Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 高分子科學與工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30691
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor謝國煌(Kuo-Huang Hsieh)
dc.contributor.authorChih-Yu Chenen
dc.contributor.author陳致豫zh_TW
dc.date.accessioned2021-06-13T02:12:30Z-
dc.date.available2010-08-01
dc.date.copyright2007-07-03
dc.date.issued2007
dc.date.submitted2007-06-14
dc.identifier.citation1. Bernanose, A.; Comte, M.; Vouaux P. J. Chem. Phys. 1953, 50, 64-68.
2. Pope, M.; Kallmann, H. P.; Magnante, P. J. Chem. Phys. 1963, 38, 2042-2049.
3. Tang, C. W.; VanSlyke, S. A. Appl. Phys. Lett. 1987, 51, 913-915.
4. Burroughs, J. H.; Bradley, D. D. C.; Brown, A. R.; Marks, R. N.; Mackay, K.; Friend, R. H.; Burn, P. L.; Holmes, A. B. Nature 1990, 347, 539-541.
5. Shinar, J.; Savateev “Introduction to Organic Light-emitting Devices”, Springer; New York, 2004.
6. 有機電激發光材料與元件,陳金鑫,黃孝文。五南出版社,2005.09初版一刷。
7. Shi, Y.; Liu, J.; Yang, Y. “Polymer Morphology and Device Performance in Polymer Electronics”, Springer: New York, 2004, Chapter 6.
8. Son, J. M.; Mori, T.; Ogino, K.; Sato, H. Macromolecules 1999, 32, 4849-4854.
9. Plummer, E. A.; Dijken, A.; Hofstraat, H. W.; Cola, L. D.; Brunner, K. Adv. Funct. Mater. 2005, 15, 281-289.
10. Chen, F. C.; Chang, S. C.; He, G.; Pyo, S.; Yang, Y.; Kurotaki, M.; Kido, J. J. of Polymer Science: Part B, 2003, 41, 2681-2690.
11. Pai, D. M.; Yanus, J. F.; Stolka, M. J. Phys. Chem. 1984, 88, 4714-4717.
12. Gong, X.; Robinson, M. R.; Ostrowski, J. C.; Moses, D.; Bazan, G.C.; Heeger, A. J. Adv. Mater. 2001, 14, 581-585.
13. Liou, G. Y.; Hsiao, S. H.; Chen, W. C.; Yen,, H. J. Macromolecules 2006, 39, 6036-6045.
14. Sung, H. H.; Lin, H. C. Macromolecules 2004, 37, 7945-7954.
15. Mochizuki, H.; Hasui, T.; Kawamoto, M.; Ikeda, T.; Adachi, C.; Taniguchi, Y.; Shirota, Y. Macromolecules 2003, 36, 3457-3464.
16. Chen, B.; Lee, C. S.; Lee, S. T. Jpn. J. Appl. Phys. 2000, 39, 1190-1192.
17. Kimoto, A.; Cho, J. S.; Higuchi, M.; Yamamoto, K. Macromolecules 2004, 37, 5531-5537.
18. Bach, U.; Cloedt, K.; Spreitzer, H.; Gr
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30691-
dc.description.abstract本實驗目的在於合成良好的電洞注入及傳輸材料以取代目前使用最為廣泛的PEDOT:PSS,並將此系列的高分子材料運用在有機電激發光元件中,試驗其作為電洞注入層及電洞傳輸層的性質並加以探討。合成出的高分子材料是分為兩大系統,第一系統是將具有電洞傳輸性質的具羥基之卡唑衍生物和三苯基胺衍生物依不同比例以異佛爾酮二異氰酸酯連接成聚氨酯型態的五種共聚合物。另一系統則是以具羥基之卡唑衍生物以及具有電洞阻擋性質和電子傳輸性質的噁唑衍生物依不同比例以異佛爾酮二異氰酸酯連接成聚氨酯型態的五種共聚合物。聚氨酯本身結構即具有良好的電洞傳輸效果,本實驗目的在這兩種系統中找出最佳比例條件的聚合物能運用在電激發光元件中讓元件發光效率及亮度有效提升。元件製備的部份分為兩個系列:
一、ITO/PU/Ir(ppy)3+t-PBD+PVK/Mg/Ag
單獨使用合成之聚氨酯為電洞注入及傳輸層並測量其發光性質,和標準元件1S1:ITO/Ir(ppy)3+t-PBD+PVK/Mg/Ag之發光性質比較,相較於S1,亮度可從296 cd/m2有效提升至14000 cd/m2。效率也由1.02 cd/A提升至13.4 cd/A,顯示本實驗合成之聚氨酯材料用於電洞注入及傳輸層對元件發光亮度及效率有顯著提升。
二、ITO/PEDOT:PSS/PU/Ir(ppy)3+t-PBD+PVK/Mg/Ag
此系列元件引入作PEDOT為電洞注入層,以合成之聚氨酯作為電洞傳輸層。
將這一系列元件和標準元件S2:ITO/PEDOT:PSS/Ir(ppy)3+t-PBD+PVK/Mg/Ag
發光性質比較。在此系列中,相較於標準元件S2,亮度可由6250 cd/m2有效
提升至12500 cd/m2。效率也由21.8 cd/A大幅提升至34.7cd/A,顯示本實驗合
成的電洞傳輸材料對於提升元件效能有極大助益。
zh_TW
dc.description.abstractIn this thesis, two series of hole-injecting and hole-transporting materials are synthesized and characterized. These two series are (1) TRI-IPDI-Cz series, triarylamine derivatives (denoted as TRI) and Carbazole derivatives (denoted as Cz) linked by isophorone diisocyanate with different ratios to form a series of polyurehtanes (PU) and (2) Cz-IPDI-OXD series, were synthesized in a similar fashion as (1) only with different monomers, oxadiazole derivatives, denoted as OXD. These materials are applied in electroluminescent device as hole-injecting and hole-transporting layer to improve the performance. The devices are separated into two systems:
a. ITO/PU/Ir(ppy)3+t-PBD+PVK/Mg/Ag : PUs were applied in the devices and the devices were compared with the standard device S1:ITO/Ir(ppy)3+t-PBD+PVK/Mg/Ag.
The brightness was increased to 14000 cd/m2, the current efficiency rose to 13.4 cd/A and turn-on voltage was reduced to 21V (at 100 cd/m2), compared to 296 cd/m2, 1.02 cd/A and 37 V in S1; and b. ITO/PEDOT:PSS/PU /Ir(ppy)3+t-PBD+PVK/Mg/Ag, compared to standard device S2: ITO/PEDOT:PSS/ Ir(ppy)3+t-PBD+PVK/Mg/Ag. The brightness was increased to 12500 cd/m2, the current efficiency was up to 34.7cd/A, compared to 6250 cd/m2 and 21.8 cd/A in S2.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T02:12:30Z (GMT). No. of bitstreams: 1
ntu-96-R94549014-1.pdf: 44433614 bytes, checksum: d713cf06aac45830b1da6f87b640c226 (MD5)
Previous issue date: 2007
en
dc.description.tableofcontentsTable of contents
Table of Contents…………………………………………………………………….I
List of Figures…..……………………………………………………………..……III
List of Tables………………………………………………………..………………..V
List of Schemes………………………………………………………………..……VI
Abstract (Chinese Version)………………………………………………......…VII
Abstract…………………………………………………………………………….VIII Chapter 1 Introduction………………………………………………...…………..1
1-1Brief History of PLED 1
1-2 Principles of Organic electroluminescence and OLED device structure 2
1-3 Organic Electroluminescent Materials 8
1-3.1 Polymeric Host Materials 9
1-3.2 Electron-Transporting Materials 10
1-3.3 Hole-Transporting Materials 12
1-3.4 Hole-Injecting Materials 15
1-4 Polyurethane Synthesis and Uses 16
1-5 Motivation and Organization of the thesis 18
Chapter 2 Results and Discussion 20
2-1 Design of the Polymer 20
2-2 Monomer Synthesis 21
2-3 Polymer Synthesis 23
2-4 Optical Properties 25
2-5 Thermal Properties 31
2-6 Electrochemical Properties 32
2-7 Effects of the PU Layer on the EL performance 36
2-8 Luminance and Spectral Properties of the PLED Device 44
Chapter3 Conclusion 47
Chapter 4 Experimental 48
4-1 Instrumentations 48
4-3 Monomer and Polymer Synthesis 51
4-3-1 Monomer Synthesis 51
4-3-2 Polymer Synthesis 58
References 61
Appendix………………………………………………………………….66
NMR Spectra..…………………………………………………………..…………...67
IR Spectra……..…………………………………………………………………..…78
CV Diagrams…..………………………………………………………………..…...83
UV-vis Solution Spectra.……………………….………………………………..…..88
UV-vis Solution Spectra…………………………………………………….…….....92
TGA Diagrams………………………………………………………………..…..…97
B-V Curve……………………………………………………………………....….101
I-V Curve……………………………………………………………………….…..111

Figure Legend
Fig. 1-2.1 The Process of Organic Electroluminescence 4
Fig. 1-2.2 Typical DC-biased OLED Device 5
Fig. 1-2.3 Common Device Structures 7
Fig. 1-3.1 Common Host Materials 10
Fig. 1-3.2 Common Electron-transporting Materials 12
Fig. 1-3.3a Common Hole-transporting Materials 14
Fig. 1-3.3b Common Hole-transporting Materials 15
Fig. 1-3.4 Common Hole-injecting Materials 16
Fig. 1-5.1 Chemical Structures of The Studied Polymers 20
Fig. 2-4.1 UV-vis Solution Spectra of P1-P5 28
Fig. 2-4.2 UV-vis Film Spectra of P1-P5 28
Fig. 2-4.3 UV-vis Solution Spectra of P5-P9 29
Fig. 2-4.4 UV-vis Film Spectra of P5-P9 29
Fig. 2-4.5 PL Solution Spectra of P1-P5 30
Fig. 2-4.5 PL Film Spectra of P1-P5 30
Fig. 2-4.7 PL Solution Spectra of P5-P9 31
Fig. 2-4.7 PL Film Spectra of P5-P9 31
Fig. 2-6.1 Energy Diagram of the Materials 35
Fig. 2-7.1 Device Structures of System (1) and System (2) 38
Fig. 2-7.2 Brightness vs. Voltage of System(1) DP1-DP5, By Inserting P1-P5 as Hole-injecting Layer 39
Fig. 2-7.3 Brightness vs. Voltage of System(1) DP5-DP8, By Inserting P5-P8 as Hole-injecting Layer 40
Fig. 2-7.4 Current Efficiency vs. Voltage of System(1) DP1-DP5, By Inserting P1-P5 as Hole-injecting Layer 40
Fig. 2-7.5 Current Efficiency vs. Voltage of System(1) DP5-DP8, By Inserting P5-P8 as Hole-injecting Layer 41
Fig. 2-7.6 Brightness vs. Voltage of System (2) DDP1-DDP5, By Inserting P1-P5 as Hole-transporting Layer 43
Fig. 2-7.7 Brightness vs. Voltage of System(2) DDP5-DDP9, By Inserting P5-P9 as Hole-transporting Layer 43
Fig. 2-7.8 Current Efficiency vs. Voltage of System (1) DP1-DP5, By Inserting P1-P5 as Hole-transporting Layer 44
Fig. 2-7.9 Current Efficiency vs. Voltage of System (1) DP5-DP9, By Inserting P5-P9 as Hole-transporting Layer 44
Fig. 2-8.1 EL Spectra of Devices DP1-DP5 45
Fig. 2-8.2 EL Spectra of Devices DP5-DP9 46
Fig. 2-8.3 EL Spectra of Devices DDP1-DDP5 46
Fig. 2-8.4 EL Spectra of Devices DDP5-DDP9 47
Fig. 4-2-1 Evaporator structure 50

Table Legend
Table 2-3.1 Molecular Weights and Thermal Properties of P1-P9 23
Table 2-4.1 Optical Properties of P1-P9 26
Table 2-6.1 The Electrical Properties of Materials 33
Table 2-7.1 EL Performance of P1-P9 in Devices of System (1) ITO/PU/Ir(ppy)3 +PVK+t-PBD/Mg/Ag and Standard Device, ITO/Ir(ppy)3 +PVK+t-PBD/Mg/Ag, denoted as S1 device 38
Table 2-7.2 EL Performance of DDP1-DDP9 in Devices of System (2) ITO/PEDOT:PSS/ PU/Ir(ppy)3 +PVK+t-PBD/Mg/Ag and Standard Device, ITO/PEDOT:PSS/ Ir(ppy)3 +PVK+t-PBD/Mg/Ag, denoted as S2 device 41

Scheme Legend
Scheme 1 21
Scheme 2 22
Scheme 3 23
Scheme 4 24
Scheme 5 25
dc.language.isoen
dc.subject卡唑zh_TW
dc.subject噁唑zh_TW
dc.subject三苯基胺zh_TW
dc.subject電激發光元zh_TW
dc.subject電洞傳輸層zh_TW
dc.subjectPLEDen
dc.subjectHole-Transportingen
dc.subjectCarbazoleen
dc.subjectOxadiazoleen
dc.subjectTriarylamineen
dc.title卡唑、噁唑、三苯基胺衍生共聚高分子於電激發光元件之電洞傳輸層應用zh_TW
dc.titleApplication of Copolymers Containing Carbazole, Oxadiazole, Triarylamine Derivatives in PLED devicces as Hole-Transporting Layeren
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.oralexamcommittee邱文英(Wen-Yen Chiu),戴子安(Chi-An Dai)
dc.subject.keyword卡唑,噁唑,三苯基胺,電激發光元,電洞傳輸層,zh_TW
dc.subject.keywordCarbazole,Oxadiazole,Triarylamine,PLED,Hole-Transporting,en
dc.relation.page120
dc.rights.note有償授權
dc.date.accepted2007-06-20
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept高分子科學與工程學研究所zh_TW
顯示於系所單位:高分子科學與工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  未授權公開取用
43.39 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved