Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物環境系統工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30548
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor廖中明(Chung-Min Liao)
dc.contributor.authorChieh-Ming Linen
dc.contributor.author林玠明zh_TW
dc.date.accessioned2021-06-13T02:07:50Z-
dc.date.available2009-07-16
dc.date.copyright2007-07-16
dc.date.issued2007
dc.date.submitted2007-06-29
dc.identifier.citationAaseth J, Norseth T. 1986. Copper. In: Friberg L et al. (Eds.), Handbook on the Toxicology of Metals, 2nd ed. Elsevier, New York, USA. pp. 233-354.
Agency for Toxic Substances and Disease Registry (ATSDR). 2004. CAS#7440-50-8 U.S. Department of Health and Human Services. GA.
Anderson DM, Morel FMM. 1978. Copper sensitivity of gonyaulax-tamarensis. Limnology and Oceanography 23: 283-295.
Børseth JF, Aunaas T, Einarson S, Nordtug T, Olsen AJ, Zachariassen KE. 1992. Pollutant-induced depression of the transmembrane sodium gradient in muscles of mussels. Journal of Experimental Biology 169: 1-81.
Baudrimont M, Metivaud J, Maury-Brachet R, Ribeyre F, Boudou A. 1997. Bioaccumulation and metallothionein response in the Asiatic clam (Corbicula fluminea) after experimental exposure to cadmium and inorganic mercury. Environmental Toxicology and Chemistry 16: 2096-2105.
Bayen S, Worms I, Parthasarathy N, Wilkinson K, Buffle J. 2006. Cadmium bioavailability and speciation using the permeation liquid membrane. Analytica Chimica Acta 575: 267-273.
Belanger SE, Davidson DH, Farris JL, Reed D, Cherry DS. 1993. Effect of cationic surfactant exposure to a bivalve mollusk in stream mesocosms. Environmental Toxicology and Chemistry 12: 1789-1802.
Bianchini A, Grosell M, Gregory SM, Wood CM. 2002. Acute silver toxicity in aquatic animals is a function of sodium uptake rate. Environmental Science and Technology 36: 1763-1766.
Bilos C, Colombo JC, Presa MJR. 1998. Trace metals in suspended particles, sediments and Asiatic clams (C. fluminea) of the Río de la Plata Estuary, Argentina. Environmental Pollution 99: 1-11.
Booij K, Smedes F, van Weerlee EM, Honkoop PJC. 2006. Environmental monitoring of hydrophobic organic contaminants: The case of mussels versus semipermeable membrane devices. Environmental Science and Technology 40: 3893-3900.
Borcherding J, Jantz B. 1997. Valve movement response of the mussel Dreissena polymorpha-the influence of pH and turbidity on the acute toxicity of pentachlorophenol under laboratory and field conditions. Ecotoxicology 6: 153-165.
Borcherding J, Wolf J. 2001. The influence of suspended particles on the acute toxicity of 2-chloro-4-nitro-aniline, cadmium, and pentachlorophenol on the valve movement response of the zebra mussel (Dreissena polymorpha). Archives of Environmental Contamination and Toxicology 40: 497-504.
Borgmann U, Nowierski M, Dixon DG. 2005. Effect of major ions on the toxicity of copper to Hyalella azteca and implications for the biotic ligand model. Aquatic Toxicology 73: 268-287.
Boudou A, Inza B, Lemaire-Gony S, Maury-Brachet R, Odin M, Ribeyre F. 1998. Metal bioaccumulation in freshwater systems: experimental study of the actions and interactions between abiotic and contamination factor. In: Schüürmann G (Ed.), Ecotoxicology. John Willey & Sons, Chichester, pp. 451-482.
Bricelj VM, Connell L, Konoki K, Mac Quarrie SP, Scheuer T, Catterall WA, Trainer VL. 2005. Sodium channel mutation leading to saxitoxin resistance in clams increases risk of PSP. Nature 434: 763-767.
Britton JC, Morton B. 1982. A dissection guide, field and laboratory manual for the introduce bivalve Corbicula fluminea. Malacoloica Review, Supplement 3: 1-82.
Brown PL, Markich SJ. 2000. Evaluation of the free ion activity model of metal-orgaism interaction: extension of the conceptual model. Aquatic Toxicology 51: 177-194.
Bury NR. 2005. The changes to apical silver membrane uptake, and basolateral membrane silver export in the gills of rainbow trout (Oncorhynchus mykiss) on exposure to sublethal silver concentrations. Aquatic Toxicology 72: 135-145.
Butler PA, Andren L, Bonde GJ, Jernelov A, Reisch DJ. 1971. Monitoring organisms. In: Food and Agricultural Organisation Technical Conference on Marine Pollution and its Effects on Living Resources and Fishing, Rome, 1970. Supplement 1: Methods of detection, measurement and monitoring of pollutants in the marine environment, ed. By Ruivo M. London, Fishing News, pp. 101-102.
Campbell MK, Farrell SO. 2003. Electron transport and oxidative phosphorylation. In: Campbell MK, Farrell SO (Eds.), Biochemistry (4th ed). Thomson Learning, Inc., USA, pp. 544-574.
Campbell PGC. 1995. Interactions between trace metals and aquatic organisms: a critique of the free-ion activity model. In: Tessier A, Turner DR (Eds.), Metal Speciation and Bioavailability in Aquatic Systems. John Willey & Sons, Chichester, pp. 45-102.
Connell D, Lam P, Richardson B, Wu R. 1999. Sources, types and properties of toxicants. In: Connell D, Lam P, Richardson B, Wu R (Eds.), Introduction to Ecotoxicology. Blackwell Science, Oxford, pp. 19-28.
Croke SJ, McDonald DG. 2002. The further development of ionoregulatory measures as biomarkers of sensitivity and effect in fish species. Environmental Toxicology and Chemistry 21: 1683-1691.
Croteau, MN, Luoma SN, Toping BR, Lopez CB. 2004. Stable metal isotopes reveal copper accumulation and loss dynamics in the freshwater bivalve Corbicula. Environmental Science and Technology 38: 5002-5009.
Croteau MN, Luoma SN. 2005. Delineating copper accumulation pathways for the freshwater bivalve Corbicula using stable copper isotopes. Environmental Toxicology and Chemistry 24: 2871-2878.
Curtis TM, Williamson R, Depledge MH. 2000. Simultaneous, long-tern monitoring of valve and cardiac activity in the blue mussel Mytilus edulis exposed to copper. Marine Biology 136: 837-846.
Cusimano RF, Brakke DF, Chapman GA. 1986. Effects of pH on the toxicities of cadmium, copper, and zine to steelhead trout (Salmo gairdneri). Canadian Journal of Fisheries and Aquatic Sciences 43: 1497-1503.
Davison W, Zhang H. 1994. In situ speciation measurements of trace components in natural waters using thin-film gels. Nature 367: 546-548.
De Schamphelaere KAC, Janssen CR. 2002. A biotic ligand model predicting acute copper toxicity for Daphnia magna: The effects of calcium, magnesium, sodium, potassium, and pH. Environmental Science and Technology 36: 48-54.
De Schamphelaere KAC, Heijerick DG, Janssen CR. 2002. Refinement and field validation of a biotic ligand model predicting acute copper toxicity to Daphnia magna. Comparative Biochemistry and Physiology Part C, Pharmacology, Toxicology & Endocrinology 133: 243-258.
De Schamphelaere KAC, Janssen CR. 2004. Bioavailability and chronic toxicity of zine to juvenile rainbow trout (Oncorhynchus mykiss): Comparison with other fish species and development of a biotic ligand model. Environmental Science and Technology 38: 6201-6209.
De Schamphelaere KAC, Bossuyt BTA, Janssen CR. 2007. Variability of the protective effect of sodium on the acute toxicity of copper to freshwater cladocerans. Environmental Toxicology and Chemistry 26: 535-542.
Di Toro DM, Allen HE, Bergman HL, Meyer JS, Paquin PR, Santore RC. 2001. Biotic ligand model of the acute toxicity of metals. 1. Technical basis. Environmental Toxicology and Chemistry 20: 2383-2396.
Dietz TH, Branto WD. 1975. Ionic regulation in freshwater mussel, Ligumia-subrostrata (Say). Journal of Comparative Physiology 104: 19-26.
Dietz TH. 1978. Sodium transport in the freshwater mussel, Carunculina texasensis (Lea). American Journal of Physiology 235: R35-R40.
Dietz TH, Branton WD. 1979. Chloride transport in freshwater mussels. Physiological Zoology 52: 520-528.
Dietz TH, Findley AM. 1980. Ion-stimulated ATPase activity and NaCl uptake in the gills of freshwater mussels. Canadian Journal of Zoology-Revue Canadienne De Zoologie 58: 917-923.
Dietz TH, Byrne RA. 1990. Potassium and rubidium uptake uptake in freshwater bivalves. Journal of Experimental Biology 150: 395-405.
Dietz TH, Hagar AF. 1990. Chloride uptake in isolated gills of the freshwater mussel Ligumia subrostrata. Canadian Journal of Zoology-Revue Canadienne De Zoologie 68: 6-9.
Doherty FG, Cherry DS, Cairns JJ. 1987. Valve closure responses of the Asiatic clam Corbicula fluminea exposed to cadmium and zinc. Hydrobiologia 153: 159-167.
Dowling K, Mothersill C. 2001. The further development of rainbow trout primary epithelial cell cultures as a diagnostic tool in ecotoxicology risk assessment Aquatic Toxicology 53: 279-289.
El-Shenawy NS. 2004. Heavy-metal and microbial depuration of the clam Ruditapes decussatus and its effect on bivalve behavior and physiology. Environmental Toxicology 19: 143-153.
Erichson RJ, Benoit DA, Mattson VR, Nelson HP, Leonard EN. 1996. The effects of water chemistry on the toxicity of copper to fathead minnows. Environmental Toxicology and Chemistry 15: 181-193.
Escher BI, Hermens JLM. 2004. Internal exposure: Linking bioavailability to effects. Environmental Science and Technology 38: 455A-462A.
Farag AM, Boese CJ, Woodward DF, Bergman HL. 1994. Physiological changes and tissue metal accumulation in rainborw trout exposed to foodborne and waterborne metals. Environmental Toxicology and Chemistry 13: 2021-2024.
Farris JL, Belanger SE, Caerry DS, Cairns J. 1989. Cellulolytic activity as a novel-approach to assess long-tern Zine stress to Corbicula. Water Research 23: 1275-1283.
Fletcher CR. 1977. Potential dependence of sodium fluxes across the gills of marine teleosts. Journal of Comparative Physiology 117: 277-289.
Fortin C, Denison FH, Garnier-Laplace J. 2007. Metal-phytoplankton interactions: Modeling the effect of competing ion (H+, Ca2+, and Mg2+) on uranium uptake. Environmental Toxicology and Chemistry 26: 242-248.
Galvez F, Wood CM. 1997. The relative importance of water hardness and chloride levels in modifying the acute toxicity of silver to rainbow trout (Oncorhynchus mykiss). Environmental Toxicology and Chemistry 16: 2363-2368.
Geffeney Sl, Fujimoto E, Brodie ED, Brodie ED, Ruben PC. 2005. Evolutionary diversification of TTX-resistant sodium channels in a predator-prey interaction. Nature 434: 759-763.
Gerhardt A. 1995. Joint and single toxicity of Cd and Fe related to uptake to the may fly Leptophlebia marginata (L) (Insecta). Hydrobiologia 306: 229-240.
Grosell M, Nielsen C, Bianchini A. 2002. Sodium turnover rate determines sensitivity to acute copper and silver exposure in freshwater animals. Comparative Biochemistry and Physiology Part C, Pharmacology, Toxicology & Endocrinology 133: 287-303.
Han BC, Jeng WL, Hung TC, Ling YC, Shieh MJ, Chien LC. 2000. Estimation of metal and organochlorine pesticide exposures and potential health threat by consumption of oysters in Taiwan. Environmental Pollution 109: 147-156.
Handy RD, Eddy FB, Baines H. 2002. Sodium-dependent copper uptake across epithelia: a review of rationale with experimental evidence from gill and intestine. Biochimica et Biophysica Acta 1566: 104-115.
Handy RD, Eddy FB. 2004. Transport of soutes across biological membrane in eukaryotes. In: van Leeuwen HP, KÖster W (Eds.), Physicochemical Kinetics and Transport at Biointerfaces. John Willey & Sons, Chichester, pp. 337-356.
Hare L, Tessier A. 1996. Predicting animal cadmium concentrations in lakes. Nature 380: 430-432.
Haynie DT. 2001. Gibbs free energy-theory. In: Haynie DT (Ed.), Biological Thermodynamics, Cambridge Unviersity Press, New York, pp. 73-178.
Heinonen J, Kukkonen JVK, Holopainen IJ. 2001. Temperature- and parasite-induced change in toxicity and lethal body burdens of pentachlorophenol in the freshwater clam Pisidium amnicum. Environmental Toxicology and Chemistry 20: 2778-2784.
Hill AV. 1910. The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves. Journal of Physiology 40: 4-7.
Horohov J, Silverman H, Lynn JW, Dietz TH. 1992. Ion transport in the freshwater Zebra Mussel, Dresissena polymorphha. Biological Bulletin 183: 297-303.
Hung TC, Han BC, Wu SJ. 1989. Green oyster: Species and forms of copper in the charting coastal water. Acta Oceanographica Taiwanica 23: 33-42.
Jassen CR, De Schamphelaere KAC, Heijerick D, Muyssen B, Lock K, Bossuyt B, Vangheluwe M, van Sprang P. 2000. Uncertainties in the environmental risk assessment of metals. Human and Ecological Risk Assessment 6: 1003-1018.
Jeng MS, Jeng WL, Hung TC, Yeh CY, Tseng RJ, Meng PJ, Han BC. 2000. Mussel watch: a review of Cu and other metals in various marine organisms in Taiwan, 1991-98. Environmental Pollution 110: 207-215.
Jiang Y, Reynolds C, Xiao C, Feng W, Zhou Z, Rodriguez W, Tyagi SC, Eaton JW, Saari JT, Kang YJ. 2007. Dietary copper supplementation reverses hypertrophic cardiomyopathy induced by chronic pressure overload in mice. The Journal of Experimental Medicine 204: 657-666.
Jou LJ, Liao CM. 2006. A dynamic artificial clam (Corbicula fluminea) allows parsimony on-line measurement of waterborne metals. Environmental Pollution 144: 172-183.
Johns C, Luoma SN. 1990. Arsenic in benthic bivalves of San Francisco Bay and the Sacramento/San Joaquin River delta. Science of Total Environment 97-8: 673-684.
KÖster W, van Leeuwen HP. 2004. Physicochemical kinetics and transport at the biointerface: setting the stage. In: van Leeuwen HP, KÖster W (Eds.), Physicochemical Kinetics and Transport at Biointerfaces. John Willey & Sons, Chichester, pp. 1-14.
Kadar E, Salanki J, Jugdaohsingh R, Powell JJ, McCrohan CR, White KN. 2001. Avoidance responses to aluminium in the freshwater bivalve Anodonta cygnea. Aquatic Toxicology 55: 137-148.
Kelly SP, Wood CM. 2002. Cultured gill epithelia from freshwater tilapia (Oreochromis niloticus): Effect of cortisol and homologous serum supplements from stressed and unstressed fish. Journal of Membrane Biology 190: 29-42.
Kenakin T. 1997. Pharmacologic Analysis of Drug-Receptor Interaction (3rd ed), Lippincott-Raven, Philadelphia, PA.
Kinraide TB. 2006. Plasma membrane surface potential (ΨPM) as a determinant of ion bioavailability: A critical analysis of new and published toxicological studies and a simplified method for the computation of plantΨPM. Environmental Toxicology and Chemistry 25: 3188-3198.
Kirschner LB. 1970. Study of NaCl transport in aquatic animals. American Zoologist 10: 365-376.
Kramer KJM, Foekema EM. 2001. The “Musselmonitor” as biological early warning system. In: Butterworth FM, Gunatilake A, Gonsebatt ME (Eds.), Biomonitors and Biomarkers as Indicators of Environmental Change 2. Kluwer Academic/Plenum Publishers, New York, pp. 59-87.
Kwon JH, Katz LE, Liljestrand HM. 2006. Use of a parallel artificial membrane system to evaluate passive absorption and elimination in small fish. Environmental Toxicology and Chemistry 25: 3083-3092.
Lagadic L, Caquet T, Ramade F. 1994. The role of biomarkers in environmental assessment. 5. Invertebrate populations and communities. Ecotoxicology 3: 193-208.
Lee CL, Chen HY, Chuang MY. 1996. Use of oyster, Croassostrea gigas, and ambient water to assess metal pollution status of the charting coastal area, Taiwan, after the 1986 green oyster incident. Chemosphere 33: 2505-2532.
Liao CM, Jou LJ, Chen BC. 2005. Risk-based approach to appraise valve closure in the clam Corbicula fluminea in response to waterborne metals. Environmental Pollution 135: 41-52.
Liao CM, Jou LJ, Lin CM, Chiang KC, Yeh CH, Chou BYH. 2007. Predicting acute copper toxicity to valve closure behavior in the freshwater clam Corbicula fluminea supports the biotic ligand model. Environmental Toxicology 22: 295-307.
Lubert S. 1988. Metabolism: basic concepts and design. In: Lubert S (Ed.), Biochemistry (3rd ed). W. H. Freeman and Company, New York, USA, pp. 315-330.
Luoma SN, Rainbow PS. 2005. Why is metal bioaccumulation so variable? Biodynamics as a unifying concept. Environmental Science and Technology 39: 1921-1931.
Markich SJ, Brown PL, Jeffree RA, Lim RP. 2000. Valve movement responses of Velesunio angasi (Bivalvia: Hyriidae) to manganese and uranium: An exception to the free ion activity model. Aquatic Toxicology 51: 155-175.
Markich SJ, Brown PL, Jeffree RA, Lim RP. 2003. The effects of pH and dissolved organic carbon on the toxicity of cadmium and copper to a freshwater bivalve: further support for the extended free ion activity model. Archives of Environmental Contamination and Toxicology 45: 479-491.
Marr JCA, Hansen JA, Meyer JS, Cacela D, Podrabsky T, Lipton J, Bergman HL. 1998. Toxicity of cobalt and copper to rainbow trout: application of a mechanistic model for predicting survival. Aquatic Toxicology 43: 225-238.
Matsuo AYO, Playle RC, Val AL, Wood CM. 2004. Physiological action of dissolved organic matter in rainbow trout in the presence and absence of copper: sodium uptake kinetics and unidirectional flux rates in hard and softwater. Aquatic Toxicology 70: 63-81.
McCorkle S, Dietz TH. 1980. Sodium-transport in the freshwater Asiatic clam Corbicula fluminea. Biological Bulletin 159: 325-336.
McDonald DG, Reader JP, Dalziel TRK. 1989. The combined effects of pH and trace metals on fish ionoregulation. In: Morris R, Taylor EW, Brown DJA, Brown JA (Eds), Acid Toxicity and Aquatic Animals. Cambridge Univ Press, pp. 221-3242.
Michaelis L, Menten M. 1913. Die kinetik der invertinwirkung. Biochemische Zeitschrift 49: 333-369.
Milam CD, Farris JL. 1998. Relating threshold responses of Corbicula fluminea to assess damage in resident mussel populations exposed to partially treated mine water. Environmental Toxicology and Chemistry 17: 1611-1619.
Morel FMM. 1983. Principles of Aquatic Chemistry. John Willey & Sons, Chichester, 446 pp.
Morel FMM, Hering JG. 1993. Kinetics. In: Morel FMM, Hering JG (Eds.), Principles and Application of Aquatic Chemistry. John Willey & Sons, Chichester, pp. 98-156.
Morf WE. 1977. Calculation of liquid-junction potential and membrane potentials on the basis of the Plank theory. Analytical Chemistry 49: 810-813.
Morf WE. 1981. The principles of ion-selective electrodes and of membrane transport. Netherlands: Elsevier Scientific, Akadémiai Kiadó, Amsterdam, New York, 432 pp.
Morgan IJ, Henry RP, Wood CM. 1997. The mechanism of acute silver nitrate toxicity in freshwater rainbow trout (Oncorhynchus mykiss) is inhibition of gill Na+ and Cl- transport. Aquatic Toxicology 38: 145-163.
Morgan TP, Wood CM. 2004. A relationship between gill silver accumulation and acute silver toxicity in the freshwater rainbow trout: Support for the acute silver biotic ligand model. Environmental Toxicology and Chemistry 23: 1261-1267.
Moulton CA, Fleming WJ, Purnell CE. 1996. Effect of two cholinesterase-inhibiting pesticides on freshwater mussel. Environmental Toxicology and Chemistry 15: 131-137.
Narbonne JF, Djomo JE, Ribeira FV, Garrigues P. 1999. Accumulation kinetics of polycyclic aromatic hydrocarbons adsorbed to sediment by the mollusk Corbicula fluminea. Ecotoxicology and Environmental Safety 42: 1-8.
Niyogi S, Wood CM. 2004. Biotic ligand model, aflexible tool for developing site-specific water quality guidelines for metals. Environmental Science and Technology 38: 6177-6192.
Ortmann C, Grieshaber MK. 2003. Energy metabolism and valve closure behavior in Asian clam Corbicula fluminea. Journal of Experimental Biology 206: 4167-4178.
Pagenkopf GK. 1983. Gill surface interaction model for trace-metal toxicity fo fishes: Role of complexation, pH, and water hardness. Environmental Science and Technology 17: 342-347.
Palmer LG. 1982. Na+ transport and flux ration through apical Na+ channels in toad bladder. Nature 297: 668-690.
Paquin PR, Gorsuch JW, Apte S, Batley GE, Bowles KC, Campbell PGC, Delos CG, Hogstrand C, Janssen CR, McGeer JC, Naddy RB, Playle RC, Santore RC, Schneider U, Stubblefield WA, Wood CM, Wu KB. 2002a. The biotic ligand model: a historical overview. Comparative Biochemistry and Physiology Part C, Pharmacology, Toxicology & Endocrinology 133: 3-35.
Paquine PR, Zoltay V, Winfield RP, Wu KB, Mathew R, Santore RC, Di Toro DM. 2002b. Extension of the biotic ligand model of acute toxicity to a physiologically-based model of the survival time of rainbow trout (Oncorhynchus mykiss) exposed to silver. Comparative Biochemistry and Physiology Part C, Pharmacology, Toxicology & Endocrinology 133: 305-343.
Perez MH, Wallace WG. 2004. Differences in prey capture in grass shrimp, Palaemonetes pugio, Collected along an environmental impact gradient. Archives of Environmental Contamination and Toxicology 46: 81-89.
Petty JD, Jones SB, Huckins JN, Cranor WL, Parris JT, McTague TB, Boyle TP. 2000. An approach for assessment of water quality using semipermeable membrane devices (SPMDs) and bioindicator tests. Chemosphere 41: 311-321.
Phillips DJ. 1977. The use of biological indicator organisms to monitor trace metal pollution in marine and estuarine environments- a review. Environmental Pollution 13: 281-317.
Potts WTW, Eddy FB. 1973. Gill potentials and sodium fluxes in the flounder Platichthys flesus. Journal of Comparative Physiology 87: 29-48.
Potts WTW, Hedges AJ. 1991. Gill potentials in marine teleosts. Journal of Comparative Physiology B-Biochemical Systemic and Environmental Physiology 161: 401-405.
Reid SD, McDonald OG. 1988. Effects of cadmium, copper, and low pH on ion fluxes in the rainbow trout, Salmo gairdneri. Canadian Journal of Fisheries and Aquatic Sciences 45: 244-253.
Reyes N, Gadsby DC. 2006. Ion permeation through the Na+,K+-ATPase. Nature 443: 470-474.
Saintsing DG, Towle DW. 1978. Na+-K+ ATPase in the osmoregulating clam, Rangia cuneata. Journal of Experimental Zoology 206: 435-442.
Santore RC, Di toro DM, Paquin PR, Allen HE, Meyer JS. 2001. Biotic ligand model of acute toxicity of metals. 2. Application to acute copper toxicity in freshwater fish and Daphnia. Environmental Toxicology and Chemistry 20: 2397-2402.
Scheide JI, Dietz TH. 1981. Gill camp and adnylate-cyclase in a fresh-water mussel. American Zoologist 21: 929-929.
Slaveykova VI, Wilkinson KJ. 2005. Predicting the bioavailability of metals and metal complexes: Critical review of the biotic ligand model. Environmental Chemistry 2: 9-24.
Sluyts H, van Hoof F, Cornet A, Paulussen J. 1996. A dynamic new alarm system for use in biological early warning systems. Environmental Toxicology and Chemistry 15: 1317-1323.
Taylor LN, Wood CM, McDonald DG. 2003. An evaluation of sodium loss and gill metal binding properties in rainbow trout and yellow perch to explain species differences in copper tolerance. Environmental Toxicology and Chemistry 22: 2159-2166.
Tipping E. 1994. WHAM-a chemical equilibrium model and computer code for waters, sediments, and soils incorporating a discrete site/electrostatic model of ion-binding by humic substances. Computers & Geosciences 20: 973-1023.
Tran D, Ciret P, Ciutat A, Durrieu G, Massabuau JC. 2003. Estimation of potential and limits of bivalve closure response to detect contaminants: application to cadmium. Environmental Toxicology and Chemistry 22: 914-920.
Tran D, Fournier E, Durrieu G, Massabuau JC. 2004. Copper detection in the Asiatic clam Corbicula fluminea: optimum valve closure response. Aquatic Toxicology 66: 333-343.
Tsai JW, Liao CM. 2006. A dose-based modeling approach for accumulation and toxicity of arsenic in tilapia Oreochromis mossambicus. Environmental Toxicology 21: 8-21.
US Environmental Protection Agency, 1994. Ambient Water Quality Crieteria for Copper 1984, USEPA, Washington, DC, EPA/823/B-94/00.
US Environmental Protection Agency, 1999. Integrated Approach to Assessing the Bioavailability and Toxicity of Metals in Surface Waters and Sediments, a report to the EPA Science Advisory Board, Office of Water, Office of Research and Development, Washington, DC. EPA/822/E-99/001.
Ussing HH. 1949. The distinction by means of tracers between active transport and diffusion. Acta Physiologica Scandinavica 19: 43-56.
Ussing HH, Erlij D, Lassen U. 1974. Transport pathways in biological-membranes. Annual Review of Physiology 36: 17-49.
van Hassel JH, Farris JL. 2007. Freshwater bivalve ecotoxicology. In: Farris JL, van Hassel JH (Eds.), Freshwater Bivalve Ecotoxicology. SETAC, CRC press Inc., Boca Raton, Fla., pp.1-18.
van Leeuwen HP, Town RM, Buffle J, Cleven RFMJ, Davison W, Puy J, van Riemsdijk WH, Sigg L. 2005. Dynamic speciation analysis and bioavailability of metals in aquatic systems. Environmental Science and Technology 39: 8545-8556.
Vercauteren K, Blust R. 1996. Bioavailability of dissolved zinc to the common mussel Mytilus edulis in complexing environments. Marine Ecology-Progress Series 137: 123-132.
Weis JS, Samson J, Zhou T, Skurnick J, Weis P. 2001. Prey capture ability of mummichogs (Fundulus heteroclitus) as a behavioral biomarker for contaminants in estuarine systems. Canadian Journal of Fisheries and Aquatic Sciences 58: 1442-1452.
Weiss JN. 1997. The Hill equation revisited: uses and misuses. The Federation of American Societies for Experimental Biology Journal 11: 835-841.
Wilcox SJ, Dietz TH. 1995. Potassium transport in the freshwater bivalve Dreissena polymorpha. Journal of Experimental Biology 198: 861-868.
Wildridge PJ, Werner RG, Doherty FG, Neuhauser EF. 1998. Acute effects of potassium on filtration rates of adult zebra mussels, Dreissena polymorpha. Journal of Great Lakes Research 24: 629-636.
Wilkinson KJ, Campbell PGG, Couture P. 1990. Effect of fluoride complexation on aluminium toxicity towards juvenile Atlantic samon (Salmo salar). Canadian Journal of Fisheries and Aquatic Sciences 47: 1446-1452.
Wu RSS, Lau TC, Fung WKM, Ko PH, Leung KMY. 2007. An ’artificial mussel’ for monitoring heavy metals in marine environments. Environmental Pollution 145: 104-110.
Zheng H, Dietz TH. 1998a. Ion transport in the freshwater bivalve Corbicula fluminea. Biological Bulletin 194: 161-169.
Zheng H, Dietz TH. 1998b. Paracellular solute uptake in the freshwater bivalve Corbicula fluminea and Toxolasma texasensis. Biological Bulletin 194: 170-177.
Zhou BS, Nichols J, Playle RC, Wood CM. 2005. An in vitro biotic ligand model (BLM) for silver binding to cultured gill epithelia of freshwater rainbow trout (Oncorhynchus mykiss). Toxicology and Applied Pharmacology 202: 25-37.
巫文隆。1979。台灣蜆形態測定學的研究。貝類學報,第六卷,第1-12頁。
何雲達。1995。貝類養殖(三)蜆。台灣農家要覽漁業篇,第252-255頁。豐年社,台北。
林志生。2003。飲用蜆萃出物對酒精性肝臟損傷之影響。中華民國營養學會雜誌,第28卷,第1期,第26-33頁。
柯建全,洪昇利,秦宗顯。2000。一種監測二枚貝殼活動做為污染指標的生理裝置。中華民國環境保護學會會誌,第二十三卷,第一期,第50-58頁。
陳立欣。2006。人工淡水養殖的蜆貝與產於花蓮的黃金蜆。養魚世界,第一期,第104-107頁。
郭仁杰,何雲達。1997。台灣蜆養殖業之經營現況與經濟分析。水產研究,第五卷第二期,第141-155頁。
趙大衛。2000。貝類生物指標在環境變遷及污染評估上的應用。環境教育季刊,第42期,第67-76頁。
謝永旭。2003。台灣地區新建地下水觀測井之地下水質試驗分析(2)。經濟部水利署計劃執行報告,共162頁。台中。
魏彰郁,林晏熙,劉嘉剛。1985。重金屬毒性對於淡水蝦及蜆的半致死濃度。台灣省水產試驗所試驗報告,第75-81頁。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30548-
dc.description.abstract本論文主要研究目的在於發展淡水蜆(Corbicula fluminea)暴露於重金屬-銅污染之生物反應機制模式,以鰓膜介面為基礎探討鈉離子傳輸通量及傳輸膜電位與開闔行為反應之間的生理交互關係,做為預測水域環境之銅可獲取率之理論基礎。整合以生物配體模式(biotic ligand model, BLM)為基礎之銅可獲取率(bioavailability)、Michaelis-Menten動力為基礎之鈉與銅離子傳輸通量及電化學為基礎之傳輸膜電位,發展淡水蜆電生理反應之機制模式,預測以鰓膜介面為基礎之受銅影響之生理毒性效應及閉殼反應。引用虹鱒(rainbow trout)暴露於銅污染之鈉離子傳輸抑制影響,及淡水蜆平衡/非平衡狀態下之鈉離子平衡/主動傳輸膜電位等相關文獻,驗證本論文提出之模式結果;模式預測結果與文獻實驗量測值極為接近,證明本研究機制模式預測之可靠度。評估之結果顯示,淡水蜆受到銅污染0至0.2 μM之生理毒性效應包含: (1) 鈉離子最大傳輸通量變化由12.9降至0.4 μmol g-1 hr-1,(2)體內鈉離子濃度變化由10.5降至7.5 mM,同時(3)因鈉離子傳輸通量導致鰓膜二側之平衡及主動膜電位變化將分別由-84.2去極化至10 mV及-8去極化至0 mV。本研究提出之模式架構進一步顯示: (1)造成抑制50%鈉離子傳輸膜電位及傳輸通量之外部銅離子活性濃度分別為0.072 與0.043 μM,鍵結於鰓膜表面之銅離子與抑制生理反應之關係為3Cu2+:1及1,(2)預測淡水蜆最大銅離子吸收傳輸通量為0.369 (95% CI: 0.26-0.51) μmol g-1 h-1,半飽和親合常數為7.87×10-3 (95% CI: 5.72×10-3-11.20×10-3) μM,及(3)呈現因地而異(site-specific)之應用性,預測在不同養殖地域之淡水蜆生理毒性效應。本論文提出之機制模式可提供一有效方法做為未來發展生物監測技術之基礎,進而提供水域重金屬污染之環境危害風險評估。zh_TW
dc.description.abstractThe purpose of this thesis is to develop a biological response mechanistic model based on the gill-based physiological interactions among sodium (Na) transport, Na membrane potential and valve closure response in freshwater clam (Corbicula fluminea) in response to waterborne copper (Cu) for providing a tool to assess Cu-bioavailability. This study have integrated Cu bioavailability based on biotic ligand model (BLM), Na and Cu uptake flux based on Michaelis-Menten kinetics, and electrochemically-based gill potentials, to derive an electrophysiological response model of C. fluminea describing the action mechanisms of a gill-based membrane interface by which valve closure behavior and Cu toxicity can be predicted. To test the proposed model against published data regarding inhibition of Na uptake in rainbow trout in response to Cu and Na total/active transport in equilibrium/non-equilibrium conditions in C. fluminea. The predictions are reasonably agreed with published measured, confirming that the predictive model is robust. The results show the physiological toxic response including (i) inhibition of M-M maximum Na uptake rate is 12.9 to 0.4 μmol g-1 hr-1, (ii) decrease of internal Na concentration is 10.5 to 7.5 mM, and (iii) depolarization of total and active transport are -84.2-10 and -8-0 mV, respectively in response to external Cu activity from 0 to 0.2 μM. This proposed framework captures the general features observed in the model applications including: (i) 50% inhibitory Cu2+ activities for Na membrane potential and uptake rate are estimated to be 0.072 and 0.043 μM, respectively, with a stoichiometry of 3Cu2+: 1 and 1 , (ii) predicted M-M maximum Cu uptake flux in C. fluminea is 0.369 (95% CI: 0.26-0.51) μmol g-1 h-1 with a half-saturation affinity constant of 7.87×10-3 (95% CI: 5.72×10-3-11.20×10-3) μM, and (iii) the site-specific clam gill potentials can be predicted in aquaculture settings. Here this study successfully provide a general approach to harness the potential new biomonitoring techniques for assessing the environmental impact of waterborne Cu.en
dc.description.provenanceMade available in DSpace on 2021-06-13T02:07:50Z (GMT). No. of bitstreams: 1
ntu-96-R94622016-1.pdf: 1668303 bytes, checksum: 7f73331a5b0c7018b1620c30cd65fc3f (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents目 錄

中文摘要 I
英文摘要 II
目錄 IV
表目錄 VI
圖目錄 VII
符號說明 XI

第一章 前言 1

第二章 研究背景與目的 3
2.1 研究背景 3
2.2 研究目的 6

第三章 文獻回顧 7
3.1 標的重金屬-銅 7
3.2 淡水蜆(Corbicula fluminea) 10
3.3 銅可獲取率 13
3.4 生物反應 19
3.4.1 開闔行為 20
3.4.2 生理鈉傳輸 24
3.4.3 膜電位 31

第四章 材料與方法 34
4.1 模式發展 36
4.1.1 結合銅可獲取率與閉殼反應 38
4.1.2 鈉傳輸與開闔之關聯模式 41
4.1.3 電生理反應模式 43
4.2 模式驗證 45
4.3 生理機制模式建構 46
4.3.1 鈉傳輸抑制 46
4.3.2 銅離子吸收傳輸動力 48
4.3.3 體內鈉濃度 49
4.4 鰓膜介面為基礎之生態毒理模式 50

第五章 結果與討論 53
5.1 鈉傳輸動力模擬 53
5.2 膜電位模擬 60
5.3 模式驗證 66
5.4 生理機制之預測 71
5.4.1 配體銅濃度與鈉傳輸抑制 71
5.4.2 銅離子吸收通量 77
5.4.3 體內鈉濃度 80
5.5 生態毒理模式預測 83
5.6 生理反應之生態毒理模式未來發展 88
5.6.1 即時水域含銅之環境監測 89
5.6.2 因地而異環境風險評估之應用 91

第六章 結論 94

第七章 未來研究建議 96

參考文獻 97
dc.language.isozh-TW
dc.subject生態毒理zh_TW
dc.subject淡水蜆zh_TW
dc.subject生物可獲取率zh_TW
dc.subject電生理zh_TW
dc.subject傳輸膜電位zh_TW
dc.subject鈉傳輸通量zh_TW
dc.subject銅zh_TW
dc.title結合銅可獲取率與淡水蜆之電生理反應模擬鰓膜介面交互作用zh_TW
dc.titleCopper bioavailability links electrophysiological response of freshwater clam Corbicula fluminea to model a gill membrane interface interactionsen
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.oralexamcommittee劉振宇,林明炤,陳柏青,蔡正偉
dc.subject.keyword淡水蜆,生物可獲取率,電生理,傳輸膜電位,鈉傳輸通量,銅,生態毒理,zh_TW
dc.subject.keywordCorbicula fluminea,Bioavailability,Electrophysiology,Gill membrane potential,Sodium transport,Copper,Ecotoxicology,en
dc.relation.page113
dc.rights.note有償授權
dc.date.accepted2007-07-02
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物環境系統工程學研究所zh_TW
顯示於系所單位:生物環境系統工程學系

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  未授權公開取用
1.63 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved