請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30552完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 廖文正(Wen-Cheng Liao) | |
| dc.contributor.author | Quang-Tan Duong | en |
| dc.contributor.author | 陽光迅 | zh_TW |
| dc.date.accessioned | 2021-06-13T02:07:56Z | - |
| dc.date.available | 2011-08-09 | |
| dc.date.copyright | 2011-08-09 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-08-01 | |
| dc.identifier.citation | [1] Abaqus Analysis User's Manual, CAE User’s Manual, Example Problems Manual, Version 6.10, Dassault Systèmes, 2010.
[2] ACI 440.2R-02, “Guide for the design and construction of externally bonded FRP systems for strengthened concrete structures,” Reported by ACI Committee 440, 2002 [3] Ahmed O, Van Gemert D, Vanderwalle L. “Improved model for plate-end shear of CFRP strengthened RC beams,” Cement Concrete Composite, 23:3-19, 2001. [4] Barbato, M., “Efficient finite element modeling of reinforced concrete beams retrofitted with fibre reinforced polymers,” Computers and Structures, 87, pp. 167-176, 2009. [5] Bonacci, J.F., M. Maalej, “Externally bonded FRP for service life, extension of RC infrastructure,” Journal of Infrastructure Systems, Vol. 6, No. 1, pp. 41-51, 2000. [6] Camanho, P. P., and C. G. Davila, “Mixed-Mode Decohesion Finite Elements for the Simulation of Delamination in Composite Materials,” NASA/TM-2002–211737, pp. 1–37, 2002. [7] Cendon, D.A., J.C. Galvez, M. Elices, J. Planas, “Modeling the fracture of concrete under mixed loading,” International Journal of Fracture, 103: 293-310, 2000. [8] Ceroni, F., “Experimental performances of RC beams strengthened with FRP materials,” Construction and Building Materials, No. 24, pp. 1547-1559, 2010. [9] Chang, C.H., “Mechanical analysis of aggregate – coated FRP-concrete composite beams,” Master Thesis, Department of Civil Engineering, National Taiwan University, Taipei, Taiwan, 2010. [10] Chen, J.F., J.G. Teng, “Anchorage strength models for FRP and steel plates bonded to concrete,” Structure Engineering, 127(7), pp. 784-791, 2001. [11] Chen, W.F., “Constitutive Equations for Engineering Materials,” Elsevier, London, 1994. [12] Cicekli, U., G. Z. Voyiadjis, R. K. Abu Al-Rub, 'A plasticity and anisotropic damage model for plain concrete,' International Journal of Plasticity, No. 23, pp. 1874-1900, 2007. [13] Coronado, C.A., M. Lopez, “Damage approach for the prediction of debonding failure on concrete elements strengthened with FRP,” Journal of Composites for Constructions, 11:4 (391), 2007. [14] Coronado, C.A., M. Lopez, “Numerical modeling of concrete-FRP debonding using a crack band approach,” Journal of Composites for Constructions, 14, 11, 2010. [15] Deb, A., S. K. Bhattacharyya, “Investigation into the effect of bonding on FRP-wrapped cylindrical concrete columns,” Journal of Composites for Constructions, pp. 706-719, 2010. [16] Fanning, P.J., O. Kelly, “Ultimate response of RC beams strengthened with CFRP plates,” ASCE Journal of Composites for Construction, 5 (2), pp. 122–127, 2001. [17] Ferretti, D., M. Savoia, “Non-linear model for R/C tensile members strengthened by FRP-plates,” Engineering Fracture Mechanics, 70, pp. 1069-1083, 2003. [18] Godat, A., K.W. Neale, P. Labossiere, 'Numerical modeling of FRP shear -strengthened reinforced concrete beams,' Journal of Composites for Constructions, pp. 640-649, 2007. [19] Gorji, M. S., “Analysis of FRP strengthened reinforced concrete beams using energy variation method,” World Applied Sciences Journal, 6(1), pp. 105-111, 2009. [20] Hahn, H.T., S.W. Tsai, “Nonlinear elastic behavior of unidirectional composite laminate,” Journal of Composite Material, No. 7, pp. 102-118, 1973. [21] Herz, E., M. Vormwald, “Finite element simulation of concrete structures inclusing geometry changes due to structural modifications,” in the 7th International Conference on Modern Building Materials, Structures and Techniques, 2001. [22] Hu, H. T., F. M. Lin, Y. Y. Jan, “Nonlinear finite element analysis of reinforced concrete beams strengthened by fiber-reinforced plastics,” Composite Structures, No. 63, pp. 271-281, 2004. [23] Huang, Z.M., “Inelastic and failure analysis of laminate structures by ABAQUS incorporated with a general constitutive relationship,” Journal of Reinforced Plastics and Composites, 26:1135, 2007. [24] Ibrahim, A. M., M. S. Mahmood, “Finite element modeling of reinforced concrete beams strengthened with FRP laminates,” European Journal of Scientific Research, Vol. 30, No. 4, pp. 526-541, 2009. [25] Kachlakev, D., T. Miller, S. Yim, K. Chansawat, T. Potisuk, “Finite modeling of reinforced concrete structures strengthened with FRP laminates”, Research Report, Oregon Department of Transportation, 113pps, 2001. [26] Koh, C. G., M. Q. Teng, T. H. Wee, “A plastic-damage model for lightweight concrete and normal weight concrete,” International Journal of Concrete Structures and Materials, Vol. 2, No. 2, pp. 123-136, 2008. [27] Leong, K. S., “Effect of beam size and FRP thickness on interfacial shear stress concentration and failure mode in FRP-strengthened beams,” Master Thesis, Department of Civil Engineering, National University of Singapore, 2003. [28] Linde, P., J. Pleitner, H. Boer, C. Carmone, “Modeling and simulation of fibre metal laminates,” in ABAQUS Users’ Conference, pp. 421-439, 2004. [29] Lu, X. Z., Ye, L. P., Teng, J. G., and Jiang, J. J., “Mesoscale finite-element model for FRP sheets/plates bonded to concrete,” Engineering Structure, 27(4), pp. 564–575, 2005a. [30] Lu, X. Z., Ye, L. P., Teng, J. G., and Jiang, J. J., “Bond–slip models for FRP sheets/plates bonded to concrete,” Engineering Structure, 27(6), pp. 920-937, 2005b. [31] Nguyen, D.M., T.K. Chan, H.K. Cheong, “Brittle failure and bond development length of CFRP-concrete beams,” Composite Construction, 5(1):12-7, 2001. [32] Oehlers, D.J., “Development of design rules for retrofitting by adhesive bonding or bolting either FRP or steel plates to RC beams or slabs in bridge and buildings,” Composites, Part A, 32:1345–55, 2001. [33] Ombres, L., T. Alkhrdaji, and A. Nanni, 'Flexural analysis of one-way concrete slabs reinforced with GFRP rebars,' International Meeting on Composite Materials, Proceedings, Advancing with Composites 2000, Ed. I. Crivelli-Visconti, Milan, Italy, pp. 243-250, 2000. [34] Ottosen, N., H. Petersson, “Introduction to the finite-element mothod,” 1st edition, Prentice-Hall International, London, 1992. [35] Pavan, R.C., B.F. Oliveira, G. J. Creus, “FE analysis of reinforced concrete beams strengthened by composite plates,” Latin American ournal of Solids and Structures, No. 2, pp. 253-267, 2005. [36] Qiao, P.Z., L. Zhang, F.L Chen, Y. Chen, L.Y. Shan, “Fracture Characterization of Carbon Fiber-reinforced Polymer-concrete Bonded Interfaces under Four-point Bending,” Engineering Fracture Mechanics, 78(6), pp. 1247-1263, 2011. [37] Shahawy, M. A., M. Arockiasamy, T. Beitelman, R. Sowrirajan, “Reinforced concrete rectangular beams strengthened with CFRP laminates,” Composites: Part B, 27B, pp. 225-233, 1996. [38] Smith, S.T., Teng, J.G., “FRP-strengthened RC beams. I: review of debonding strength models,” Engineering Structures, 24, pp. 385-395, 2002a. [39] Smith, S.T., Teng, J.G., “FRP-strengthened RC beams. I: assessment of debonding strength models,” Engineering Structures, 24, pp. 397-417, 2002b. [40] Supaviriyakit, T., P. Pornpongsaroj, “Finite element analysis of FRP-strengthened RC beams”, Songklanakarin Journal of Science and Technology, 26(4), pp. 497-507, 2004. [41] Teng, M. Q., 'Plastic-damage model of lightweight concrete and normal weight concrete,' PhD Dissertation, Department of Civil Engineering, National University of Singapore, 2010. [42] Triantafillou, T. C., N. Plevris, “Strengthening of RC beams with epoxy-bonded fibre-composite materials,” Materials and Structures, 25, 201-211, 1992. [43] Tripi J.M., Bakis C.E., Boothby T.E., Nanni A., “Deformation in concrete with external CFRP sheet reinforcement,” Composite Construction, 4(2):85–94, 2004. [44] Varastehpour, H., P. Hamelin, “Strengthening of concrete beams using fiber-reinforced plastics,” Materials and Structures, Vol. 30, pp. 160-166, 1997. [45] Volnyy, V.A., C.P. Pantelides, “Bond length of CFRP composites attached to precast concrete walls,” Composite Construction, 3(4):168–76, 1999. [46] Wegian, F.M., H.A. Abdalla, “Shear capacity of concrete beams reinforced with fiber reinforced polymers,” Composite Structures, 71, pp. 130-138, 2005. [47] Yuan, H., Z. Lin, “Theoretical model on interface failure mechanism of reinforced concrete continuous beam strengthened by FRP,” Acta Mechanica Solida Sinica, Vol. 22, No. 2, pp. 161-170, 2009. [48] Ziraba Y.N., Baluch M.H., Basunbul I.A., Azad A.K., Al-Sulaimani G.J., Sharif A.M., “Combined experimental–numerical approach to characterization of steel–glue–concrete interface,” Material Structures, 28:518–25, 1995. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30552 | - |
| dc.description.abstract | In this study, a finite element model for the simulation of the mechanical behavior of FRP-concrete beams is presented. The computational model includes the combination of two user subroutine UMATs for concrete and FRP material, and surface – based cohesive behavior to represent the interfacial bonding between concrete and FRP. The main investigations analyze FRP-concrete composite beams with three different types of surface – treatment, including non-treatment surface, sand-bonded surface and gravel-bonded surface. The numerical results show a very good agreement in compare with the experimental results. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T02:07:56Z (GMT). No. of bitstreams: 1 ntu-100-R98521264-1.pdf: 2891265 bytes, checksum: a260472b82d5016203f2e21f536d7c1f (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | ACKNOWLEDGEMENTS i
ABSTRACT ii TABLE OF CONTENTS iii LIST OF FIGURES vi LIST OF TABLES ix ABBREVIATIONS x CHAPTER 1 INTRODUCTION 1 1.1. Background and Motivations 1 1.2. Research Objectives 2 1.3. Thesis Organization 2 CHAPTER 2 LITERATURE REVIEW 5 2.1. Concrete Material 5 2.1.1 Theoretical Review 5 2.1.2 Nonlinear Finite Element Modeling of Concrete 6 2.2. Fibre-Reinforced Plastic 8 2.2.1 Introduction 8 2.2.2 Structural Applications of FRP 9 2.2.3 Finite Element Modeling of FRP 10 2.3. FRP – Concrete Interfacial Behavior Law 12 2.4. Research on FRP-Concrete Composite Beams 14 CHAPTER 3 FINITE ELEMENT MODELING 19 3.1. Introduction 19 3.1.1 ABAQUS Analysis Options 20 3.1.2 ABAQUS Nonlinear Concrete Modeling Options 21 3.1.3 ABAQUS FRP Modeling Options 23 3.2. Plastic-Damage Model for Concrete 24 3.3. FRP Model 27 3.4. Using More Than One User-Defined Material Model 32 3.5. Surface-Based Cohesive Behavior 33 3.6. Modeling Technique 36 3.6.1 Overview 36 3.6.2 The Solution of Nonlinear Problem 37 3.7. Finite Element Modeling of FRP-Concrete Composite Beams 41 3.7.1 Concrete 41 3.7.2 FRP 42 3.7.3 Bond – Slip Behavior 42 3.7.4 Nonlinear Analysis Option 45 CHAPTER 4 RESULTS AND DISCUSSIONS 55 4.1. Introduction 55 4.2. Uniaxial Compressive Tests of Concrete 55 4.3. Uniaxial Tensile Test of FRP 57 4.4. Four-Point Bending Test of Concrete 61 4.5. Four-Point Bending Test of FRP-Concrete Composite Beams 63 CHAPTER 5 CONCLUSIONS AND RECOMENDATIONS 79 5.1. Conclusions 79 5.2. Recommendations 80 REFERENCES 81 APPENDIX 1 – User Subroutine UMAT for Concrete 87 APPENDIX 2 – Input File 107 | |
| dc.language.iso | en | |
| dc.subject | FRP-混凝土組合梁 | zh_TW |
| dc.subject | 有限元分析 | zh_TW |
| dc.subject | 塑損傷模型 | zh_TW |
| dc.subject | 接口的 | zh_TW |
| dc.subject | finite element analysis | en |
| dc.subject | interface | en |
| dc.subject | plastic-damage model | en |
| dc.subject | FRP-concrete composite beam | en |
| dc.title | 以有限元素分析FRP與混凝土複合梁之力學行為 | zh_TW |
| dc.title | Finite Element Analysis of Mechanical Behavior of FRP-Concrete Composite Beams | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 詹穎雯(Yin-Wen Chan),劉楨業(Tony Liu) | |
| dc.contributor.oralexamcommittee | #VALUE! | |
| dc.subject.keyword | 有限元分析,FRP-混凝土組合梁,塑損傷模型,接口的, | zh_TW |
| dc.subject.keyword | finite element analysis,FRP-concrete composite beam,plastic-damage model,interface, | en |
| dc.relation.page | 113 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-08-02 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 2.82 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
