Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 分子與細胞生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30729
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor溫進德(Jin-Der Wen)
dc.contributor.authorTe-Pao Chungen
dc.contributor.author鍾得寶zh_TW
dc.date.accessioned2021-06-13T02:13:43Z-
dc.date.available2012-08-05
dc.date.copyright2011-08-05
dc.date.issued2011
dc.date.submitted2011-08-01
dc.identifier.citationBenkovic, S.J., Valentine, A.M., and Salinas, F. (2001). Replisome-mediated DNA replication. Annu Rev Biochem 70, 181-208.
Blinkova, A., Hervas, C., Stukenberg, P.T., Onrust, R., O'Donnell, M.E., and Walker, J.R. (1993). The Escherichia coli DNA polymerase III holoenzyme contains both products of the dnaX gene, tau and gamma, but only tau is essential. J Bacteriol 175, 6018-6027.
Blinkowa, A.L., and Walker, J.R. (1990). Programmed ribosomal frameshifting generates the Escherichia coli DNA polymerase III gamma subunit from within the tau subunit reading frame. Nucleic Acids Res 18, 1725-1729.
Carter, A.P., Clemons, W.M., Brodersen, D.E., Morgan-Warren, R.J., Wimberly, B.T., and Ramakrishnan, V. (2000). Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics. Nature 407, 340-348.
Chen, K.S., Saxena, P., and Walker, J.R. (1993). Expression of the Escherichia coli dnaX gene. J Bacteriol 175, 6663-6670.
Eisenstein, B.I., Ofek, I., and Beachey, E.H. (1979). Interference with the mannose binding and epithelial cell adherence of Escherichia coli by sublethal concentrations of streptomycin. J Clin Invest 63, 1219-1228.
Engelberg-Kulka, H. (1981). UGA suppression by normal tRNA Trp in Escherichia coli: codon context effects. Nucleic Acids Res 9, 983-991.
Engelberg-Kulka, H., Dekel, L., and Israeli-Reches, M. (1981). Regulation of the escherichia coli tryptophan operon by readthrough of UGA termination codons. Biochem Biophys Res Commun 98, 1008-1015.
Farabaugh, P.J. (1996). Programmed translational frameshifting. Microbiol Rev 60, 103-134.
Flower, A.M., and McHenry, C.S. (1990). The gamma subunit of DNA polymerase III holoenzyme of Escherichia coli is produced by ribosomal frameshifting. Proc Natl Acad Sci U S A 87, 3713-3717.
Gendron, K., Charbonneau, J., Dulude, D., Heveker, N., Ferbeyre, G., and Brakier-Gingras, L. (2008). The presence of the TAR RNA structure alters the programmed -1 ribosomal frameshift efficiency of the human immunodeficiency virus type 1 (HIV-1) by modifying the rate of translation initiation. Nucleic Acids Res 36, 30-40.
Gesteland, R.F., and Atkins, J.F. (1996). Recoding: dynamic reprogramming of translation. Annu Rev Biochem 65, 741-768.
Green, R., and Noller, H.F. (1997). Ribosomes and translation. Annu Rev Biochem 66, 679-716.
Hirokawa, G., Kaji, H., and Kaji, A. (2007). Inhibition of antiassociation activity of translation initiation factor 3 by paromomycin. Antimicrob Agents Chemother 51, 175-180.
Hirsh, D., and Gold, L. (1971). Translation of the UGA triplet in vitro by tryptophan transfer RNA's. J Mol Biol 58, 459-468.
Jacks, T., Power, M.D., Masiarz, F.R., Luciw, P.A., Barr, P.J., and Varmus, H.E. (1988). Characterization of ribosomal frameshifting in HIV-1 gag-pol expression. Nature 331, 280-283.
Johnson, A., and O'Donnell, M. (2005). Cellular DNA replicases: components and dynamics at the replication fork. Annu Rev Biochem 74, 283-315.
Kaberdina, A.C., Szaflarski, W., Nierhaus, K.H., and Moll, I. (2009). An unexpected type of ribosomes induced by kasugamycin: a look into ancestral times of protein synthesis? Mol Cell 33, 227-236.
Kornberg, T., and Gefter, M.L. (1972). Deoxyribonucleic acid synthesis in cell-free extracts. IV. Purification and catalytic properties of deoxyribonucleic acid polymerase III. J Biol Chem 247, 5369-5375.
Kurland, C.G. (1992). Translational accuracy and the fitness of bacteria. Annu Rev Genet 26, 29-50.
Laemmli, U.K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685.
Larsen, B., Wills, N.M., Gesteland, R.F., and Atkins, J.F. (1994). rRNA-mRNA base pairing stimulates a programmed -1 ribosomal frameshift. J Bacteriol 176, 6842-6851.
Laursen, B.S., Sorensen, H.P., Mortensen, K.K., and Sperling-Petersen, H.U. (2005). Initiation of protein synthesis in bacteria. Microbiol Mol Biol Rev 69, 101-123.
Liljas, A. (2004). Structural Aspects of Protein Synthesis (World Scientific Publishing Company, Incorporated).
Maitra, U., Stringer, E.A., and Chaudhuri, A. (1982). Initiation factors in protein biosynthesis. Annu Rev Biochem 51, 869-900.
Okuyama, A., Machiyama, N., Kinoshita, T., and Tanaka, N. (1971). Inhibition by kasugamycin of initiation complex formation on 30S ribosomes. Biochem Biophys Res Commun 43, 196-199.
Pavlov, M.Y., Freistroffer, D.V., MacDougall, J., Buckingham, R.H., and Ehrenberg, M. (1997). Fast recycling of Escherichia coli ribosomes requires both ribosome recycling factor (RRF) and release factor RF3. Embo J 16, 4134-4141.
Ramakrishnan, V. (2002). Ribosome structure and the mechanism of translation. Cell 108, 557-572.
Riley, M. (1993). Functions of the gene products of Escherichia coli. Microbiol Rev 57, 862-952.
Ryoji, M., Hsia, K., and Kaji, A. (1983). Read-through Translation. Trends Biochem Sci 8, 88-90.
Schluenzen, F., Takemoto, C., Wilson, D.N., Kaminishi, T., Harms, J.M., Hanawa-Suetsugu, K., Szaflarski, W., Kawazoe, M., Shirouzu, M., Nierhaus, K.H., et al. (2006). The antibiotic kasugamycin mimics mRNA nucleotides to destabilize tRNA binding and inhibit canonical translation initiation. Nat Struct Mol Biol 13, 871-878.
Sharma, D., Cukras, A.R., Rogers, E.J., Southworth, D.R., and Green, R. (2007). Mutational analysis of S12 protein and implications for the accuracy of decoding by the ribosome. J Mol Biol 374, 1065-1076.
Singleton, C.K., Roeder, W.D., Bogosian, G., Somerville, R.L., and Weith, H.L. (1980). DNA sequence of the E. coli trpR gene and prediction of the amino acid sequence of Trp repressor. Nucleic Acids Res 8, 1551-1560.
Slayter, H.S., Warner, J.R., Rich, A., and Hall, C.E. (1963). The Visualization of Polyribosomal Structure. J Mol Biol 7, 652-657.
Studwell-Vaughan, P.S., and O'Donnell, M. (1991). Constitution of the twin polymerase of DNA polymerase III holoenzyme. J Biol Chem 266, 19833-19841.
Stukenberg, P.T., Studwell-Vaughan, P.S., and O'Donnell, M. (1991). Mechanism of the sliding beta-clamp of DNA polymerase III holoenzyme. J Biol Chem 266, 11328-11334.
Tai, P.C., Wallace, B.J., and Davis, B.D. (1973). Actions of aurintricarboxylate, kasugamycin, and pactamycin on Escherichia coli polysomes. Biochemistry 12, 616-620.
Tsuchihashi, Z. (1991). Translational frameshifting in the Escherichia coli dnaX gene in vitro. Nucleic Acids Res 19, 2457-2462.
Tsuchihashi, Z., and Brown, P.O. (1992). Sequence requirements for efficient translational frameshifting in the Escherichia coli dnaX gene and the role of an unstable interaction between tRNA(Lys) and an AAG lysine codon. Genes Dev 6, 511-519.
Tsuchihashi, Z., and Kornberg, A. (1990). Translational frameshifting generates the gamma subunit of DNA polymerase III holoenzyme. Proc Natl Acad Sci U S A 87, 2516-2520.
Vicens, Q., and Westhof, E. (2001). Crystal structure of paromomycin docked into the eubacterial ribosomal decoding A site. Structure 9, 647-658.
Warner, J.R., Knopf, P.M., and Rich, A. (1963). A multiple ribosomal structure in protein synthesis. Proc Natl Acad Sci U S A 49, 122-129.
Weiner, A.M., and Weber, K. (1973). A single UGA codon functions as a natural termination signal in the coliphage q beta coat protein cistron. J Mol Biol 80, 837-855.
Young, R., and Bremer, H. (1976). Polypeptide-chain-elongation rate in Escherichia coli B/r as a function of growth rate. Biochem J 160, 185-194.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30729-
dc.description.abstract大腸桿菌dnaX基因藉由高效率-1核醣體框架位移(-1 ribosomal frameshifting)表現兩種去氧核醣核酸聚合酶III (DNA polymerase III holoenzyme)所需之次單元:gamma與tau,其框架位移點之效率會受到mRNA上的滑動序列(slippery sequence)、下游的二級結構,以及其相對距離的影響。當帶有框架位移訊號的基因在轉譯時,若提高核醣體的起始頻率,便有可能會縮短mRNA上核醣體彼此之間的距離,聚核醣體(polysome)發生的機會上升,使得核醣體解開二級結構後間隔不夠二級結構回復,而維持解開的狀態,降低上游核醣體位移的效率。
本實驗著重在大腸桿菌細胞內(in vivo),利用dnaX序列加以修改,研究聚核醣體、造成框架位移的二級結構與終止密碼子位置之間的關係,以及如何對框架位移效率造成影響。我們發現終止密碼子若位於二級結構下游,核醣體在終止的同時,其體積佔據部分二級結構回復的空間,使核醣體等待釋放因子時,上游核醣體已經在框架位移點做選擇,失去二級結構將影響上游核醣體框架位移效率。若降低聚核醣體的形成機會,則框架位移效率就比較不受到終止密碼子位置的影響,而呈現個別核醣體在框架位移點獨立選擇的結果。本實驗的結果支持文獻的推論,同時也發現在特定環境下,不只是造成框架位移的序列本身,核醣體之間的交互作用也可能會影響框架位移效率。
zh_TW
dc.description.abstractTwo subunits (tau and gamma) of the DNA polymerase III holoenzyme in Escherichia coli are produced through efficient -1 programmed ribosomal frameshifting. The efficiency of frameshifting is determined by the elements around the shift site on mRNA, including the slippery sequence, secondary structure and the distance between them. In general, increasing the translation initiation frequency will shorten the space between neighboring ribosomes on the mRNA and then increase the possibility of polysome formation. As a result, once the secondary structure is unfolded by a preceding ribosome, it may remain open until the next ribosome reaches. Thus, the frameshifting efficiency may be decreased.
In this study, we use the dnaX frameshifting motif as a model system to explore the relationship between polysome and frameshifting efficiency. Our results suggest that a downstream ribosome unfolds the secondary structure of the mRNA and blocks refolding when it is terminated on the stop codon just after the secondary structure. In the meantime, an upstream ribosome coming to the frameshifting site encounters no secondary structures. Thus, fewer ribosomes are induced to undergo -1 frameshifting. The frameshifting efficiency will be restored while the formation frequency of polysome decreases. Our results support that frameshifting efficiency may be affected not only by the sequence itself, but also by the interaction between ribosomes on the mRNA.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T02:13:43Z (GMT). No. of bitstreams: 1
ntu-100-R98b43027-1.pdf: 3395544 bytes, checksum: c6749f8471ea1de1df6085ed7f1332fc (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents口試審定書 i
致謝 ii
摘要 iii
ABSTRACT iv
目錄 v
圖目錄 vii
表目錄 viii
前言 1
核醣體的構造 1
原核生物轉譯 1
轉譯之框架位移 3
DNA聚合酶III 4
dnaX藉由-1框架位移產生兩種不同產物 5
聚核醣體 6
聚核醣體影響框架位移效率 6
材料與方法 8
材料 8
載體構築 8
蛋白質表現 9
西方墨點法及定量 9
結果 11
triFS之FS1框架位移效率受到影響而下降 11
無聚核醣體影響下更改框架位移規則不影響框架位移效率 12
框架位移點的數目不影響框架位移效率 13
以修改序列的方式減少聚核醣體的影響 13
FS1框架位移效率與序列組成有關 13
利用抗生素抑制轉譯起始以減少聚核醣體發生 15
減少聚核醣體產生可回復FS1框架位移效率 15
討論 16
參考文獻 24
dc.language.isozh-TW
dc.subjectribosomeen
dc.subjectdnaXen
dc.subjecttranslationen
dc.subjectframeshiftingen
dc.subjectpolysomeen
dc.title細胞內-1核醣體框架位移效率之研究zh_TW
dc.titleThe Study of in vivo -1 Ribosomal Frameshifting Efficiencyen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee朱家瑩,張功耀
dc.subject.keyworddnaX,轉譯,框架位移,聚核醣體,核醣體,zh_TW
dc.subject.keyworddnaX,translation,frameshifting,polysome,ribosome,en
dc.relation.page51
dc.rights.note有償授權
dc.date.accepted2011-08-02
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept分子與細胞生物學研究所zh_TW
顯示於系所單位:分子與細胞生物學研究所

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
3.32 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved