic actions of angiotensin II, alpha-melanocyte-stimulating hormone and corticotropin in the rat adrenal cortex. Biochem J 305 ( Pt 2):433-438 77. Kawamoto T, Mitsuuchi Y, Toda K, Yokoyama Y, Miyahara K, Miura S, Ohnishi T, Ichikawa Y, Nakao K, Imura H, et al. 1992 Role of steroid 11 beta-hydroxylase and steroid 18-hydroxylase in the biosynthesis of glucocorticoids and mineralocorticoids in humans. Proc Natl Acad Sci U S A 89:1458-1462 78. Klemm SA, Ballantine DM, Gordon RD, Tunny TJ, Stowasser M 1994 The renin gene and aldosterone-producing adenomas. Kidney Int 46:1591-1593 79. Kojima I, Kawamura N, Shibata H 1994 Rate of calcium entry determines the rapid changes in protein kinase C activity in angiotensin II-stimulated adrenal glomerulosa cells. Biochem J 297 ( Pt 3):523-528 80. Kojima I, Lippes H, Kojima K, Rasmussen H 1983 Aldosterone secretion: effect of phorbol ester and A23187. Biochem Biophys Res Commun 116:555-562 81. Kojima I, Ogata E 1986 Direct demonstration of adrenocorticotropin-induced changes in cytoplasmic free calcium with aequorin in adrenal glomerulosa cell. J Biol Chem 261:9832-9838 82. Kowluru R, Yamazaki T, McNamara BC, Jefcoate CR 1995 Metabolism of exogenous cholesterol by rat adrenal mitochondria is stimulated equally by physiological levels of free Ca2+ and by GTP. Mol Cell Endocrinol 107:181-188 83. Laird SM, Hinson JP, Vinson GP, Mallick N, Kapas S, Teja R 1991 Control of steroidogenesis by the calcium messenger system in human adrenocortical cells. J Mol Endocrinol 6:45-51 84. Lauer CG, Braley LM, Menachery AI, Williams GH 1982 Metoclopramide inhibits aldosterone biosynthesis in vitro. Endocrinology 111:238-243 85. Lauer CG, Braley LM, Menachery AI, Williams GH 1982 Metoclopramide inhibits aldosterone biosynthesis in vitro. Endocrinology 111:238-243 86. Lauer CG, Braley LM, Menachery AI, Williams GH 1982 Metoclopramide inhibits aldosterone biosynthesis in vitro. Endocrinology 111:238-243 87. Le T, Schimmer BP 2001 The regulation of MAPKs in Y1 mouse adrenocortical tumor cells. Endocrinology 142:4282-4287 88. Lee AK 1996 Dopamine (D2) receptor regulation of intracellular calcium and membrane capacitance changes in rat melanotrophs. J Physiol 495 ( Pt 3):627-640 89. LeHoux JG, Martel D, LeHoux J, Ducharme L, Lefebvre A, Briere N 1995 P450aldo in hamster adrenal cortex: immunofluorescent and immuno-gold electron microscopic studies. Endocr Res 21:275-280 90. Li XX, Bek M, Asico LD, Yang Z, Grandy DK, Goldstein DS, Rubinstein M, Eisner GM, Jose PA 2001 Adrenergic and endothelin B receptor-dependent hypertension in dopamine receptor type-2 knockout mice. Hypertension 38:303-308 91. Lifton RP, Dluhy RG, Powers M, Rich GM, Cook S, Ulick S, Lalouel JM 1992 A chimaeric 11 beta-hydroxylase/aldosterone synthase gene causes glucocorticoid-remediable aldosteronism and human hypertension. Nature 355:262-265 92. Lim PO, Rodgers P, Cardale K, Watson AD, MacDonald TM 1999 Potentially high prevalence of primary aldosteronism in a primary-care population. Lancet 353:40 93. Lin D, Sugawara T, Strauss JF, 3rd, Clark BJ, Stocco DM, Saenger P, Rogol A, Miller WL 1995 Role of steroidogenic acute regulatory protein in adrenal and gonadal steroidogenesis. Science 267:1828-1831 94. Liu J, Kahri AI, Heikkila P, Ilvesmaki V, Voutilainen R 1995 H19 and insulin-like growth factor-II gene expression in adrenal tumors and cultured adrenal cells. J Clin Endocrinol Metab 80:492-496 95. Liu LX, Burgess LH, Gonzalez AM, Sibley DR, Chiodo LA 1999 D2S, D2L, D3, and D4 dopamine receptors couple to a voltage-dependent potassium current in N18TG2 x mesencephalon hybrid cell (MES-23.5) via distinct G proteins. Synapse 31:108-118 96. Lombardi C, Missale C, De Cotiis R, Spedini C, Pizzoccolo G, Memo M, Albertini A, Spano PF 1988 Inhibition of the aldosterone response to sodium depletion in man by stimulation of dopamine DA2 receptors. Eur J Clin Pharmacol 35:323-326 97. Lotshaw DP 2001 Role of membrane depolarization and T-type Ca2+ channels in angiotensin II and K+ stimulated aldosterone secretion. Mol Cell Endocrinol 175:157-171 98. Luchsinger A, Grilli M, Velasco M 1998 Metoclopramide and domperidone block the antihypertensive effect of bromocriptine in hypertensive patients. Am J Ther 5:81-88 99. Luchsinger A, Velasco M, Arbona E, Forte P, Gomez J, Sukerman M, Urbina A, Pieretti OH 1995 Effect of Domperidone on the Bromocriptine-Induced Antihypertensive Action in Hypertensive Patients. Am J Ther 2:388-394 100. Mahmud A, Feely J 2005 Aldosterone-to-renin ratio, arterial stiffness, and the response to aldosterone antagonism in essential hypertension. Am J Hypertens 18:50-55 101. Makara JK, Koncz P, Petheo GL, Spat A 2003 Role of cell volume in K+-induced Ca2+ signaling by rat adrenal glomerulosa cells. Endocrinology 144:4916-4922 102. Malchoff CD, Hughes J, Sen S, Jackson S, Carey RM 1986 Dopamine inhibits the aldosterone response to upright posture. J Clin Endocrinol Metab 63:197-201 103. Matsuoka H, Hayakawa H, Hirata Y, Atarashi K, Takagi M, Sugimoto T 1988 Dopamine and aldosterone in adrenal glomerulosa cells in spontaneously hypertensive rats. J Hypertens Suppl 6:S384-386 104. Maturana AD, Burnay MM, Capponi AM, Vallotton MB, Rossier MF 1999 Angiotensin II type 1 receptor activation modulates L- and T-type calcium channel activity through distinct mechanisms in bovine adrenal glomerulosa cells. J Recept Signal Transduct Res 19:509-520 105. Mazzocchi G, Malendowicz LK, Gottardo G, Rebuffat P, Nussdorfer GG 1997 Angiotensin-II stimulates DNA synthesis in rat adrenal zona glomerulosa cells: receptor subtypes involved and possible signal transduction mechanism. Endocr Res 23:191-203 106. McCarty R, Kirby RF, Carey RM 1984 Dopamine may be a neurohormone in rat adrenal cortex. Am J Physiol 247:E709-713 107. McKenna TJ, Island DP, Nicholson WE, Liddle GW 1979 Dopamine inhibits angiotensin-stimulated aldosterone biosynthesis in bovine adrenal cells. J Clin Invest 64:287-291 108. McNeill H, Puddefoot JR, Vinson GP 1998 MAP Kinase in the rat adrenal gland. Endocr Res 24:373-380 109. Mischak H, Pierce JH, Goodnight J, Kazanietz MG, Blumberg PM, Mushinski JF 1993 Phorbol ester-induced myeloid differentiation is mediated by protein kinase C-alpha and -delta and not by protein kinase C-beta II, -epsilon, -zeta, and -eta. J Biol Chem 268:20110-20115 110. Missale C, Govoni S, Pasinetti G, Assini C, Spano PF, Battaini F, Trabucchi M 1986 Age-dependent changes in the mechanisms regulating dopamine uptake in the central nervous system. J Gerontol 41:136-139 111. Missale C, Memo M, Liberini P, Spano P 1988 Dopamine selectively inhibits angiotensin II-induced aldosterone secretion by interacting with D-2 receptors. J Pharmacol Exp Ther 246:1137-1143 112. Missale G, Missale C, Sigala S, Cestari R, Memo M, Lojacono L, Spano P 1990 Evidence for the presence of both D-1 and D-2 dopamine receptors in human esophagus. Life Sci 47:447-455 113. Mizuno K, Yamazaki M, Ikeda K, Yaginuma K, Hashimoto S, Fukuchi S 1983 Effects of metoclopramide, a dopamine antagonist, on secretion of aldosterone and renin release in patients with primary aldosteronism. Jpn Heart J 24:917-924 114. Moneva MH, Gomez-Sanchez CE 2002 Pathophysiology of adrenal hypertension. Semin Nephrol 22:44-53 115. Mornet E, Dupont J, Vitek A, White PC 1989 Characterization of two genes encoding human steroid 11 beta-hydroxylase (P-450(11) beta). J Biol Chem 264:20961-20967 116. Morra M, Leboulenger F, Vaudry H 1992 Characterization of dopamine receptors associated with steroid secretion in frog adrenocortical cells. J Mol Endocrinol 8:43-52 117. Mulatero P, Rabbia F, Milan A, Paglieri C, Morello F, Chiandussi L, Veglio F 2002 Drug effects on aldosterone/plasma renin activity ratio in primary aldosteronism. Hypertension 40:897-902 118. Mulrow PJ 1999 Angiotensin II and aldosterone regulation. Regul Pept 80:27-32 119. Mulrow PJ, Takagi M, Takagi M, Franco-Saenz R 1987 Inhibitors of aldosterone secretion. J Steroid Biochem 27:941-946 120. Naruse M, Naruse K, Yoshimoto T, Tanaka M, Tanabe A, Imaki T, Shibasaki T, Demura R, Demura H 1995 Dopaminergic regulation of aldosterone secretion: its pathophysiologic significance in subsets of primary aldosteronism. Hypertens Res 18 Suppl 1:S59-64 121. Natarajan R, Dunn WD, Stern N, Nadler J 1990 Key role of diacylglycerol-mediated 12-lipoxygenase product formation in angiotensin II-induced aldosterone synthesis. Mol Cell Endocrinol 72:73-80 122. Natarajan R, Lanting L, Xu L, Nadler J 1994 Role of specific isoforms of protein kinase C in angiotensin II and lipoxygenase action in rat adrenal glomerulosa cells. Mol Cell Endocrinol 101:59-66 123. Noth RH, McCallum RW, Contino C, Havelick J 1980 Tonic dopaminergic suppression of plasma aldosterone. J Clin Endocrinol Metab 51:64-69 124. Nouet S, Nahmias C 2000 Signal transduction from the angiotensin II AT2 receptor. Trends Endocrinol Metab 11:1-6 125. Oda N, Takeda Y, Zhu A, Usukura M, Yoneda T, Takata H, Mabuchi H 2006 Pathophysiological roles of the adrenal renin-angiotensin system in patients with primary aldosteronism. Hypertens Res 29:9-14 126. Ogihara T, Iinuma K, Nishi K, Arakawa Y, Takagi A 1977 A non-chromatographic non-extraction radioimmunoassay for serum aldosterone. J Clin Endocrinol Metab 45:726-731 127. Ogishima T, Suzuki H, Hata J, Mitani F, Ishimura Y 1992 Zone-specific expression of aldosterone synthase cytochrome P-450 and cytochrome P-45011 beta in rat adrenal cortex: histochemical basis for the functional zonation. Endocrinology 130:2971-2977 128. Osipenko ON, Varnai P, Mike A, Spat A, Vizi ES 1994 Dopamine blocks T-type calcium channels in cultured rat adrenal glomerulosa cells. Endocrinology 134:511-514 129. Pascoe L, Curnow KM 1995 Genetic recombination as a cause of inherited disorders of aldosterone and cortisol biosynthesis and a contributor to genetic variation in blood pressure. Steroids 60:22-27 130. Perletti GP, Concari P, Brusaferri S, Marras E, Piccinini F, Tashjian AH, Jr. 1998 Protein kinase Cepsilon is oncogenic in colon epithelial cells by interaction with the ras signal transduction pathway. Oncogene 16:3345-3348 131. Pezzi V, Clyne CD, Ando S, Mathis JM, Rainey WE 1997 Ca(2+)-regulated expression of aldosterone synthase is mediated by calmodulin and calmodulin-dependent protein kinases. Endocrinology 138:835-838 132. Pivonello R, Ferone D, de Herder WW, de Krijger RR, Waaijers M, Mooij DM, van Koetsveld PM, Barreca A, De Caro ML, Lombardi G, Colao A, Lamberts SW, Hofland LJ 2004 Dopamine receptor expression and function in human normal adrenal gland and adrenal tumors. J Clin Endocrinol Metab 89:4493-4502 133. Pralong WF, Hunyady L, Varnai P, Wollheim CB, Spat A 1992 Pyridine nucleotide redox state parallels production of aldosterone in potassium-stimulated adrenal glomerulosa cells. Proc Natl Acad Sci U S A 89:132-136 134. Pratt JH, Turner DA, McAteer JA 1987 Aldosterone production after short-term culture of rat adrenal capsule: responsiveness to angiotensin II, potassium and ACTH. J Steroid Biochem 26:355-359 135. Richard DE, Laporte SA, Bernier SG, Leduc R, Guillemette G 1997 Desensitization of AT1 receptor-mediated cellular responses requires long term receptor down-regulation in bovine adrenal glomerulosa cells. Endocrinology 138:3828-3835 136. Rohacs T, Tory K, Dobos A, Spat A 1997 Intracellular calcium release is more efficient than calcium influx in stimulating mitochondrial NAD(P)H formation in adrenal glomerulosa cells. Biochem J 328 ( Pt 2):525-528 137. Romero DG, Welsh BL, Gomez-Sanchez EP, Yanes LL, Rilli S, Gomez-Sanchez CE 2006 Angiotensin II-mediated protein kinase D activation stimulates aldosterone and cortisol secretion in H295R human adrenocortical cells. Endocrinology 147:6046-6055 138. Rosmond R, Rankinen T, Chagnon M, Perusse L, Chagnon YC, Bouchard C, Bjorntorp P 2001 Polymorphism in exon 6 of the dopamine D(2) receptor gene (DRD2) is associated with elevated blood pressure and personality disorders in men. J Hum Hypertens 15:553-558 139. Rossier MF, Aptel HB, Python CP, Burnay MM, Vallotton MB, Capponi AM 1995 Inhibition of low threshold calcium channels by angiotensin II in adrenal glomerulosa cells through activation of protein kinase C. J Biol Chem 270:15137-15142 140. Rossier MF, Burnay MM, Vallotton MB, Capponi AM 1996 Distinct functions of T- and L-type calcium channels during activation of bovine adrenal glomerulosa cells. Endocrinology 137:4817-4826 141. Saito O, Ando Y, Kusano E, Asano Y 2001 Functional characterization of basolateral and luminal dopamine receptors in rabbit CCD. Am J Physiol Renal Physiol 281:F114-122 142. Sarazin P, Lefebvre A, LeHoux JG 1998 The role of calcium channels in hamster CYP11B2 gene expression. Endocr Res 24:633-636 143. Schiffrin EL 2006 Effects of aldosterone on the vasculature. Hypertension 47:312-318 144. Sequeira SJ, McKenna TJ 1985 Examination of the effects of epinephrine, norepinephrine, and dopamine on aldosterone production in bovine glomerulosa cells in vitro. Endocrinology 117:1947-1952 145. Shikuma R, Yoshimura M, Kambara S, Yamazaki H, Takashina R, Takahashi H, Takeda K, Ijichi H 1986 Dopaminergic modulation of salt sensitivity in patients with essential hypertension. Life Sci 38:915-921 146. Shimoni Y, Liu XF 2003 Role of PKC in autocrine regulation of rat ventricular K+ currents by angiotensin and endothelin. Am J Physiol Heart Circ Physiol 284:H1168-1181 147. Sogami M, Era S, Nagaoka S, Kuwata K, Kida K, Shigemi J, Miura K, Suzuki E, Muto Y, Tomita E, et al. 1985 High-performance liquid chromatographic studies on non-mercapt in equilibrium with mercapt conversion of human serum albumin. II. J Chromatogr 332:19-27 148. Sowers J, Catania R, Paris J, Tuck M 1982 Effects of bromocriptine on renin, aldosterone, and prolactin responses to posture and metoclopramide in idiopathic edema: possible therapeutic approach. J Clin Endocrinol Metab 54:510-516 149. Sowers JR 1981 Effects of bromocriptine on responses to stress in spontaneously hypertensive rats. Hypertension 3:544-550 150. Spat A, Enyedi P, Hajnoczky G, Hunyady L 1991 Generation and role of calcium signal in adrenal glomerulosa cells. Exp Physiol 76:859-885 151. Spat A, Hunyady L 2004 Control of aldosterone secretion: a model for convergence in cellular signaling pathways. Physiol Rev 84:489-539 152. Stern N, Sowers JR, Tuck M, Eshkol A, Lunenfeld B, Rosenthal T 1984 Enhanced response of plasma aldosterone to metoclopramide in essential hypertension. J Hypertens 2:209-214 153. Stern N, Tuck M, Ozaki L, Krall JF 1986 Dopaminergic binding and inhibitory effect in the bovine adrenal zona glomerulosa. Hypertension 8:203-210 154. Stocco DM, Clark BJ 1996 Role of the steroidogenic acute regulatory protein (StAR) in steroidogenesis. Biochem Pharmacol 51:197-205 155. Storz P, Toker A 2003 Protein kinase D mediates a stress-induced NF-kappaB activation and survival pathway. Embo J 22:109-120 156. Sun D, O'Donnell ME 1996 Astroglial-mediated phosphorylation of the Na-K-Cl cotransporter in brain microvessel endothelial cells. Am J Physiol 271:C620-627 157. Thomas GN, Critchley JA, Tomlinson B, Cockram CS, Chan JC 2001 Relationships between the taqI polymorphism of the dopamine D2 receptor and blood pressure in hyperglycaemic and normoglycaemic Chinese subjects. Clin Endocrinol (Oxf) 55:605-611 158. Tian Q, Taupin J, Elledge S, Robertson M, Anderson P 1995 Fas-activated serine/threonine kinase (FAST) phosphorylates TIA-1 during Fas-mediated apoptosis. J Exp Med 182:865-874 159. Tian Y, Smith RD, Balla T, Catt KJ 1998 Angiotensin II activates mitogen-activated protein kinase via protein kinase C and Ras/Raf-1 kinase in bovine adrenal glomerulosa cells. Endocrinology 139:1801-1809 160. Ueda A, Ozono R, Oshima T, Yano A, Kambe M, Teranishi Y, Katsuki M, Chayama K 2003 Disruption of the type 2 dopamine receptor gene causes a sodium-dependent increase in blood pressure in mice. Am J Hypertens 16:853-858 161. Vallar L, Meldolesi J 1989 Mechanisms of signal transduction at the dopamine D2 receptor. Trends Pharmacol Sci 10:74-77 162. Veglio F, Pinna G, Rabbia F, Panarelli M, Bisbocci D, Melchio R, Chiandussi L 1991 Dopaminergic regulation of aldosterone secretion: assessment in different subtypes of primary aldosteronism and in essential hypertension. J Int Med Res 19:44-49 163. Vizi ES, Toth IE, Orso E, Szalay KS, Szabo D, Baranyi M, Vinson GP 1993 Dopamine is taken up from the circulation by, and released from, local noradrenergic varicose axon terminals in zona glomerulosa of the rat: a neurochemical and immunocytochemical study. J Endocrinol 139:213-226 164. Watanabe G, Lee RJ, Albanese C, Rainey WE, Batlle D, Pestell RG 1996 Angiotensin II activation of cyclin D1-dependent kinase activity. J Biol Chem 271:22570-22577 165. Weidmann P, Hellmueller B, Uehlinger DE, Lang RE, Gnaedinger MP, Hasler L, Shaw S, Bachmann C 1986 Plasma levels and cardiovascular, endocrine, and excre | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30733 | - |
dc.description.abstract | 此研究的目的是探討第二類多巴胺受器(D2-like dopamine receptors)對腎上腺皮質細胞分泌皮質醛酮(aldosterone)的調控機轉,並藉由針對皮質醛酮分泌性腺瘤(aldosterone producing adenoma, APA)的研究,了解D2-like dopamine receptors在腎上腺高血壓(adrenal hypertension)致病過程中可能扮演的角色。
皮質醛酮於人體是控制鈉鉀離子與體液平衡重要的賀爾蒙,因此可以想見腎上腺分泌皮質醛酮會受到複雜且嚴密的調控。這些調控因子中,血管張力素II (angiotensin II, Ang II)、血中鉀離子濃度、與腦下垂體分泌的腎上腺皮質刺激素(adrenal corticotrophin hormone, ACTH)是最廣為人知的刺激因子,而抑制皮質醛酮分泌的調控因子,則以心房分泌的利鈉激素(atrial natriuretic peptide)以及多巴胺(dopamine)的研究報告最多。血中Ang II濃度可以依體液或鈉離子的不足而改變,因而與調控皮質醛酮分泌以及腎上腺高血壓的形成最有關係。 Dopamine對皮質醛酮的抑制作用在三十年前已有報告,後續一系列的研究發現,單獨給予dopamine並不影響血中皮質醛酮的基礎濃度,但dopamine卻可抑制體液減少或低鈉飲食造成的皮質醛酮濃度上升。另一方面,單獨給予dopamine擷抗劑卻可造成皮質醛酮濃度上升。這些研究結果顯示,dopamine系統在一般生理情形下,扮演一個最大抑制(tonic inhibition)的效果。因此,dopamine系統的缺陷可能會使皮質醛酮的分泌增加,進而造成高血壓的發生。 Dopamine抑制皮質醛酮的作用主要是經由其對D2-like dopamine receptors的作用。我們之前的研究發現,APA的患者對第二類dopamine擷抗劑(metaclopramide)的反應與腺瘤上皮質醛酮合成酶(aldosterone synthase, CYP11B2)的訊息核醣核酸(messenger RNA, mRNA)含量成反比,這暗示著D2-like dopamine receptors的含量(或活性)可能與APA表現CYP11B2的mRNA有關。已知的dopamine receptors共有五種,而腎上腺皮質上只表現D2-like dopamine receptors中的第二型多巴胺受器(D2 dopamine receptor, D2R)與第四型多巴胺受器(D4 dopamine receptor, D4R),過去我們的研究已發現這兩種dopamine receptors對皮質醛酮分泌有著完全不同的調控效果,在人類腎上腺皮質癌細胞株(NCI-H295R,以下簡稱H295R)上,給予D2R刺激會抑制Ang II刺激皮質醛酮分泌,而給予D4R刺激則會增加Ang II刺激皮質醛酮分泌。 因此,我們首先對手術切除的APA與其同側的無腫瘤部份的腎上腺皮質組織分析Ang II第一型受器(angiotensin II type 1 receptor, AT1R)、D2R與D4R的蛋白質與mRNA的表現量。無論是蛋白質或是mRNA,AT1R在APA與其無腫瘤的腎上腺皮質組織的表現量並無不同,而D2R與D4R的表現量於APA上則明顯減少。但不論是APA或無腫瘤的腎上腺皮質組織,D2R的表現量皆遠較D4R豐富。APA表現CYP11B2的mRNA遠較無腫瘤的腎上腺皮質組織為多百倍以上,且APA表現CYP11B2的mRNA量與患者血中皮質醛酮濃度成正比,而APA之D2R的mRNA表現量則與患者血中皮質醛酮濃度成反比,APA之D2R的mRNA表現量同時也與其CYP11B2的mRNA表現量成反比。 以D2R刺激劑,bromocriptine(BMC),處理H295R細胞會抑制Ang II增加的皮質醛酮急性及慢性分泌,也會抑制H295R細胞轉錄CYP11B2;若同時給予D2R擷抗劑raclopride(Racl),則這抑制效果會被逆轉。於H295R細胞轉殖D2R干擾核醣核酸(shRNA)減少D2R表現後,Ang II刺激的皮質醛酮分泌會進一步增加;若加上dopamine,Ang II可刺激此細胞株分泌更多的皮質醛酮;以Racl進一步阻斷少數仍然存在的D2R後,Ang II刺激下的皮質醛酮分泌更進一步增加,對CYP11B2 mRNA的觀察也顯示類似的結果。以特定抗體偵測不同磷酸化的蛋白磷酸酶C (protein kinase C, PKC)亞型,發現Ang II可刺激PKC α/β、μ、ε的磷酸化與轉位至細胞膜,這幾個PKC的活化只有PKC μ會受到BMC的抑制,此抑制作用一樣可用Racl逆轉。於H295R細胞轉殖PKC μ干擾核醣核酸(shRNA)可減少PKC μ及Ang II刺激的PKC μ磷酸化,並導致Ang II刺激的皮質醛酮分泌與CYP11B2 mRNA表現量顯著減少。此外,對照無腫瘤腎上腺皮質組織,表現D2R較少的APA也擁有較多的磷酸化PKC μ。如同之前的報告,Ang II刺激的皮質醛酮分泌與CYP11B2 mRNA表現需inositol 1,4,5 triphosphate (IP3)受器的活化與鈣離子訊息,我們也發現給予BMC可抑制Ang II刺激下細胞內IP3與游離鈣的增加。 關於D4R的研究部分,我們發現於APA、無腫瘤腎上腺皮質組織、培養的正常人類腎上腺皮質細胞與H295R細胞上均有表現D4R。給予D4R刺激劑PD168,077(PD)可加強Ang II刺激的急性與慢性皮質醛酮分泌以及CYP11B2 mRNA表現,而給予D4R擷抗劑L745,870(L)可逆轉此作用。AII刺激PKC α/β、μ、ε磷酸化與轉位至細胞膜,PD選擇性地加強PKC ε 的活化。給予PKC ε的抑制胜肽來抑制磷酸化的PKC ε轉位到細胞膜之後,可顯著減少Ang II刺激的皮質醛酮分泌以及CYP11B2 mRNA的表現。對於鈣離子訊息的調控方面,PD也加強了Ang II刺激下的細胞內IP3與游離鈣增加,同時給予L可逆轉PD的作用。給予細胞內游離鈣的鉗合劑BAPTA並不影響Ang II活化PKC ε;相反地,給予PKC ε的抑制胜肽則顯著影響Ang II刺激後的細胞內IP3與游離鈣增加。Ang II刺激的細胞內游離鈣增加於刺激後幾秒鐘就發生,但D4R刺激劑對Ang II磷酸化PKC ε的影響卻在幾分鐘後才比較明顯。因此,D4R對Ang II刺激的游離鈣增加可直接由影響細胞內IP3的量以及間接藉加強PKC ε的活化而達成。 最後,我們也探討了第二類dopamine受器對AII刺激腎上腺皮質細胞增生的影響。如同之前的認知,AngII可以促進初級培養(primary culture)的人類腎上腺皮質細胞的增生。BMC可抑制Ang II刺激的細胞增生,若再給予Racl,則這種抑制作用會被部分逆轉。BMC並不會增加H295R細胞凋亡(apoptosis)。Ang II可刺激H295R細胞ERK1/2的磷酸化,而BMC則顯著抑制了Ang II磷酸化ERK1/2的作用。分析APA與其無腫瘤的腎上腺皮質組織上磷酸化ERK1/2的量,也發現表現D2R較少的APA擁有較多的磷酸化ERK1/2。D2R對細胞週期(cell cycle)的影響方面, BMC並不會誘發抑癌基因P21、P27或與P53的表現;然而,Ang II刺激H295R的cyclin D1增加則受到BMC的抑制,但表現D2R較少的APA與無腫瘤的腎上腺皮質組織上cyclin D1的表現量並無明顯差異。給予PD98059抑制ERK1/2的磷酸化後,H295R細胞的增生也顯著減少。因此,D2R的表現量減少,可使腎上腺皮質細胞對Ang II刺激的細胞增生作用加強,這可能是腎上腺APA形成的原因之一。 總而言之,我們以一個臨床上較為均質性的腎上腺高血壓次群─APA─為研究對象,發現APA上D2R表現顯著減少,這種D2R減少可能引起PKCμ磷酸化增加而使皮質醛酮分泌增加,我們也藉由細胞培養的實驗證實D2R與D4R這兩種dopamine受器迥異的生理功能,藉著分子生物學的技術,我們觀察到D2R與D4R分別影響Ang II刺激下不同訊息分子的變化,也證實這些被影響的訊息分子對於皮質醛酮分泌與腎上腺皮質細胞增生的角色。同時,我們也於APA觀察到這些訊息分子的變化,因而強化了我們於細胞實驗上的發現之臨床意義。 | zh_TW |
dc.description.abstract | Previous studies have shown that dopamine inhibited angiotensin II (AII)- or low salt diet-induced increase of plasma aldosterone concentration (PAC) through the D2-like dopamine receptors. Our previous work showed that belong to the D2-like dopamine receptors, both D2 and D4 dopamine receptor (D2R and D4R) expressed on human adrenal cortex and aldosterone producing adenoma (APA) and their physiologic function seemed different. Therefore, my main subject was to explore the role of D2-like dopamine receptors in the regulation of aldosterone secretion of human adrenal cortical cells. By the way of understanding the cell molecular change in APA, we wished to discover the role of D2-like receptors in the pathogenesis of this subtype of human adrenal hypertension. The molecular mechanisms of D2R and D4R were studied by series of experiments.
Aldosterone is the most important mineralocorticoid, which regulates sodium and potassium concentration and maintains the adequacy of body fluid. Consequently, the secretion of aldosterone must be under a precise and complicated control. Among the many regulators, AII, plasma potassium concentration, and the adrenal corticotrophin hormone are the most important stimulators. There have been many literatures discussing their role and the regulatory mechanisms of aldosterone secretion. Plasma AII concentration may rapidly respond to body fluid deficiency and salt depletion, therefore it plays the main role in regulation of aldosterone secretion and blood pressure regulation. On the other hands, the inhibitory regulators of aldosterone secretion were much less discussed and far from being understood. Among the inhibitory regulators, atrial natriuretic peptide and dopamine are relatively more reported. The inhibitory role of dopamine in the aldosterone secretion was first reported about 30 years ago. Dopamine did not alter the basal PAC, but it inhibited the increase of the PAC under volume depletion or salt depletion. On the other hand, dopamine antagonist, metoclopramide induced the increase of the PAC. These reports suggested that the dopamine system has a tonic inhibitory effect on aldosterone secretion in the usual physical condition. Dopamine and its antagonist have similar effects on cultured bovine or rat adrenal cortical cells. This finding showed that dopamine inhibited aldosterone secretion could be directly acting on the adrenal cortical cells rather than by the way of indirectly modulating the other regulators involving the aldosterone secretion. The earlier studied have demonstrated that dopamine has its inhibitory effect on aldosterone secretion through D2-like dopamine receptors. Our previous study revealed that the increase of the APA patients’ PAC by metoclopramide was inversely correlated to the expression of CYP11B2 mRNA of these adenomas. This result hinted that the more D2-like dopamine activity, the less CYP11B2 expression in the APA. There are five dopamine receptors discovered. Among the D2-like dopamine receptors, except D3 dopamine receptor, both D2 and D4 dopamine receptors’ mRNA expressed in human adrenal cortex and aldosterone producing adenoma. By different pharmacological inhibitors, we have shown that these two D2-like dopamine receptors seemed to play opposite regulatory roles in aldosterone secretion. In this project, we analyzed the surgical specimen of APA patients to compare the expression of CYP11B2, angiotensin II type 1 receptor, D2R and D4R. We found that the APA had less D2R and D4R than the non-tumor adrenal cortex. The amount of AR1R of the tumor portions was similar to that of the non-tumor adrenal cortex. As expected, the tumor portions had much more CYP11B2 mRNA than the non-tumor adrenal cortex. In consistence with the protein analysis, both D2R and D4R mRNA of the tumor portions were less than those of the non-tumor adrenal cortex, and the mRNA of AT1R of the tumor portions and non-tumor adrenal cortex were similar. By linear regression analysis, we found that the patients’ PAC was positively correlated to the CYP11B2 mRNA expression and negatively correlated to the D2R mRNA expression. On the other hand, the patients’ PAC did not have significant correlation with AT1R and D4R mRNA. The expression of D2R mRNA was more abundance than D4R mRNA in both the tumor portions and the non-tumor adrenal cortex. In order to understanding the cause-result relationship between the D2R decrease and the PAC increase, we used the human adrenal cortical carcinoma cell line, NCI-H295R (H295R), as a cell model to test the role of D2R in regulation of aldosterone secretion. D2R agonist, bromocriptine, did not alter the basal aldosterone secretion. But it significantly inhibited the AII (10-8 mol/L)-stimulated acute (30 min) and chronic (24 hr) aldosterone secretion. Bromocriptine also attenuated the AII-stimulated CYP11B2 mRNA expression. The effect of bromocriptine could be revered by simultaneously giving D2R antagonist, raclopride. In order to mimic the down-regulation of D2R in APA, we used shRNA of D2R to generate a D2R-depleted clone of H295R cells. The D2R-depleted H295R cells have similar basal 24 hr aldosterone secretion and CYP11B2 mRNA expression. Under AII treatment, the D2R-depleted H295R cells have more aldosterone secretion and CYP11B2 mRNA expression than the wild type H295R cells. Dopamine did not alter aldosterone secretion and CYP11B2 mRNA expression in wild type H295R cells. However, dopamine significantly enhanced AII-stimulated aldosterone secretion and CYP11B2 mRNA expression in D2R-depleted H295R cells. Giving the D2R antagonist, raclopride, to block the residual D2R, the enhancing effect of dopamine was further augmented. To understanding the mechanism of the D2R modulation of the aldosterone secretion, we examined the AII-induced PKC and calcium signaling pathway. AII induced phosphorylation of PKC α/β、μ、ε as wells as their translocation to cell membrane. Bromocriptine significantly attenuated AII-stimulated PKCμ (Ser916) phosphorylation and its translocation to membrane. We also observed the reciprocal change of cytoplasmic PKCμ. The effect of bromocriptine on PKCμ activation could be reversed by raclopride. Depleting 60% PKCμ by PKCμ-specific shRNA attenuated AII-stimulated CYP11B2 mRNA expression and aldosterone secretion. We also demonstrated that the APA expressed more abundant phospho-PKCμ than the non-tumor adrenal cortex. In consistence with previous reports, AI-stimulated aldosterone secretion and CYP11B2 mRNA expression were both calcium dependent. Bromocriptine attenuated AII-stimulated increase of cytoplasmic inositol 1,4,5 triphosphate and [Ca2+]。 We demonstrated both D4R and AT1R expression in APA, human normal adrenal cortex, primary cultured human adrenal cortical cells, and H295R cells. AII stimulated aldosterone secretion and CYP11B2 mRNA expression in primary cultured human adrenal cortical cells as well as in H295R cells. But the former responded more to AII stimulation. D4R agonist, PD168,077 enhanced AII-stimulated aldosterone secretion and CYP11B2 mRNA expression in both cultured cells. D4R antagonist, L745,870 reversed the effect of PD168,077. AII stimulated PKC α/β、μ、ε phosphorylation and translocation to cell membrane in primary cultured human adrenal cortical cells as well as in H295R cells. PD168,077 selectively enhanced PKC ε activation. Transferring PKC ε-selective inhibitory peptide to prevent PKCε translocation to cell membrane attenuated AII-stimulated aldosterone secretion and CYP11B2 mRNA expression. PD168,077 also enhanced AII-stimulated increase of cytoplasmic IP3 and [Ca2+]. L745,870 could reverse this effect of PD168,077. Intracellular [Ca2+] chelator, BAPATA, did not inhibit AII-stimulated PKCε phosphorylation. On the other hand, transferring PKC ε-selective inhibitory peptide attenuated AII-stimulated increase of cytoplasmic IP3 and [Ca2+]. AII induced the increase of cytoplasmic [Ca2+] within few seconds, but PD167,077 took several minutes to enhance AII-stimulated PKCε phosphorylation. This result suggested that D4R could augment AII-stimulated cytoplasmic [Ca2+] increase directly by increasing cytoplasmic IP3 or indirectly by enhancing PKCε phosphorylation. Finally, we tried to understand the role of D2R on the tumorigenesis of APA. In consistence with previous reports, AII stimulated proliferation of primary cultured human adrenal cortical cells. Bromocriptine inhibited this cell proliferation, and raclopride reversed it. Bromocriptine did not induce H295R cells apoptosis, but it significantly inhibited the DNA synthesis H295R cells. Bromocriptine attenuated AII-stimulated ERK1/2 phosphorylation and thereafter ERK1/2 translocation from the cytosol to the nuclear in H295R cells. PD98059 which inhibited ERK1/2 phosphorylation also inhibited the proliferation of H295R cells. Analyzing the APA surgical specimen, we found that APA expressed much more phosphorylated ERK1/2 than the non-tumor adrenal cortex, though the total ERK1/2 amounts were similar in APA and the non-tumor adrenal cortex, Bromocriptine did not alter the expression of p21, p27, and p53 of H295R cells, Bromocriptine attenuated AII-stimulated cyclin D1 expression in primary cultured human adrenal cortical cells. Here, we demonstrated the inhibitory effect of D2R on the proliferation of adrenal cortical cells by attenuating the ERK1/2 phosphorylation. Consequently, down-regulation of D2R at least partially contributed to the increase of the ERK1/2 phosphorylation in APA and its tumorigenesis. In conclusion, we focused on APA, a relative homogenous subgroup of the hypertensive patients, to discuss the role of D2-like dopamine receptors in the human adrenal hypertension. The decreased D2R expression in APA negatively correlated to CYP11B2 mRNA expression in APA as well as the patients’ PAC. We further showed the opposite functions of D2R and D4R in the cultured cell models. We demonstrated their effects on the different AII signaling molecules, and the role of these signaling molecules in AII-stimulated aldosterone secretion were proved by the molecular biology techniques. We also provided evidence that D2R inhibited the proliferation of the adrenal cortical cells. Finally, we showed the difference of these signaling molecules between APA and the non-tumor adrenal cortex that confirmed the significance of the signaling molecular modification in the clinical disease, APA. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T02:13:51Z (GMT). No. of bitstreams: 1 ntu-96-D89421010-1.pdf: 1556305 bytes, checksum: e1bfef8daa33f76164c8639ddd9e1c2a (MD5) Previous issue date: 2007 | en |
dc.description.tableofcontents | 一、縮寫字對照表………………………………………………p.4
二、論文中文摘要………………………………………………p.5~7 三、緒論…………………………………………………………p.8~17 四、研究的假說以及特定目的…………………………………p.18 五、研究方法與材料……………………………………………p.19~24 六、結果 (一) D2 dopamine receptor(D2R)於人類腎上腺皮質細胞分泌皮質醛酮的生理調控機轉,以及其在原發性皮質醛酮分泌性腺瘤過度分泌皮質醛酮中所扮演的角色…………………………………………p.25~29 (二) D4 dopamine receptor(D4R)於人類腎上腺皮質細胞分泌皮質醛酮的生理調控機轉……………………………………………..p.30~33 (三) D2R對人類腎上腺皮質細胞增生的調控,以及其於原發性皮質醛酮分泌性腺瘤形成上的角色……………………………………p.34~35 七、討論…………………………………………………………p.36~47 八、展望 (一)本結果於臨床上可能的應用……………………………p.48 (二)皮質醛酮分泌性腺瘤減少D2R表現的原因………………p.49~50 (三)D2R與D4R影響AII訊息的進一步探討……………………p.51 九、 參考文獻…………………………………………………………p.52~67 十、 論文英文簡述 (Summary)…………………………………… p.68~71 十一、 圖表…………………………………………………………….p.72~105 十二、 附錄…………………………………………………………… p.106 | |
dc.language.iso | zh-TW | |
dc.title | 第二類多巴胺受器於人類腎上腺皮質細胞分泌皮質醛酮的調控角色及其機轉的研究 | zh_TW |
dc.title | Role of the D2-like dopamine receptors in the regulation of aldosterone secretion of human adrenal cortical cells | en |
dc.type | Thesis | |
dc.date.schoolyear | 95-2 | |
dc.description.degree | 博士 | |
dc.contributor.coadvisor | 周祖述(Tzuu-Shuh Jou) | |
dc.contributor.oralexamcommittee | 辛錫璋(Shi-Jang Shin),蘇銘嘉(Ming-Jai Su),陳青周(Ching-Chow Chen),鍾邦柱(Bon-chu Chung) | |
dc.subject.keyword | 第二類多巴胺受器,人類腎上腺皮質細胞, | zh_TW |
dc.subject.keyword | D2- like dopamine receptors,human adrenal cortical cells, | en |
dc.relation.page | 105 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2007-05-30 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 臨床醫學研究所 | zh_TW |
顯示於系所單位: | 臨床醫學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-96-1.pdf 目前未授權公開取用 | 1.52 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。