請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30587完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林敏聰(Minn-Tsong Lin) | |
| dc.contributor.author | Cheng-Tien Chiang | en |
| dc.contributor.author | 江正天 | zh_TW |
| dc.date.accessioned | 2021-06-13T02:09:32Z | - |
| dc.date.available | 2007-07-03 | |
| dc.date.copyright | 2007-07-03 | |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2007-06-27 | |
| dc.identifier.citation | [1] S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M.
Daughton, S. von Moln´ar, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, Science 294, 1488 (2001) [2] J. Nogu´es, and I. K. Schuller, J. Magn. Magn. Mater. 192, 203 (1999) [3] M. Kiwi, J. Magn. Magn. Mater. 234, 584 (2001) [4] A. Scholl, J. St¨or, J. L¨uning, J. W. Seo, J. Fompeyrine, H. Siegwart, J.-P. Locquet, F. Nolting, S. Anders, E. E. Fullerton, M. R. Scheinfein, and H. A. Padmore, Science 287, 1014 (2000) [5] H. Matsuyama, C. Haginoya, and Koike, Phys. Rev. Lett. 85, 646 (2000) [6] N. B. Weber, H. Ohldag, H. Gomonaj, and F. U. Hillebrecht, Phys. Rev. Lett. 91, 237205 (2003) [7] M. Bode, E. Y. Vedmedenko, K. von Bergmann, A. Kubetzka, P. Ferriani, S. Heinze, and R. Wiesendanger, Nature Mater. 5, 477 (2006) [8] S. Heinze, M. Bode, A. Kubetzka, O. Pietzsch, X. Nie, S. Bl¨ugel, and R. Wiesendanger, Science 288, 1805 (2000) [9] C. L. Gao, U. Schlickum, W. Wulfhekel, and J. Kirschner, Phys. Rev. Lett. 98, 107203 (2007) [10] U. Schlickum, N. Janke-Gilman, W. Wulfhekel, and J. Kirschner, Phys. Rev. Lett 92, 107203 (2004) [11] C. Demangeat and J. C. Parlebas, Rep. Prog. Phys. 65, 1679 (2002) [12] J. Hafner and D. Spiˇs´ak, Phys. Rev. B 72, 144420 (2005); D. Hobbs, J. Hafner, and D. Spiˇs´ak, ibid. 68, 014407 (2003); J. Hafner and D. Hobbs, ibid. 68, 014408 (2003); S. Dennler and J. Hafner, ibid. 72, 214413 (2005) [13] Y. Endoh and Y. Ishikawa, J. Phys. Soc. Jpn. 30, 1614 (1971) [14] X. Jin, Y. Chwn, G. S. Dong, M. Zhang, M. Xu, X. G. Zhu, X. Wang, E. D. Lu, H. B. Pan, P. S. Xu, , X. Y. Zhang, and C. Y. Fan, Phys. Rev. B 51, 9702 (1995) [15] J. T. Kohlhepp and W. J. M. de Jonge, Phys. Rev. Lett. 96, 237201 (2006); J. T. Kohlhepp, H. Wieldraaijer, and W. J. M. de Jonge, Appl. Phys. Lett. 89, 032507 (2006) [16] B. Schirmer, B. Feldmann, A. Sokoll, Y. Gauthier, and M. Wuttig, Phys. Rev. B 60, 5895 (1999) [17] W. C. Lin, T. Y. Chen, L. C. Lin, B. Y. Wang, Y. W. Liao, K.-J. Song, and M.-T. Lin, Phys. Rev. B 75, 054419 (2007) [18] D. Tian, H. Li, S. C. Wu, F. Jona, and P. M. Marcus, Solid State Commun. 70, 199 (1989) [19] Y. Tian, F. Jona, and P. M. Marcus, Phys. Rev. B 59, 12647 (1999) [20] M. Bode, S. Heinze, A. Kubetzka, O. Pietzsch, M. Getzlaff, and R. Wiesendanger, X. Nie, G. Bihlmayer, and S. Bl¨ugel, Phys. Rev. B 66, 014425 (2005) [21] M. M. J. Bischoff, T. K. Yamada, A. J. Quinn, and H. van Kempen, Surf. Sci. 501, 155 (2002); T. K. Yamada, M. M. J. Bischoff, G.M. M. Heijnen, T.Mizoguchi, and H. van Kempen, Phys. Rev. Lett. 90, 056803 (2003) [22] P. Schieffer, C. Krembel, M. C. Hanf, D. Bolmont, and G. Gewinner, J. Magn. Magn. Mater. 165, 180 (1997) [23] B. T. Jonker, J. J. Krebs, and G. A. Prinz, Phys. Rev. B 39, 1399 (1989)(Rapid Communications) [24] I. L. Grigorov, M. R. Fitzsimmons, I.-L. Siu, and K. C.Walker, Phys. Rev. Lett. 82, 5309 (1999) [25] T. Flores, M. Hansen, and M. Wuttig, Surf. Sci. 279, 251 (1992) [26] Y. Huttel, C. M. Tweodorescu, F. Bertran, and G. Krill, Phys. Rev. B 64, 094405 (2001) [27] H. Okamoto, D. J. Chakrabarti, D. E. Laughlin, and T. B. Massalski, in Binary Alloy Phase Diagrams, 2nd ed., p.358 (American Society for Metals, Ohio, 1990) [28] J. D. H. Donnaym, G. Donnay, E. C. Cox, O. Kennard, and M. V. King, in Crystal Data, Determinative Tables, 2nd ed. (American Crystallographic Association, 1963) [29] The evaporator is commercially available. The present evaporator in used (UHV evaporator EFM 3) is manufactured by Omicron. Similar evaporator and the operation can be found in: J. Kirschner, H. Engelhard, and D. Hartung, Rev. Sci. Intrum. 73, 3853 (2002) [30] L. D¨aweritz and K. Ploog, Semicond. Sci. Technol. 9, 129 (1994) [31] See, for example: B.-Y. Wang, W.-C. Lin, Y.-W. Liao, K.-J. Song, and M.-T. Lin, Surf. Sci. 600, 4517 (2006) [32] J. J. Brehm and W. J. Mullin, in Introduction to the Structure of Matter, p. 164 (John Wiley and Sons, Inc., U.S.A., 1989) [33] C. Kittel, in Introduction to Solid State Physics, 7th ed. (John Wiley and Sons, Inc., New York, 1996) [34] Several free programs are availabe online, for example: http://w3.rz-berlin.mpg.de/ hermann/LEEDpat/ [35] J. Bardeen, Phys. Rev. Lett. 6, 57 (1961) [36] J. G. Simmons, J. Appl. Phys. 34, (1963), and reference therein. [37] G. Binnig, H. Rohrer, Ch. Gerber, and E. Weibel, Appl. Phys. Lett. 40, 178 (1982) [38] G. Binnig, H. Rohrer, Ch. Gerber, and E. Weibel, Phys. Rev. Lett. 49, 57 (1982) [39] J. A. Kubby, and J. J. Boland, Surf. Sci. Rep. 26, 61(1996) [40] R.-P. Blum, D. Ahlbehrendt, and H. Niehus, Surf. Sci. 396, 176 (1998) [41] J. Tersoff and D. R. Hamann, Phys. Rev. B 31, 805 (1985) [42] N. D. Lang, Phys. Rev. Lett. 56, 1164 (1986) [43] D. Wortmann, S. Heinze, G. Bihlmayer, and S. Bl¨ugel, Phys. Rev. B 62 2862 (2000) [44] W. A. Hofer, Prog. Surf. Sci. 71, 147 (2003) [45] A. D. Gottlieb and L. Wesoloski, Nanotechnology 17, R57 (2006) [46] B. Koslowski, C. Dietrich, A. Tschetschetikin, and P. Ziemann, Phys. Rev. B 75, 035421 (2007) [47] Modified Omicron μ-STM with CoFeSiB tip for spin-polarized measurements located at Max-Planck Institute of Microstructure Physics, Germany. [48] Low temperature scanning tunneling microscopy manufactured by Omicron, which operated at 4.7 K by liquid Helium cooling. [49] G. Binning, K. H. Frank, H. Fuchs, N. Garcia, B. Reihl, H. Rohrer, F. Salvan, and A. R. Williams, Phys. Rev. Lett. 55, 991 (1985) [50] R. M. Feenstra, W. A. Thompson, and A. P. Fein, Phys. Rev. Lett. 56, 608 (1986) [51] R. J. Hamers, R. M. Tromp, and J. E. Demuth, Phys. Rev. Lett. 56, 1972 (1986) [52] Y. Hasegawa and Ph. Avouris, Phys. Rev. Lett. 71, 1071 (1993) [53] W. Kuch, L. I. Chelaru, and J. Kirschner, Surf. Sci. 566-568, 221 (2004) [54] M. M. J. Bischoff, T. K. Yamada, C. M. Fang, R. A. de Groot, and H. van Kempen, Phys. Rev. B 68, 045422 (2003) [55] T. K. Yamada, M. M. J. Bischoff, A. L. V´azquez de Parga, T. Mizoguchi, and H. van Kempen, Surf. Sci. 558, 201 (2004) [56] M. Julliere, Phys. Lett. 54A, 225 (1975), which follows the analysis of P. M. Tedrow and R. Meservey, Phys. Rev. Lett. 26, 192 (1971) [57] C. Slonczewski, Phys. Rev. B 39, 6995 (1989) [58] J. S. Moodera, and G. Mathon, J. Magn. Magn. Mater. 200, 248 (1999) [59] M. Johnson and J. Clarke, J. Appl. Phys. 67, 6141, (1990) [60] W. Wulfhekel and J. Kirschner, Appl. Phys. Lett. 75, 1944, (1999) [61] W.Wulfhekel, H. F. Ding, and J. Kirschner, J. Appl. Phys. 87, 6475 (2000) [62] U. Shilickum, W. Wulfhekel, and J. Kirschner, Appl. Phys. Lett. 83, 2016, (2003) [63] D. Wortmann, S. Heinze, Ph. Kurz, G. Bihlmayer, and S. Bl¨ugel, Phys. Rev. Lett. 86, 4132 (2001) [64] A. Kubetzka, M. Bode, O. Pietzsch, and R. Wiesendanger, Phys. Rev. Lett. 88, 057201 (2002) [65] W. Wulfhekel, R. Hertel, H. F. Ding, G. Steierl, and J. Kirschner, J. Magn. Magn. Mater. 249, 368 (2002) [66] R. Wiesendanger, H. J. Gu¨untherodt, G. G¨uentherodt, R. J. Gambino, and R. Ruf, Phys. Rev. Lett. 65, 247 (1990) [67] M. Bode, Rep. Prog. Phys. 66, 523 (2003) [68] M. Bode, S. Heinze, A. Kubetzka, O. Pietzsch, X. Nie, G. Bihlmayer, S. Bl¨ugel, and R. Wiesendanger, Phys. Rev. Lett. 89, 237205 (2002) [69] V. S. Sundaram, Brian Farrell, R. S. Alben, and W. D. Robertson, Phys. Rev. Lett. 31, 1136 (1973) [70] V. S. Sundaram, R. S. Alben, and W. D. Robertson, Surf. Sci. 46, 653 (1974) [71] H. Niehus and C. Achete, Surf. Sci. 289, 19 (1993) [72] D. E. Starr, F. M. T. Mendes, J. Middeke, R.-P. Blum, H. Niehus, D. Lahav, S. Guimond, A. Uhl, T. Kluener, M. Schmal, H. Kuhlenbeck, S. Shaikhutdinov and H. J. Freund, Surf. Sci. 599, 14 (2005) [73] F. Silly, A. O. Gusev, E. Le Goff, L. Barbier, and F. Charra, Europhys. Lett. 289, 19 (1993) [74] R. Paniago, R. Matzdorf, A. Goldmann, and R. Courths, J. Phys.: Condens. Matter, 7, 2095 (1995) [75] G. W. Graham, Surf. Sci. 137, L79 (1984) [76] K. Morgenstern, M. Voetz, and H. Niehus, Phys. Rev. B 54, 17 870 (1996) [77] K. D. Jamison, D. M. Lind, F. B. Dunning, and G. K. Walters, Surf. Sci. 159, L451 (1985) [78] C. M. Schneider, G. S. Sohal, P. Schuster, and J. Kirschner, Vacuum 41, 511 (1990) [79] S. B. DiCenzo, P. H. Citrin, E. H. Hartford, Jr., and G. W. Wertheim, Phys. Rev. 34, 1343 (1986) (Rapid Communications) [80] H. Niehus, phys. stat. sol. (b) 192, 357 (1995) [81] E. Le Goff, D. Le Floc’h, L. Barbier, B. Salanon, and A. Loiseau, Phys. Rev. B 63, 125418 (2001) [82] Z. Q. Wang, S. C. Wu, J. Quinn, C. K. C. Lok, Y. S. Li, F. Jona, and J. W. Davenport, Phys. Rev. B 38, 7442 (1988) [83] M. Kuhn and T. K. Sham, Phys. Rev. B 49, 1647 (1994) [84] D. H. Oh, H. J. Kang, K. H. Chae, C. N. Whang, B. V. King, D. J. O’Connor, and D. W. Moon, Surf. Sci. Lett. 477, L289 (2001) [85] R. G. Jordan, and G. S. Sohal, J. Phys. C: Solid State Phys., 15, L663 (1982) [86] G. K. Wertheim, L. F. Mattheiss, and D. N. E. Buchanan, Phys. Rev. B, 38, 5988 (1988) [87] H. Niehus, T. Baumann, M. Voetz, and K. Morgenstern, Surf. Rev. Lett. 3, 1899 (1996) [88] G. S. Sohal, C. Carbone, E. Kisker, S. Krummacher, A. Fattah, W. Uelhoff, R. C. Albers, and P. Weinberger, Z. Phys. - Condensed Matter 78, 295 (1990) [89] M. Kimura, J. B. Cohen, S. Chandavarkar, and K. S. Liang, Physica B 221, 101 (1996) [90] L. Houssiau and P. Bertrand, Surf. Sci. 352-354, 978 (1996) [91] W. Fei, A. Kara, and T. S. Rahman, Phys. Rev. B 61, 16 105 (2000), and references 18 to 21 therein. [92] S. Krummacher, N. Sen, W. Gudat, R. Johnson, F. Grey, and J. Ghijsen, Z. Phys. - Condensed Matter 75, 235 (1989) [93] F. Baudelet, M.-T. Lin, W. Kuch, K. Meinel, B. Choi, C. M. Schneider, and J. Kirschner, Phys. Rev. B 51, 12563 (1995) [94] M.-T. Lin, J. Shen, W. Kuch, H. Jenniches, M. Klaua, C. M. Schneider, and J. Kirschner, Phys. Rev. B 55, 5886 (1997) [95] M.-T Lin, J. Shen, W. Kuch, H. Jenniches, M. Klaua, C. M. Schneider, and J. Kirschner, Surf. Sci. 410, 290 (1998) [96] M. Onellion, Y. J. Kime, P. A. Dowben and N. Tache, J. Phys. C.: Solid State Phys. 20, L633, (1987) [97] J. Middeke, R.-P. Blum, M. Hafemeister, and H. Niehus, Surf. Sci. 587, 219 (2005) [98] W. C. Lin, B. Y. Wang, Y. W. Liao, K. J. Song, and M.-T. Lin, Phys. Rev. B 71, 184413 (2005) [99] W.-C. Lin, B.-Y. Y. Wang, T.-Y. Chen, L.-C. Lin, Y.-W. Liao, W. Pan, N.-Y. Jih, K.-J. Song, and M.-T. Lin, Appl. Phys. Lett. 90, 052502 (2007) [100] A. Braun, B. Feldmann, and M. Wuttig, J. Magn. Magn. Mater. 171, 16 (1997) [101] F. J. Himpsel and J. T. Ortega, Phys. Rev. B 46, 9719 (1992) [102] R. Courths, S. L¨obus, S. Halilov, T. Scheunemann, H. Gollisch, and R. Feder, Phys. Rev. B 60, 8055 (1999) [103] D. Straub and F. J. Himpsel, Phys. Rev. Lett. 52, 1922 1984 [104] D. P.Woodruff, S. L. Hulbert, P. D. Johnson, and N. V. Smith, Phys. Rev. B 31, 4046 1985 [105] S. L. Hulbert, P. D. Johnson, N. G. Stoffel, W. A. Royer, and N. V. Smith, Phys. Rev. B 31, 6815 (1985) [106] D. Straub and F. J. Himpsel, Phys. Rev. B 33, 2256 (1986) [107] T. Wegehaupt, D. Rieger, and W. Steinmann, Phys. Rev. B 37, 10 086 (1988) [108] N. V. Smith, C. T. Chen, and M. Weinert, Phys. Rev. B 40 7565, (1989) [109] S. Biermann, A. Dallmeyer, C. Carbone, W. Eberhardt, C. Pampuch, O. Rader, M. I. Katsnelson and A. I. Lichtenstein, Pis’ma Zh. ´Eksp. Teor. Fiz. 80, 714 (2004) [JETP Lett. 80, 612 (2004)] [110] D. R. Lide, in CRC Handbook of Chemistry and Physics, 83rd ed., p.4-132 (Chemical Rubber Company Press, Ohio, 2002) [111] L. Vitos, A. V. Ruban, H. L. Skriver, and J. Koll´ar, Surf. Sci. 411, 186 (1998), in which calculations of surface free energy of almost all kind of metals are shown, and the experimental values are compared. [112] T. M. Buck, G. H. Wheatley, and L. Marchut, Phys. Rev. Lett. 51, 43 (1983) [113] H. Reichert, P. J. Eng, H. Dosch, and I. K. Robinson, Phys. Rev. Lett. 74, 2006 (1995) [114] H. Dosch, L. Mail¨ander, A. Lied, J. Peisl, F. Grey, and R. L. Johnson, Phys. Rev. Lett. 60, 2382 (1988) [115] H. Reichert, O. Klein, V. Bugaev, O. Shchyglo, A. Udyanskyy, H. Dosch, and K. F. Peters, Phys. Rev. Lett. 90, 185504 (2003) [116] C. Frontera, E. Vives, T. Cast´an, and A. Planes, Phys. Rev. B 55, 212 (1997) [117] C. Frontera, E. Vives, and A. Planes, Phys. Rev. B 43, 9321 (1993) [118] M. Porta, E. Vives, and T. Cast´an, Phys. Rev. B 60, 3920 (1999) [119] S. Yamaguchi, D. Watanabe, and S. Ogawa, J. Phys. Soc. Jpn. 17, 1030 (1961) [120] S. Hashimoto and S. Ogawa, J. Phys. Soc. Jpn. 29, 710 (1970) [121] A. Loiseau, C. Ricolleau, L. Potez, and F. Ducastelle, in Solid- State Phase Transformations, p.385 (TMS, Warrendale, 1994) [122] V. G. Vaks, Pis’ma Zh. ´Eksp. Teor. Fiz. 78, 201 (2003) [JETP Lett. 78, 168 (2003)] [123] E. G. McRae and T. M. Buck, Surf. Sci. 227, 67 (1990) [124] F. C. Nix and W. Shockley, Rev. Mod. Phys. 10, 1 (1938) [125] R. F. Shannon, Jr., S. E. Nagler, C. R. Harkless, and R. M. Nicklow, Phys. Rev. B 46, 40 (1992) [126] A. Fluerasu, M. Sutton, and E. M. Dufresne, Phys. Rev. Lett. 94, 055501 (2005) [127] F. Ciccacci, S. D. Rossi, A. Taglia, and S. Crampin, J. Phys.: Condens. Matter, 6, 7227 (1994) [128] C. M. Schneider, P. Bressler, P. Schuster, J. Kirschner, J. J. de Miguel, and R. Miranda, Phys. Rev. Lett. 64, 1059 (1990) [129] T. Ambrose and C. L. Chien, Phys. Rev. Lett. 76, 1743 (1996) [130] R. H. Kodama, S. A. Maklouf, and A. E. Berkowitz, Phys. Rev. Lett. 79, 1393 (1997) [131] T. K. Yamada, A. K. V´azquez de Parga, M. M. Bischoff, T. M. Mizoguchi, and H. van Kempen, Microsc. Res. Tech. 66, 93 (2005) [132] S. Bl¨ugel, D. Pescia, and P. H. Dederichs, Phys. Rev. B 39, 1392 (1989)(Rapid Communications) [133] R. Ravli´c, M. Bode, A. Kubetzka, and R. Wiesendanger, Phys. Rev. B 67, 174411 (2003) [134] T. Kawagoe, Y. Iguchi, A. Yamasaki, Y. Suzuki, K. Koike, and S. Suga, Phys. Rev. B 71, 014427 (2005) [135] T. Kawagoe, Y. Iguchi, T. Miyamachi, A. Yamasaki, and S. Suga, Phys. Rev. Lett. 95, 207205 (2005) [136] K. von Bergmann, M. Bode, A. Kubetzka, O. Pietzsch, and R. Wiesendanger, Microsc. Res. Tech. 66, 61 (2005) [137] K. Hirai and T. Jo, J. Phys. Soc. Jpn. 54, 3567 (1985) [138] T. Jo and K. Hirai, J. Phys. Soc. Jpn. 55, 2017 (1986) [139] R. S. Fishman and S. H. Liu, Phys. Rev. B 58, R5912 (1998)(Rapid Communications) [140] W. Kuch, L. I. Chelaru, F. Offi, J. Wang, M. Kotsugi, and J. Kirschner, Phys, Rev. Lett. 92, 017201 (2004) [141] T. Uchida and Y. Kakehashi, J. Phys. Soc. Jpn. 75, 094703 (2006) [142] D. J. Crockford, D. M. Bird, and M. W. Long, J. Phys.: Condens. Matter, 4, 2079 (1992) [143] T. Oguchi and A. J. Freeman, J. Magn. Magn. Mater. 46, L1 (1984) [144] S. L. Qiu, P. M. Marcus, and H. Ma, Phys. Rev. B 62 3292 (2000) [145] H. Duschanek, P. Mohn, and K. Schwarz, Physica B 161, 139 (1989) [146] P. Kr¨uger, O. Elmouhssine, C. Demangeat, and J. C. Parlebas, Phys. Rev. B 54, 6393 (1996) [147] M. Bode, O. Pietzsch, A. Kubetzka, S. Heinze, and R. Wiesendanger, Phys. Rev. Lett. 86, 2142 (2001) [148] H. F. Ding, J. E. Pearson, D. Li, R. Cheng, F. Y. Fradin, and S. D. Bader, Rev. Sci. Instrum. 76, 123703 (2005) [149] U. Schlickum, C. L. Gao, W. Wulfhekel, J. Henk, P. Bruno, and J. Kirschner, Phys. Rev. B 74, 054409 (2006) [150] Z. Q. Qiu and S. D. Bader, Rev. Sci. Instrum. 71, 1243 (2000); L. D. Landau and E. M. Lifshitz, in Electrodynamics of Continuous Media (Pregamon, London, 1960) [151] VACUUMSCHMELZE GMBH and CO. KG, Hanau, Germany | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30587 | - |
| dc.description.abstract | 根據之前在鐵/錳/銅三金(100)上的實驗結果,該系統表現出交換偏耦合的行為。 為了更加深入了解這個系統,我們利用掃描穿隧電子顯微鏡解析錳在銅三金(100)上的表面結構、電子結構以及磁性結構。在銅三金(100)的表面上,我們量測穿隧電流對偏壓的微分曲線(dI/dU)以了解其不同能量下的態密度。在特定偏壓下(1.27 V)我們發現該曲線有特徵的尖峰,從該尖峰的大小在空間中的分佈情形,我們可以觀察到拼圖狀的圖形,並且發現在拼圖形狀的邊界上其態密度較其他區域為低。利用原子解析的影像,我們發現這些拼圖狀的邊界直接對應到表面不同結構之間的邊界。
關於錳在銅三金(100)上,我們觀察了二十一層原子層厚的錳薄膜以及較薄的薄膜。在二十一層的錳薄膜上我們利用自旋解析掃描穿隧電子顯微鏡觀察到錳薄膜有反鐵磁的對比訊號,更進一步的分析推測錳表面的磁結構應該是具有未抵消的磁性。我們也量測錳薄膜上穿隧電流對偏壓的微分曲線,在七層半及二十一層的錳薄膜上我們發現了相似的特徵。 | zh_TW |
| dc.description.abstract | In previous experiments, Fe/Mn/Cu3Au(100) was fabricated and characterized as an exchange bias system. In order to understand this system further, the electronic and magnetic structure of Mn/Cu3Au(100) are of crucial
importance. Therefore, in this thesis, the studies of Cu3Au(100) and Mn/Cu3Au(100) by scanning tunneling microscopy (STM) and spectroscopy (STS) are presented. On the surface of Cu3Au(100), tunneling spectra were measured and a characteristic peak around 1.27 V was observed. Conductance mapping (dI/dU) at this voltage shows puzzle-like patterns, and the density of states is observed to be lower on their boundaries. Topography with atomic resolution directly points out those as structural antipahse domain boundaries (APB) for the c(2x2) ordering. The results on Mn/Cu3Au(100) films are categorized into two parts. The first part is concerning the electronic and magnetic structure of thick Mn film (21 ML) deposited at room temperature, which is observed to have inplane spin contrast at room temperature by ring-type spin-polarized STM. Analyses dealing with the correlation between relative height and relative spin signal suggest uncompensated antiferromagnetism. We also investigated its electronic structure by STS at 4.7 K, which reveals feature near Fermi level. In the second part, the thinner Mn films, ranged from submonolayer to 7.5 ML, were deposited on Cu3Au(100) and experiments on STS were performed, which reveals feature on the 7.5 ML Mn. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T02:09:32Z (GMT). No. of bitstreams: 1 ntu-96-R94222058-1.pdf: 11986509 bytes, checksum: 78a5439c76314696dbde4e93d63565a4 (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | 1 Introduction 11
2 Experimental apparatus 14 2.1 Ultrahigh vacuum environment . . . . . . . . . . . . . . . . . 14 2.2 Characterization of deposited thin film . . . . . . . . . . . . . 14 2.2.1 Medium energy electron diffraction . . . . . . . . . . . 14 2.2.2 Auger electron spectroscopy . . . . . . . . . . . . . . . 15 2.2.3 Low energy electron diffraction . . . . . . . . . . . . . 15 2.3 Scanning tunneling microscopy and spectroscopy . . . . . . . . 16 2.4 Ring-type spin-polarized scanning tunneling microscopy and spin-polarized scanning tunneling spectroscopy . . . . . . . . . 19 2.5 Systems for experiments . . . . . . . . . . . . . . . . . . . . . 20 3 Morphology and electronic structure of Cu3Au(100) 22 3.1 Sample preparation . . . . . . . . . . . . . . . . . . . . . . . . 22 3.1.1 Annealing procedure . . . . . . . . . . . . . . . . . . . 23 3.2 Surface ordering . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.2.1 Surface atomic structure . . . . . . . . . . . . . . . . . 28 3.2.2 Atomic steps and surface ordering . . . . . . . . . . . . 29 3.3 Measured dI/dU spectra . . . . . . . . . . . . . . . . . . . . . 31 3.3.1 Characteristics in unoccupied density of states . . . . . 31 3.3.2 dI/dU mapping . . . . . . . . . . . . . . . . . . . . . . 32 3.3.3 Spatial correlation between atomic configuration and local density of states . . . . . . . . . . . . . . . . 33 4 Electronic and magnetic structure of Mn/Cu3Au(100) 39 4.1 Deposition of Mn films on Cu3Au(100) . . . . . . . . . . . . . 39 4.1.1 Preparation of Mn crucible for evaporator . . . . . . . 40 4.1.2 MEED . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.1.3 AES . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.2 Relaxed Mn/Cu3Au(100) . . . . . . . . . . . . . . . . . . . . . 41 2 4.2.1 Plaided pattern caused by tetragonal distortion . . . . 44 4.2.2 Uncompensated antiferromagnetism . . . . . . . . . . . 44 4.2.3 p(2x2) superstructure . . . . . . . . . . . . . . . . . . . 45 4.2.4 Measured dI/dU spectra . . . . . . . . . . . . . . . . . 46 4.3 Thin Mn/Cu3Au(100) . . . . . . . . . . . . . . . . . . . . . . 46 4.3.1 Morphology . . . . . . . . . . . . . . . . . . . . . . . . 46 4.3.2 Measured dI/dU spectra . . . . . . . . . . . . . . . . . 50 5 Discussion 53 5.1 Surface structure and annealing process of Cu3Au(100) . . . . 53 5.1.1 Au deficient surface . . . . . . . . . . . . . . . . . . . . 53 5.1.2 Domains and antiphase domain boundaries . . . . . . . 54 5.2 Correlation between local density of states and atomic configuration on Cu3Au(100) surface . . . . . . . . . . . . . . . . . . 59 5.3 Uncompensated antiferromagnetic surface of Mn/Cu3Au(100) 59 5.4 p(2x2) superstructure . . . . . . . . . . . . . . . . . . . . . . . 62 5.5 Comparison of STS and ring-type spin-polarized STM . . . . . 64 5.6 Artificial tip effect in STS and STM . . . . . . . . . . . . . . . 66 6 Conclusion 69 Appendices 70 A Setup of Kerr microscope in ambient condition 70 B Design of electromagnet 72 | |
| dc.language.iso | en | |
| dc.subject | 表面形貌 | zh_TW |
| dc.subject | 掃描穿隧電子顯微鏡 | zh_TW |
| dc.subject | 電子結構 | zh_TW |
| dc.subject | 磁性 | zh_TW |
| dc.subject | 銅三金 | zh_TW |
| dc.subject | 錳 | zh_TW |
| dc.subject | Electronic Structure | en |
| dc.subject | Mn | en |
| dc.subject | Scanning Tunneling Microscopy | en |
| dc.subject | Magnetic Structure | en |
| dc.subject | Morphology | en |
| dc.subject | Manganese | en |
| dc.subject | Cu3Au | en |
| dc.subject | Magnetism | en |
| dc.title | 利用掃描穿隧電子顯微鏡觀察錳薄膜在銅三金上的表面形貌、磁性及電子結構 | zh_TW |
| dc.title | Morphology, Electronic and Magnetic Structure of Mn/Cu3Au(100) Studied by Scanning Tunneling Microscopy and Spectroscopy | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 宋克嘉(Ker-Jar Song),魏金明(Ching-Ming Wei) | |
| dc.subject.keyword | 錳,銅三金,磁性,表面形貌,電子結構,掃描穿隧電子顯微鏡, | zh_TW |
| dc.subject.keyword | Mn,Manganese,Cu3Au,Magnetism,Magnetic Structure,Morphology,Electronic Structure,Scanning Tunneling Microscopy, | en |
| dc.relation.page | 84 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2007-06-27 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 物理研究所 | zh_TW |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-96-1.pdf 未授權公開取用 | 11.71 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
