請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30707完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉雅瑄(Ya-Hsuan Liou) | |
| dc.contributor.author | Te-Shun Lin | en |
| dc.contributor.author | 林德軒 | zh_TW |
| dc.date.accessioned | 2021-06-13T02:13:01Z | - |
| dc.date.available | 2016-08-22 | |
| dc.date.copyright | 2011-08-22 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-08-01 | |
| dc.identifier.citation | Andreozzi, R., Caprio, V., Marotta, R. and Vogna, D., “Paracetamol oxidation from aqueous solutions by means of ozonation and H2O2/UV system,” Water Research, 2003, 37, 993-1004.
Arabatzis, I. M., Stergiopoulos, T., Andreeva, D., Kitova, S., Neophytides, S. G. and Falaras, P., “Characterization and photocatalytic activity of Au/TiO2 thin films for azo-dye degradation,” Journal of catalysis, 2003, 220, 127-135. Balcioglu, I. A. and Otker, M., “Treatment of pharmaceutical wastewater containing antibiotics by O3 and O3/H2O2 processes,” Chemosphere, 2003, 50, 85-95. Bamwenda, G. R., Tsubota, S., Nakamura, T. and Haruta, M., “Photoassisted hydrogen production from a water-ethanol solution : a comparison of activities of Au-TiO2 and Pt-TiO2,” Journal of Photochemistry and photobiology, 1995, 89, 177-189. Chambers, S. A., Thevuthasan, S., Farrow, R. F. C., Marks, R. F., Thiele, J. U., Folks, L., Samant, M. G., Kellock, A. J., Ruzycki, N., Ederer, D. L.and Diebold, U., “Epitaxial growth and properties of ferromagnetic co-doped TiO2 anatase,” Applied Physics Letters, 2001, 79, 3467-3469. Chan, S. C., and Barteau, M. A., “Preparation of highly uniform Ag/TiO2 and Au/TiO2 supported nanoparticle catalysts by photodeposition,” Langmuir, 2005, 21, 5588-5595. Daughton, C. G. and Ternes, T. A., “Pharmaceuticals and personal care products in the environment : agents of subtle change?,” Environmental Health Perspectives, 1999, 107, 907-938. Duran, A., Monteagudo, J. M., Carnicer, A. and Murillo, M. R., “Photo-Fenton mineralization of synthetic municipal wastewater effluent containing acetaminophen in a pilot plant,” Desalination, 2010. Fujishima, A. and Nonda, “Electrochemical photolysis of water at a semiconductor electrode,” Nature, 1972, 238, 37-38. Gong, D., Grimes, C. A., Varghese, O. K., Hu, W. C., Singh, R. S. and Dickey, E. C., “Titanium oxide nanotube arrays prepared byanodic oxidation,” Journal of Materials Research, 2001, 16, 3331-3334. Haruta, M., Yamada, N., Kobayashi, T. and Iijima, S., “Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide,” Journal of Catalysis, 1989, 115, 301-309. Herrmann, J. M., “Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants,” Catalysis Today, 1999, 53, 115-129. Hoyer, P., “Formation of a Titanium Dioxide Nanotube Array,” Langmuir, 1996, 12, 1411-1413. Hou, Y. Q., Zhuang, D. M., Zhang, G., Zhao, M. and Wu, M. S., “Influence of annealing temperature on the propertiesof titanium oxide thin film,” Applied Surface Science, 2003, 218, 97-105. Isariebel, Q. P., Carine, J. L., Ulises-Javier, J. H. and Henri, D., “Sonolysis of levodopa and paracetamol in aqueous solutions,” Ultrasonics Sonochemistry, 2009, 16, 610-616. Kasuga, T., Hiramatsu, M., Hoson, A., Sekino, T. and Niihara, K., “Formation of titanium oxide nanotube,” Langmuir, 1998, 14, 3160–3163. Kolpin, D. W., Furlong, E. T., Meyer, M. T., Thurman, E. M., Zaugg, S. D., Barber, L. B. and Buxton, H. T., “. Pharmaceuticals, hormones, and other organic wastewater contaminants in US,” Environment Science & Technology, 1999, 36, 1202-1211. Klamerth, N., Miranda, N., Malato, S., Aguera, A., Fernandez, A. R., Maldonado, M. I. and Coronado, J. M., “Degradation of emerging contaminants ay low concentrations in MWTPs effluents with mild solar photo-Fenton and TiO2,” Catalysis Today, 2009, 144, 124-130. Levin, E. M. and Mcmurdie, H. F., “Phase Diadrams for Ceramists.,” The American Ceramic Society, Inc., 1975, 76, Figure 4150~4999. Li, W. C., Comotti, M. and Schuth, F., “Highly reproducible syntheses of Au/TiO2 catalysts for CO oxidation by deposition–precipitation or impregnation,” Journal of Catalysis, 2006, 237, 190-196. Linsebigler, A. L., Lu, G. and Yates, T., “Photocatalysis on TiO2 surface : principles, mechanisms and selected results,” Chemical Reviews, 1995, 95, 735-758. Liou, Y. H., Ou, H. H., Liao, C. H., Hong, J. H. and Lo, S. L., “Photocatalytic Oxidation of Aqueous Ammonia over Microwave-Induced Titanate Nanotubes,” Environmental Science and Technology, 2008, 42, 4507-4512. Liou, Y. H., Lin, C. J. and Yu, Y. H., “Anodic growth of highly ordered titanium oxide nanotube arrays : Effects of critical anodization factors on their photocatalytic activity,” World Academy of Science Engineering and Technology, 2010, 65. Lu, J., Huang, Q. and Mao, L., “Removal of acetaminophen using Enzyme-Mediated oxidative coupling processes ,” Environ Sci. Technol, 2009, 43, 7062-7067. Macak, J. M., Tsuchiya, H., Taveira, L., Ghicov, A., Balaur, L., Ghicov, A., Sirotna, L. and Schumuki, P., “Self-organized TiO2 nanotubes prepared in ammonium floride containing acetic acid electrolytes,” Electrochenistry Communications, 2005, 7, 576-580. Masatake Haruta, “Size- and support- dependency in the catalysis of gold” Catalysis Today, 1997, 36, 153-166. Mor, G. K., Varghese, O. K., Paulose, M., Shankar, K. and Grimes, C. A., “A review on highly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy applications,” Solar Energy Materials and Solar Cells, 2006, 90, 2011-2075. Moreau, F., Bond, G. C. and Taylor, A. O., “Gold on titania catalysts for the oxidation of carbon monoxide : control of pH during preparation with various gold contents,” Journal of catalysis, 2005, 231, 105-114. Neyens, E. and Baeyens, J., “A review of classic Fenton’s peroxidation as an advanced oxidation technique,” Journal of Hazardous Materials, 2003, B98, 33-50. Okumura, M., Nakamura, S., Tsubota, S., Nakamura, T., Azuma, M. and Haruta, M., “Chemicalvapor depositionof goldonAl2O3, SiO2, and TiO2 for the oxidation of CO and of H2,” Catalysis Letters, 1998, 51, 53-58. Oregan, B. and Gratzel, M., “A low-cost, high-efficiency solar-cell based on bte-sensitized colloidal TiO2 films,” Nature, 1991, 353, 737-740. Panizza, M. and Cerisola, G., “Removal of organic pollutants from industrial wastewater by electrogenerated Fenton’s reagent,” Water Research, 2001, 35, 3987-3992. Panizza, M. and Cerisola, G., “Electrochemical generation of H2O2 in low ionic strength media on gas diffusion cathode fed with air,” Electrochimica Acta, 2008, 54, 876-878. Peralta-Hernandez, J. M., Yunny, M. V., Rodriguez, F. J., Chapman, T. W., Maldonado, M. I. and Godinez, L. A., “In situ electrochemical and photo-electrochemical generation of the fenton reagent : A potentially important new water treatment technology,” Water Research, 2006, 40, 1754-1762. Philip, L., Collier, P. J., Papworth, A. J., Kiely, C. J. and Hutchings, G. J., “Direct formation of hydrogen peroxide from H2/O2 using a gold catalyst,” Chemical Communications, 2002, 14th, August. Poudel, B., Wang, W. Z., Dames, C., Huang, J. Y., Kunwar, S., Wang, D. Z., Banerjee, D., Chen, G. and Ren, Z. F., “Formaiton of crystallized titania nanotubes and their transformation into nanowires,” Nanotechnology, 2005, 16, 1935–1940. Ravina, M.,Campanella, L. and Kiwi, J., “Accelerated mineralization of the drug Diclofenac via Fenton reactions in a concentric photo-reactor,” Water Research, 2002, 36, 3553-3560. Robert, P. H. and Thomas, K. V., “The occurrence of selectedpharmaceuticals in wastewater effluent and surface waters ofthe lower Tyne catchment,” Science of the Total Environment, 2006, 40, 5282-5288. Rossignol, C., Arrii, S., Morfin, F., Piccolo, L., Caps, V. and Rousset, J. L., “Selective oxidation of CO over model gold-based catalysts in the presence of H2,” Journal of Catalysis, 2005, 230, 476-483. Sano, T., Negishi, N., Uchino, K., Tanaka, J., Matsuzawa, S. and Takeuchi, K., “Photocatalytic degradation of gaseous acetaldehyde on TiO2 with photodeposited metals and metal oxides,” Journal of Photochemistry and Photobiology A : Chemistry, 2003, 160, 93-98. Sirés, I., Garrido, J. A., Rodríguez, R. M., Cabot, P I., Centellas, F., Arias, C. and Brillasz, E., “Electrochemical Degradation of Paracetamol from Water by Catalytic Action of Fe2+, Cu2+, and UVA Light on Electrogenerated Hydrogen Peroxide,” Journal of The Electrochemical Society, 2006, 153. Skoumal, M., Caboy, P. L., Centellas, F., Arias, C., Rodriguez, R. M., Garrido, J. A. and Brillas, E., “Mineralization of paracetamol by ozonation catalyzed with Fe2+, Cu2+ and UVA light,” Applied Catalysis B : Environmental, 2006, 66, 228-240. Ternes, T. A., “Occurrence of drugs in German sewage treatment plants and rivers,” Water Research, 1998, 32, 3245-3260. Vogna, D., Marotta, R., Napolitano, A., Andreozzi, R. and Ischia, M., “Advanced oxidation of the pharmaceutical drug diclofenac with UV/H2O2 and ozone,” Water Research, 2004, 38, 414-422. Wang, C. Y., Liu, C. Y., Zheng, X., Chen, J. and Shen, T., “The surface chemistry of hybrid nanometer-sized particles – Photochemical deposition of gold on ultrafine TiO2 particles,” Colloids and Surfaces A : Physicochemical and Engineering Aspects, 1998, 131, 271-280. Wang, D., Hu, T., Hu, L., Yu, B., Xia, Y., Zhou, F. and Liu, W., “Microstructured arrays of TiO2 nanotubes for improved photo-electrocatalysis and mechanical stability,” Advanced Functional Materials, 2009, 19, 12. Wang, D., Li, Y., Yu, B., Zhou, F. and Liu, W., “TiO2 Nanotubes with Tunable Morphology, Diameter, and Length: Synthesis and Photo-Electrical/Catalytic Performance,” Chemistry of Materials, 2009, 21, 1198-1206. Yang, L., Yu, L. E. and Ray, M. B., “Degradation of paracetamol in aqueous solutions by TiO2 photocatalysis, ” Water Research, 2008, 42, 3480-3488. Yang, Y. F., Sangeetha, P. and Chen, Y. W., “Au/TiO2 catalysts prepared by deposition method for selective CO oxidation in H2 stream,” International Journal of Hydrogen Energy, 2009, 34, 8912-8920. Yogi, C., Kojima, K. and Takai, T., “Photocatalytic degradation of methylene blue by Au-deposited TiO2 film under UV irradiation,” Journal of Materials Science, 2009, 44, 821-827. Yu, J. C., Ho, W., Yu, J., Yip, H., Wong, P. K. and Zhao, J., “Efficient Visible-Light-Induced Photocatalytic Disinfection on Sulfur-Doped Nanocrystalline Titania,” Environmental Science & Technology , 2005, 39, 1175-1179. Zhang, X., Wu, F., Wu, X. W., Chen, P. and Deng, N., “Photodegradation of acetaminophen in TiO2 suspended solution,” Journal of Hazardous Materials, 2008, 157, 300-307. 呂冠霖、司洪濤,「高濃度COD廢水氧化處理技術評析」,財團法人台灣產業服務基金會。 李宗霖,「海洋環境電子報」,國立中山大學海洋環境及工程學系,2009。 李志昇,「含金奈米粒子之一維二氧化鈦材料的製備及催化探討」,碩士論文,國立成功大學化學所,1996。 周開平、陳郁文,「二氧化鈦光觸媒的應用」,科學發展,2005,11月,395期。 林志平,「以電芬頓技術處理無電電鍍鎳廢液之研究」,碩士論文,國立成功大學化學工程研究所,2007。 郭至剛,「板鈦礦經向二氧化鈦之製備、鑑定與光化學應用」,碩士論文,國立台灣大學理學院化學所,2009。 翁瑞宏,「二氧化鈦奈米管陣列的合成及其和聚噻吩復合材料性質的研究」,碩士論文,國立中央大學化學工程與材料研究所,2008。 高鐵、錢朝勇,「TiO2光催化氧化水中有機汙染物進展」,工業水處理,2000。 張博銘,「以光電氧化法處理水中高濃度醋酸之研究」,碩士論文,國立台灣大學環境工程學研究所,2002。 董慕愷、陳郁文,「奈米金觸媒」,科學發展月刊,2005。 鄭信民、林麗娟,「場發射掃描式電子顯微鏡分析技術應用簡介」,工業材料雜誌,1993,9月,201期。 劉育伶,「金/二氧化鈰奈米粒子之製備及其催化特性之研究」,碩士論文,國立成功大學化學工程研究所,2009。 劉振倫,「探討對乙醯氨基酚經研磨後其晶型改變之機制」,碩士論文,國立東華大學生物技術研究所,2010。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30707 | - |
| dc.description.abstract | 本實驗利用價格便宜、製程方便、化學穩定、無毒、且具有良好的光催化效果的二氧化鈦半導體進行電極的製備,首先製備高表面積二氧化鈦電極,並以二氧化鈦本身良好的光催化能力進行光沉積,使金顆粒附著於二氧化鈦電極表面,希望能取代原本昂貴的金電極,也希望藉由二氧化鈦高表面積的特性使反應效率提高。製備電極方面,將鈦板置入含水率3%且含氟離子的電解液中,以電化學的方法電壓60 V、時間0.5 h製備;通入電流的同時,氟離子便會於鈦表面鑽洞形成奈米鈦管,製備完成後去除上部奈米鈦管,則可得到底部直徑約100 nm規則排列之鈦奈米孔洞 (Titanium Nano Hole),大幅提高鈦板表面積;再以500 oC高溫鍛燒2 h,使鈦奈米洞轉變為二氧化鈦奈米洞(Titanium Dioxide Nano Hole, nh-TiO2),製備成的二氧化鈦奈米洞不僅擁有較高表面積,且為具備光催化能力的半導體;將二氧化鈦電極浸泡於含金離子濃度10-3 M之溶液中,照射300 nm紫外光180 s,以光沉積法製備成金/二氧化鈦奈米洞電極(Au/nh-TiO2)。
以此電極作為Electro-Fenton法的反應陰極,陽極放置白金板,反應面積陰極比陽極為4:1,並於酸性溶液中通入400 ml/min的氧氣及適當電流,來降解水中汙染物乙醯氨酚(Acetaminophen, APAP),50 ppm乙醯氨酚可在3 h內被降解完全,反應常數kobs為0.028 min-1,反應較金及石墨電極反應來的佳;可知在Electro-Fenton法反應中Au/nh-TiO2電極產生過氧化氫的效率高於其餘電極,在與亞鐵離子反應後,才可分解出較多的氫氧自由基(OH•)來降解汙染物;而當Electro-Fenton法的降解條件,在反應電流45 mA、亞鐵離子10 ppm、反應溫度20 oC時,反應可縮短至2 h便降解完乙醯氨酚,其反應常數kobs為0.058 min-1。 本實驗製備高表面積Au/nh-TiO2電極,並以Electro-Fenton降解水中汙染物乙醯氨酚,不僅節省實驗成本,還能提高反應效率,更能達到淨化水質目的。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2021-06-13T02:13:01Z (GMT). No. of bitstreams: 1 ntu-100-R98224112-1.pdf: 2041470 bytes, checksum: ec2e39ff6f11b9fca8a4bb3938a95639 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 摘要 I
Abstract II 圖目錄 VI 表目錄 VIII 第一章 緒論 1 1-1 研究緣起 1 1-2 研究目的與內容 3 第二章 文獻回顧 5 2-1 二氧化鈦 5 2-1-1 二氧化鈦簡介 5 2-1-2 定向二氧化鈦奈米管陣列之製備 7 2-1-3 二氧化鈦奈米洞表面修飾 8 2-1-4 二氧化鈦之應用 11 2-2 Fenton法 12 2-2-1 Fenton法之沿革 12 2-2-2 Fenton法之應用 14 2-3 乙醯氨酚 15 2-3-1 乙醯氨酚簡介 15 2-3-2 高級氧化處理技術降解乙醯氨酚之可能反應途徑 16 第三章 實驗方法及設備 21 3-1 實驗設計 21 3-2 電極的製備及表面修飾 23 3-2-1 電極的製備與前處理 23 3-2-2 電極的表面修飾 25 3-3 電極表面物化特性分析 26 3-3-1 場發射掃描式電子顯微鏡 26 3-3-2 X光繞射分析 27 3-4 批次實驗 28 3-4-1 Electro-Fenton反應系統 28 3-4-2 改變電極材質 29 3-4-3 改變電極之製備條件 30 3-4-4 改變電極表面修飾條件 30 3-4-5 改變反應系統之條件 31 3-5 污染物定量分析 32 3-5-1 紫外光分光光度計分析法測定過氧化氫 32 3-5-2 乙醯氨酚之偵測方法 33 第四章 結果與討論 35 4-1 過氧化氫生成實驗 35 4-2 反應機制探討 37 4-2-1 空白實驗 37 4-2-2 改變電極材質 38 4-3 電極之製備 41 4-3-1 電極之製備條件及其表面形貌 41 4-3-2 電極之表面修飾與分析 47 4-4 Electro-Fenton法 54 4-4-1 亞鐵離子濃度 54 4-4-2 反應溫度 57 4-4-3 反應電流 59 4-5 電極之可重複使用性 61 4-6 中間產物之探討 62 第五章 結論與建議 64 5-1 結論 64 5-2 建議 66 第六章 參考文獻 67 附錄 實驗數據 76 圖目錄 圖2-1 (a)金紅石, (b)銳鈦礦結晶構造 5 圖2-2 二氧化鈦相圖 6 圖2-3 二氧化鈦經光激發產生電子、電洞分離圖 6 圖2-4 四氯金酸離子團與pH關係圖 10 圖2-5 乙醯氨酚結構圖 15 圖2-6 乙醯氨酚降解機制簡圖 18 圖3-1 實驗流程圖 22 圖3-2 製備奈米鈦管儀器圖 24 圖3-3 氟離子刻蝕鈦板示意圖 25 圖3-4 降解反應儀器圖 29 圖4-1 電流大小對生成過氧化氫反應圖 35 圖4-2 過氧化氫與亞鐵離子反應圖 36 圖4-3 過氧化氫空白實驗降解乙醯氨酚反應圖 37 圖4-4 亞鐵離子空白實驗降解乙醯氨酚圖 38 圖4-5 不同電極降解乙醯氨酚反應圖 39 圖4-6 不同電極降解乙醯氨酚殘餘量及反應常數圖 39 圖4-7 (a)鈦板與鈦管 (b)鈦管頂部孔道 (c)鈦管底部 (d)鈦板底部孔洞 42 圖4-8 nh-Ti製備時間對乙醯氨酚降解反應圖 43 圖4-9 nh-Ti製備電壓對乙醯氨酚降解反應圖 44 圖4-10 nh-Ti製備溫度對乙醯氨酚降解反應圖 45 圖4-11 nh-Ti電解液含水率對乙醯氨酚降解反應圖 46 圖4-12 鈦板鍛燒溫度由左到右分別為400、450、500 oC 48 圖4-13 鈦板鍛燒溫度高低對二氧化鈦晶型改變之XRD圖 48 圖4-14 nh-Ti鍛燒溫度對乙醯氨酚降解反應圖 49 圖4-15 (a)規則排列nh-TiO2 (b)光沉積後Au/nh-TiO2 50 圖4-16 nh-Ti、nh-TiO2及Au/nh-TiO2之XRD比較圖 50 圖4-17 EDS掃描範圍及測定點位 51 圖4-18 EDS測定點位元素成份分佈圖 52 圖4-19 Au/nh-TiO2光沉積金離子溶液濃度對乙醯氨酚降解反應圖 53 圖4-20 Au/nh-TiO2光沉積時間對乙醯氨酚降解反應圖 53 圖4-21 亞鐵離子濃度對乙醯氨酚降解反應圖 55 圖4-22 亞鐵離子濃度對乙醯氨酚降解反應常數圖 56 圖4-23 反應溫度對乙醯氨酚降解反應圖 58 圖4-24 反應溫度對乙醯氨酚降解反應常數圖 58 圖4-25 反應電流對乙醯氨酚降解反應圖 59 圖4-26 反應電流對乙醯氨酚降解反應常數圖 60 圖4-27 Au/nh-TiO2重複降解乙醯氨酚反應圖 61 圖4-28 Au/nh-TiO2重複實驗之反應常數圖 62 圖4-29 乙醯氨酚降解副產物圖 63 表目錄 表4- 1 nh-Ti不同製備條件反應kobs 47 表4- 2 EDX各點位元素所占百分比 52 | |
| dc.language.iso | zh-TW | |
| dc.subject | 光催化 | zh_TW |
| dc.subject | 二氧化鈦 | zh_TW |
| dc.subject | 電-芬頓法 | zh_TW |
| dc.subject | 乙醯氨酚 | zh_TW |
| dc.subject | 奈米金顆粒 | zh_TW |
| dc.subject | Au nano-particle | en |
| dc.subject | TiO2 | en |
| dc.subject | photocatalysis | en |
| dc.subject | acetaminophen | en |
| dc.subject | Electro-Fenton | en |
| dc.title | 製備Electro-Fenton法之Au/TiO2奈米洞電極降解水中乙醯氨酚 | zh_TW |
| dc.title | Electro-Fenton prcoess using Au/nano-hole-TiO2 electrode for acetaminophen degradation in aqueous solution | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 賈儀平(Yee-Ping Chia),鄧茂華(Mao-Hua Teng),侯嘉洪(Chia-Hung Hou) | |
| dc.subject.keyword | 二氧化鈦,電-芬頓法,乙醯氨酚,奈米金顆粒,光催化, | zh_TW |
| dc.subject.keyword | TiO2,Electro-Fenton,acetaminophen,Au nano-particle,photocatalysis, | en |
| dc.relation.page | 83 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-08-02 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 地質科學研究所 | zh_TW |
| 顯示於系所單位: | 地質科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 1.99 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
