請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30608完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳宜良 | |
| dc.contributor.author | Yi-Cheng Hsu | en |
| dc.contributor.author | 徐義程 | zh_TW |
| dc.date.accessioned | 2021-06-13T02:10:04Z | - |
| dc.date.available | 2010-07-16 | |
| dc.date.copyright | 2007-07-16 | |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2007-06-27 | |
| dc.identifier.citation | ibitem{1} J. Bergh and J.Lofstrom, Interpolation Spaces: An Introduction, Springer-verlag, New York, 1976.
ibitem{2} T. Cazenave and F. B. Weissler, The Cauchy problem for the nonlinear Schrodinger Equation in $H^1$ Manuscripta Math. 61(1988), 477-494. ibitem{3} T. Cazenave, An Introduction to nonlinear Schrodinger Equations, 3rd edition, Inst. de Matematica, UFRJ, 1996. ibitem{4} I-Liang Cheng and Qianshun Chang, Stability and Convergence for Finite Difference Methods for Nonlinear Schrodinger Equation, 2004. ibitem{5} J. Ginibre and G. Velo, Smoothing Properties and Retarded estimates for Some Dispersive Evolution Equations, Comm. Math. Phys. 123(1989), 535-573. ibitem{6} M. Keel and T. Tao, Endpoint Strichartz estimates, Amer. J. Math. 120(1998), 955-980. ibitem{7} E. M. Stein, Harmonic analysis: Real variable methods, orthogonality, and oscillatory integrals, Princeton University Press, 1993. ibitem{8} E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, 1970. ibitem{9} A. Stefanov and P. G. Kevrekidis, Asymptotic behavior of small solutions for the discrete nonlinear Schrodinger and Klein-Gordon Equation, Nonlinearity 18(2005), 1841-1857. ibitem{10} R. S. Strichartz , Restriction of Fourier transform to quadratic surfaces and decay of solutions of wave equations, Duke Math. J. 44(1977), 705-774. ibitem{11} K. Yajima, Existence of solutions for Schrodinger evolution equations, Comm. Math. Phys. 110(1987), 415-426. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30608 | - |
| dc.description.abstract | In this paper we show the Strichartz estimate to the discrete Schr'{o}dinger equation. The continuous Strichartz is essential for the proof of the existence of solution of nonlinear Schr'{o}dinger equation in some function space[3]. It is believed that this is also a key step to the proof of the convergence for finite difference method for nonlinear Schrodinger equation. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T02:10:04Z (GMT). No. of bitstreams: 1 ntu-96-R93221008-1.pdf: 147738 bytes, checksum: 5ead489f951cc908805e719db931d7da (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | 1 Introduction 4
2 Notation and Preliminaries 4 2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2 Strichartz estimate for continuous Schr¨odinger equation . . . . 5 2.3 Strichartz estimate for semi-discrete Schr¨odinger equation . . . 8 3 Strichartz estimates for Discrete Schr¨odinger Equation 12 References 18 | |
| dc.language.iso | en | |
| dc.subject | 史特萊卡斯估計 | zh_TW |
| dc.subject | 離散薛丁格方程 | zh_TW |
| dc.subject | discrete schrodinger equation | en |
| dc.subject | strichartz estimate | en |
| dc.title | 離散薛丁格方程的史特萊卡斯估計 | zh_TW |
| dc.title | Strichartz Estimate for Discrete Schrodinger Equation | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林琦焜,陳俊全 | |
| dc.subject.keyword | 離散薛丁格方程,史特萊卡斯估計, | zh_TW |
| dc.subject.keyword | discrete schrodinger equation,strichartz estimate, | en |
| dc.relation.page | 19 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2007-06-27 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 數學研究所 | zh_TW |
| 顯示於系所單位: | 數學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-96-1.pdf 未授權公開取用 | 144.28 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
