Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 臨床醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30535
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張上淳(Shan-Chwen Chang),王維恭(Wei-Kung Wang)
dc.contributor.authorYa-Chi Hoen
dc.contributor.author何雅琦zh_TW
dc.date.accessioned2021-06-13T02:07:27Z-
dc.date.available2012-08-08
dc.date.copyright2007-08-08
dc.date.issued2007
dc.date.submitted2007-07-02
dc.identifier.citation1. Archer, G. L. and M. P. Climo. 2005. Staphylococcus epidermidis and other coagulase-negative staphylococci. In: G. L. Mandell, J. E. Bennet, R. Dolon (ed). Mandell, Douglas and Bennett's principles and practice of infectious diseases. Elsevier Churchill Livingstone, Philadelphia. 2352-2360.
2. Archer, G. L. and M. W. Climo. 1994. Antimicrobial susceptibility of coagulase-negative staphylococci. Antimicrob. Agents Chemother. 38:2231- 2237.
3. Asensio, A., R. Canton, J. Vaque, J. Rossello, F. Calbo, J. Garcia-Caballero, V. Dominguez, A. Hernandez, A. Trilla and Epine Working Group. 2006. Nosocomial and community-acquired methicillin-resistant Staphylococcus aureus infections in hospitalized patients (Spain, 1993-2003). J. Hosp. Infect. 63:465-471.
4. Blot, S. I., K. H. Vandewoude, E. A. Hoste and F. A. Colardyn. 2002. Outcome and attributable mortality in critically ill patients with bacteremia involving methicillin-susceptible and methicillin-resistant Staphylococcus aureus. Arch. Intern. Med. 162:2229-2235.
5. Carrol, E. D., M. Guiver, S. Nkhoma, L. A. Mankhambo, J. Marsh, P. Balmer, D. L. Banda, G. Jeffers, S. A. White, E. M. Molyneux, M. E. Molyneux, R. L. Smyth and C. A. Hart. 2007. High pneumococcal DNA loads are associated with mortality in Malawian children with invasive pneumococcal disease. Pediatr. Infect. Dis. J. 26:416-422.
6. Chambers, H. F. 2001. The changing epidemiology of Staphylococcus aureus? Emerg. Infect. Dis. 7:178-182.
7. Chambers, H. F., B. J. Hartman and A. Tomasz. 1985. Increased amounts of a novel penicillin-binding protein in a strain of methicillin-resistant Staphylococcus aureus exposed to nafcillin. J. Clin. Invest. 76:325-331.
8. Chang, F. Y. 2000. Staphylococcus aureus bacteremia and endocarditis. J. Microbiol. Immunol. Infect. 33:63-68.
9. Chang, F. Y., B. B. MacDonald, J. E. Peacock, Jr., D. M. Musher, P. Triplett, J. M. Mylotte, A. O'Donnell, M. M. Wagener and V. L. Yu. 2003. A prospective multicenter study of Staphylococcus aureus bacteremia: incidence of endocarditis, risk factors for mortality, and clinical impact of methicillin resistance. Medicine (Baltimore). 82:322-332.
10. Chaves, F., J. Garcia-Martinez, S. de Miguel, F. Sanz and J. R. Otero. 2005. Epidemiology and clonality of methicillin-resistant and methicillin-susceptible Staphylococcus aureus causing bacteremia in a tertiary-care hospital in Spain. Infect. Control Hosp. Epidemiol. 26:150-156.
11. Chen, M. L., S. C. Chang, H. J. Pan, P. R. Hsueh, L. S. Yang, S. W. Ho and K. T. Luh. 1999. Longitudinal analysis of methicillin-resistant Staphylococcus aureus isolates at a teaching hospital in Taiwan. J. Formos. Med. Assoc. 98:426- 432.
12. Chow, J. W. and V. L. Yu. 1999. Combination antibiotic therapy versus monotherapy for gram-negative bacteraemia: a commentary. Int. J. Antimicrob. Agents. 11:7-12.
13. Corless, C. E., M. Guiver, R. Borrow, V. Edwards-Jones, A. J. Fox and E. B. Kaczmarski. 2001. Simultaneous detection of Neisseria meningitidis, Haemophilus influenzae, and Streptococcus pneumoniae in suspected cases of meningitis and septicemia using real-time PCR. J. Clin. Microbiol. 39:1553- 1558.
14. Cosgrove, S. E., Y. Qi, K. S. Kaye, S. Harbarth, A. W. Karchmer and Y. Carmeli. 2005. The impact of methicillin resistance in Staphylococcus aureus bacteremia on patient outcomes: mortality, length of stay, and hospital charges. Infect. Control Hosp. Epidemiol. 26:166-174.
15. Costa, A. M., I. Kay and S. Palladino. 2005. Rapid detection of mecA and nuc genes in staphylococci by real-time multiplex polymerase chain reaction. Diagn. Microbiol. Infect. Dis. 51:13-17.
16. Das, I., N. O'Connell and P. Lambert. 2007. Epidemiology, clinical and laboratory characteristics of Staphylococcus aureus bacteraemia in a university hospital in UK. J. Hosp. Infect. 65:117-123.
17. Einsele, H., H. Hebart, G. Roller, J. Loffler, I. Rothenhofer, C. A. Muller, R. A. Bowden, J. van Burik, D. Engelhard, L. Kanz and U. Schumacher. 1997. Detection and identification of fungal pathogens in blood by using molecular probes. J. Clin. Microbiol. 35:1353-1360.
18. Espy, M. J., J. R. Uhl, L. M. Sloan, S. P. Buckwalter, M. F. Jones, E. A. Vetter, J. D. Yao, N. L. Wengenack, J. E. Rosenblatt, F. R. Cockerill, 3rd and T. F. Smith. 2006. Real-time PCR in clinical microbiology: applications for routine laboratory testing. Clin. Microbiol. Rev. 19:165-256.
19. Fang, H. and G. Hedin. 2003. Rapid screening and identification of methicillin resistant Staphylococcus aureus from clinical samples by selective -broth and real time PCR assay. J. Clin. Microbiol. 41:2894-2899.
20. Fowler, V. G., Jr., J. M. Miro, B. Hoen, C. H. Cabell, E. Abrutyn, E. Rubinstein, G. R. Corey, D. Spelman, S. F. Bradley, B. Barsic, P. A. Pappas, K. J. Anstrom, D. Wray, C. Q. Fortes, I. Anguera, E. Athan, P. Jones, J. T. van der Meer, T. S. Elliott, D. P. Levine and A. S. Bayer. 2005. Staphylococcus aureus endocarditis: a consequence of medical progress. JAMA. 293:3012-3021.
21. Fowler, V. G., Jr., M. K. Olsen, G. R. Corey, C. W. Woods, C. H. Cabell, L. B. Reller, A. C. Cheng, T. Dudley and E. Z. Oddone. 2003. Clinical identifiers of complicated Staphylococcus aureus bacteremia. Arch. Intern. Med. 163:2066- 2072.
22. Francois, P., D. Pittet, M. Bento, B. Pepey, P. Vaudaux, D. Lew and J. Schrenzel. 2003. Rapid detection of methicillin-resistant Staphylococcus aureus directly from sterile or nonsterile clinical samples by a new molecular assay. J. Clin. Microbiol. 41:254-260.
23. Glerant, J. C., D. Hellmuth, J. L. Schmit, J. P. Ducroix and V. Jounieaux. 1999. Utility of blood cultures in community-acquired pneumonia requiring hospitalization: influence of antibiotic treatment before admission. Respir. Med. 93:208-212.
24. Goerke, C., M. G. Bayer and C. Wolz. 2001. Quantification of bacterial transcripts during infection using competitive reverse transcription-PCR (RT-PCR) and LightCycler RT-PCR. Clin. Diagn. Lab. Immunol. 8:279-282.
25. Gomez, J., E. Garcia-Vazquez, R. Banos, M. Canteras, J. Ruiz, V. Banos, J. A. Herrero and M. Valdes. 2007. Predictors of mortality in patients with methicillin-resistant Staphylococcus aureus (MRSA) bacteraemia: the role of empiric antibiotic therapy. Eur. J. Clin. Microbiol. Infect. Dis. 26:239-245.
26. Grace, C. J., J. Lieberman, K. Pierce and B. Littenberg. 2001. Usefulness of blood culture for hospitalized patients who are receiving antibiotic therapy. Clin. Infect. Dis. 32:1651-1655.
27. Grisold, A. J., E. Leitner, G. Muhlbauer, E. Marth and H. H. Kessler. 2002. Detection of methicillin-resistant Staphylococcus aureus and simultaneous confirmation by automated nucleic acid extraction and real-time PCR. J. Clin. Microbiol. 40:2392-2397.
28. Guilarde, A. O., M. D. Turchi, C. M. Martelli and M. G. Primo. 2006. Staphylococcus aureus bacteraemia: incidence, risk factors and predictors for death in a Brazilian teaching hospital. J. Hosp. Infect. 63:330-336.
29. Hackett, S. J., M. Guiver, J. Marsh, J. A. Sills, A. P. Thomson, E. B. Kaczmarski and C. A. Hart. 2002. Meningococcal bacterial DNA load at presentation correlates with disease severity. Arch. Dis. Child. 86:44-46.
30. Hagen, R. M., I. Seegmuller, J. Navai, I. Kappstein, N. Lehn and T. Miethke. 2005. Development of a real-time PCR assay for rapid identification of methicillin-resistant Staphylococcus aureus from clinical samples. Int. J. Med. Microbiol. 295:77-86.
31. Heininger, A., M. Binder, A. Ellinger, J. Pfisterer, K. Botzenhart, K. Unertl and G. Doering. 2002. Effect of comprehensive validation of the template isolation procedure on the reliability of bacteraemia detection by a 16S rRNA gene PCR. Clin. Microbiol. Infect. 10:452 - 458.
32. Heininger, A., M. Binder, A. Ellinger, J. Pfisterer, K. Botzenhart, K. Unertl and G. Doering. 2004. Effect of comprehensive validation of the template isolation procedure on the reliability of bacteraemia detection by a 16S rRNA gene PCR. Clin. Microbiol. Infect. 10:452-458.
33. Heininger, A., M. Binder, S. Schmidt, K. Unertl, K. Botzenhart and G. Doring. 1999. PCR and blood culture for detection of Escherichia coli bacteremia in rats. J. Clin. Microbiol. 37:2479-2482.
34. Hope, W. W., A. P. Morton, D. F. Looke, J. M. Schooneveldt and G. R. Nimmo. 2004. A PCR method for the identification of methicillin-resistant Staphylococcus aureus (MRSA) from screening swabs. Pathology. 36:265-268.
35. Hsueh, P. R., L. J. Teng, W. H. Chen, H. J. Pan, M. L. Chen, S. C. Chang, K. T. Luh and F. Y. Lin. 2004. Increasing prevalence of methicillin-resistant Staphylococcus aureus causing nosocomial infections at a university hospital in Taiwan from 1986 to 2001. Antimicrob. Agents Chemother. 48:1361-1364.
36. Huletsky, A., R. Giroux, V. Rossbach, M. Gagnon, M. Vaillancourt, M. Bernier, F. Gagnon, K. Truchon, M. Bastien, F. J. Picard, A. van Belkum, M. Ouellette, P. H. Roy and M. G. Bergeron. 2004. New real-time PCR assay for rapid detection of methicillin-resistant Staphylococcus aureus directly from specimens containing a mixture of staphylococci. J. Clin. Microbiol. 42:1875- 1884.
37. Huletsky, A., P. Lebel, F. J. Picard, M. Bernier, M. Gagnon, N. Boucher and M. G. Bergeron. 2005. Identification of methicillin-resistant Staphylococcus aureus carriage in less than 1 hour during a hospital surveillance program. Clin. Infect. Dis. 40:976-981.
38. Iwaya, A., S. Nakagawa, N. Iwakura, I. Taneike, M. Kurihara, T. Kuwano, F. Gondaira, M. Endo, K. Hatakeyama and T. Yamamoto. 2005. Rapid and quantitative detection of blood Serratia marcescens by a real-time PCR assay: its clinical application and evaluation in a mouse infection model. FEMS Microbiol. Lett. 248:163-170.
39. Jensen, A. G., C. H. Wachmann, F. Espersen, J. Scheibel, P. Skinhoj and N. Frimodt-Moller. 2002. Treatment and outcome of Staphylococcus aureus bacteremia: a prospective study of 278 cases. Arch. Intern. Med. 162:25-32.
40. Jevons, M. 1961. 'Celbenin-resistant' staphylococci. BMJ. 1:124-125.
41. Jordan, J. A. and M. B. Durso. 2005. Real-time polymerase chain reaction for detecting bacterial DNA directly from blood of neonates being evaluated for sepsis. J. Mol. Diagn. 7:575-581.
42. Katayama, Y., T. Ito and K. Hiramatsu. 2000. A new class of genetic element, Staphylococcus cassette chromosome mec, encodes methicillin resistance in Staphylococcus aureus. Antimicrob. Agents Chemother. 44:1549-1555.
43. Khatib, R., L. B. Johnson, M. G. Fakih, K. Riederer, A. Khosrovaneh, M. Shamse Tabriz, M. Sharma and S. Saeed. 2006. Persistence in Staphylococcus aureus bacteremia: incidence, characteristics of patients and outcome. Scand. J. Infect. Dis. 38:7-14.
44. Kitchin, P. A., Z. Szotyori, C. Fromholc and N. Almond. 1990. Avoidance of PCR false positives [corrected]. Nature. 344:201.
45. Kreisel, K., K. Boyd, P. Langenberg and M. C. Roghmann. 2006. Risk factors for recurrence in patients with Staphylococcus aureus infections complicated by bacteremia. Diagn. Microbiol. Infect. Dis. 55:179-184.
46. Lass-Florl, C., J. Aigner, E. Gunsilius, A. Petzer, D. Nachbaur, G. Gastl, H. Einsele, J. Loffler, M. P. Dierich and R. Wurzner. 2001. Screening for Aspergillus spp. using polymerase chain reaction of whole blood samples from patients with haematological malignancies. Br. J. Haematol. 113:180-184.
47. Lodise, T. P., P. S. McKinnon, L. Swiderski and M. J. Rybak. 2003. Outcomes analysis of delayed antibiotic treatment for hospital-acquired Staphylococcus aureus bacteremia. Clin. Infect. Dis. 36:1418-1423.
48. Loeffler, J., N. Henke, H. Hebart, D. Schmidt, L. Hagmeyer, U. Schumacher and H. Einsele. 2000. Quantification of fungal DNA by using fluorescence resonance energy transfer and the light cycler system. J. Clin. Microbiol. 38:586-590.
49. Lowy, F. D. 1998. Staphylococcus aureus infections. N. Engl. J. Med. 339:520- 532.
50. Lowy, F. D. 2005. Chapter 120. Staphylococcal infections. In: D. L. Kasper, E. Braunwald, A. Fauci, S. Hauser, D. Longo, J. L. James (ed). Harrison's Principles of Internal Medicine. The McGraw-Hill Companies, New York. 814-823.
51. Maidhof, H., B. Reinicke, P. Blumel, B. Berger-Bachi and H. Labischinski. 1991. femA, which encodes a factor essential for expression of methicillin resistance, affects glycine content of peptidoglycan in methicillin-resistant and methicillin-susceptible Staphylococcus aureus strains. J. Bacteriol. 173:3507- 3513.
52. Maki, D. G., C. E. Weise and H. W. Sarafin. 1977. A semiquantitative culture method for identifying intravenous-catheter-related infection. N. Engl. J. Med. 296:1305-1309.
53. Massi, M. N., T. Shirakawa, A. Gotoh, A. Bishnu, M. Hatta and M. Kawabata. 2005. Quantitative detection of Salmonella enterica serovar Typhi from blood of suspected typhoid fever patients by real-time PCR. Int. J. Med. Microbiol. 295:117-120.
54. Matsuda, K., H. Tsuji, T. Asahara, Y. Kado and K. Nomoto. 2007. Sensitive quantitative detection of commensal bacteria by rRNA-targeted reverse transcription-PCR. Appl. Environ. Microbiol. 73:32-39.
55. McKenzie, R. and L. G. Reimer. 1987. Effect of antimicrobials on blood cultures in endocarditis. Diagn. Microbiol. Infect. Dis. 8:165-172.
56. Mitka, S., C. Anetakis, E. Souliou, E. Diza and A. Kansouzidou. 2007. Evaluation of different PCR assays for early detection of acute and relapsing brucellosis in humans in comparison with conventional methods. J. Clin. Microbiol. 45:1211-1218.
57. Moise-Broder, P. A., G. Sakoulas, A. Forrest and J. J. Schentag. 2007. Vancomycin in vitro bactericidal activity and its relationship to efficacy in clearance of methicillin-resistant Staphylococcus aureus bacteremia. Antimicrob. Agents Chemother. [Epub ahead of print].
58. Moreillon, P., Y.-A. Que and M. P. Glauser. 2005. Staphylococcus aureus (Including staphylococcal toxic shock). In G. L. Mandell, J. E. Bennet, R. Dolon (ed). Mandell, Douglas and Bennett's principles and practice of infectious diseases. Elsevier Churchill Livingstone, Philadelphia. 2321-2352.
59. Nadkarni, M. A., F. E. Martin, N. A. Jacques and N. Hunter. 2002. Determination of bacterial load by real-time PCR using a broad-range (universal) probe and primers set. Microbiology. 148:257-266.
60. Navarro, E., J. C. Segura, M. J. Castano and J. Solera. 2006. Use of real-time quantitative polymerase chain reaction to monitor the evolution of Brucella melitensis DNA load during therapy and post-therapy follow-up in patients with brucellosis. Clin. Infect. Dis. 42:1266-1273.
61. Nilsson, P., H. Alexandersson and T. Ripa. 2005. Use of broth enrichment and real-time PCR to exclude the presence of methicillin-resistant Staphylococcus aureus in clinical samples: a sensitive screening approach. Clin. Microbiol. Infect. 11:1027-1034.
62. Oberdorfer, K., S. Pohl, M. Frey, K. Heeg and C. Wendt. 2006. Evaluation of a single-locus real-time polymerase chain reaction as a screening test for specific detection of methicillin-resistant Staphylococcus aureus in ICU patients. Eur. J. Clin. Microbiol. Infect. Dis. 25:657-663.
63. Ovstebo, R., P. Brandtzaeg, B. Brusletto, K. B. Haug, K. Lande, E. A. Hoiby and P. Kierulf. 2004. Use of robotized DNA isolation and real-time PCR to quantify and identify close correlation between levels of Neisseria meningitidis DNA and lipopolysaccharides in plasma and cerebrospinal fluid from patients with systemic meningococcal disease. J. Clin. Microbiol. 42:2980-2987.
64. Paule, S. M., A. C. Pasquariello, R. B. Thomson, Jr., K. L. Kaul and L. R. Peterson. 2005. Real-time PCR can rapidly detect methicillin-susceptible and methicillin-resistant Staphylococcus aureus directly from positive blood culture bottles. Am. J. Clin. Pathol. 124:404-407.
65. Peters, R. P., T. Mohammadi, C. M. Vandenbroucke-Grauls, S. A. Danner, M. A. van Agtmael and P. H. Savelkoul. 2004a. Detection of bacterial DNA in blood samples from febrile patients: underestimated infection or emerging contamination? FEMS Immunol. Med. Microbiol. 42:249-253.
66. Peters, R. P., M. A. van Agtmael, S. A. Danner, P. H. Savelkoul and C. M. Vandenbroucke-Grauls. 2004b. New developments in the diagnosis of bloodstream infections. Lancet Infect. Dis. 4:751-760.
67. Pryce, T. M., I. D. Kay, S. Palladino and C. H. Heath. 2003. Real-time automated polymerase chain reaction (PCR) to detect Candida albicans and Aspergillus fumigatus DNA in whole blood from high-risk patients. Diagn. Microbiol. Infect. Dis. 47:487-496.
68. Rosato, A. E., W. A. Craig and G. L. Archer. 2003. Quantitation of mecA transcription in oxacillin-resistant Staphylococcus aureus clinical isolates. J. Bacteriol. 185:3446-3452.
69. Rosenberg, A. L. 2002. Recent innovations in intensive care unit risk-prediction models. Curr. Opin. Crit. Care. 8:321-330.
70. Sabet, N. S., G. Subramaniam, P. Navaratnam and S. D. Sekaran. 2006. Simultaneous species identification and detection of methicillin resistance in staphylococci using triplex real-time PCR assay. Diagn. Microbiol. Infect. Dis. 56:13-18.
71. Sabet, N. S., G. Subramaniam, P. Navaratnam and S. D. Sekaran. 2007a. Detection of methicillin- and aminoglycoside-resistant genes and simultaneous identification of S. aureus using triplex real-time PCR Taqman assay. J. Microbiol. Methods. 68:157-162.
72. Sabet, N. S., G. Subramaniam, P. Navaratnam and S. D. Sekaran. 2007b. Detection of mecA and ermA genes and simultaneous identification of Staphylococcus aureus using triplex real-time PCR from Malaysian S. aureus strain collections. Int. J. Antimicrob. Agents. 29:582-585.
73. Salo, P., K. Laitinen and M. Leinonen. 1999. Detection of pneumococcus from whole blood, buffy coat and serum samples by PCR during bacteremia in mice. APMIS. 107:601-605.
74. Schramm, G. E., J. A. Johnson, J. A. Doherty, S. T. Micek and M. H. Kollef. 2007. Increasing incidence of sterile-site infections due to non-multidrug-resistant, oxacillin-resistant Staphylococcus aureus among hospitalized patients. Infect. Control Hosp. Epidemiol. 28:95-97.
75. Shurland, S., M. Zhan, D. D. Bradham and M. C. Roghmann. 2007. Comparison of mortality risk associated with bacteremia due to methicillin-resistant and methicillin-susceptible Staphylococcus aureus. Infect. Control Hosp. Epidemiol. 28:273-279.
76. Soriano, A., J. A. Martinez, J. Mensa, F. Marco, M. Almela, A. Moreno-Martinez, F. Sanchez, I. Munoz, M. T. Jimenez de Anta and E. Soriano. 2000. Pathogenic significance of methicillin resistance for patients with Staphylococcus aureus bacteremia. Clin. Infect. Dis. 30:368-373.
77. Stamper, P. D., M. Cai, T. Howard, S. Speser and K. C. Carroll. 2007. Clinical validation of the molecular-based BD GeneOhmTM StaphSR for the direct detection of Staphylococcus aureus and methicillin-resistant Staphylococcus aureus in positive blood cultures. J. Clin. Microbiol. [Epub ahead of print].
78. Stratidis, J., F. J. Bia and S. C. Edberg. 2007. Use of real-time polymerase chain reaction for identification of methicillin-resistant Staphylococcus aureus directly from positive blood culture bottles. Diagn. Microbiol. Infect. Dis. 58:199-202.
79. Such, J., R. Frances, C. Munoz, P. Zapater, J. Casellas, A. Cifuntes, F. Rodriguez-Valera, S. Pascual, J. Sola-Vera, F. Carnicer, F. Uceda, J. Palazon and M. Perez-Mateo. 2002. Detection and identification of bacterial DNA in patients with cirrhosis and culture-negative, nonneutrocytic ascites. Hepatology. 36:135 - 141.
80. Tacconelli, E., A. E. Pop-Vicas and E. M. D'Agata. 2006. Increased mortality among elderly patients with methicillin-resistant Staphylococcus aureus bacteraemia. J. Hosp. Infect. 64:251-256.
81. Tan, T. Y., S. Corden, R. Barnes and B. Cookson. 2001. Rapid identification of methicillin-resistant Staphylococcus aureus from positive blood cultures by real-time fluorescence PCR. J. Clin. Microbiol. 39:4529-4531.
82. Thomas, L. C., H. F. Gidding, A. N. Ginn, T. Olma and J. Iredell. 2007. Development of a real-time Staphylococcus aureus and MRSA (SAM-) PCR for routine blood culture. J. Microbiol. Methods. 68:296-302.
83. van Haeften, R., S. Palladino, I. Kay, T. Keil, C. Heath and G. W. Waterer. 2003. A quantitative LightCycler PCR to detect Streptococcus pneumoniae in blood and CSF. Diagn. Microbiol. Infect. Dis. 47:407-414.
84. Volkmann, H., T. Schwartz, P. Bischoff, S. Kirchen and U. Obst. 2004. Detection of clinically relevant antibiotic-resistance genes in municipal wastewater using real-time PCR (TaqMan). J. Microbiol. Methods. 56:277-286.
85. Wang, J. T., Y. C. Chen, T. L. Yang and S. C. Chang. 2002. Molecular epidemiology and antimicrobial susceptibility of methicillin-resistant Staphylococcus aureus in Taiwan. Diagn. Microbiol. Infect. Dis. 42:199-203.
86. Wang, J. T., C. T. Fang, Y. C. Chen, C. L. Wu, M. L. Chen and S. C. Chang. 2007. Staphylococcal cassette chromosome mec in MRSA, Taiwan. Emerg. Infect. Dis. 13:494-497.
87. Wang, W. K., C. T. Fang, H. L. Chen, C. F. Yang, Y. C. Chen, M. L. CHen, S. Y. Chen, J. Y. Yang, J. H. Lin, P. C. Yang and S. C. Chang. 2005. Detection of severe acute respiratory distress syndrome coronavirus RNA in plasma during the course of infection. J. Clin. Microbiol. 43:962 - 965.
88. Warren, D. K., R. S. Liao, L. R. Merz, M. Eveland and W. M. Dunne, Jr. 2004. Detection of methicillin-resistant Staphylococcus aureus directly from nasal swab specimens by a real-time PCR assay. J. Clin. Microbiol. 42:5578- 5581.
89. Williamson, E. C., J. P. Leeming, H. M. Palmer, C. G. Steward, D. Warnock, D. I. Marks and M. R. Millar. 2000. Diagnosis of invasive aspergillosis in bone marrow transplant recipients by polymerase chain reaction. Br. J. Haematol. 108:132-139.
90. Wyllie, D. H., D. W. Crook and T. E. Peto. 2006. Mortality after Staphylococcus aureus bacteraemia in two hospitals in Oxfordshire, 1997-2003: cohort study. BMJ. 333:281.
91. Yamakami, Y., A. Hashimoto, I. Tokimatsu and M. Nasu. 1996. PCR detection of DNA specific for Aspergillus species in serum of patients with invasive aspergillosis. J. Clin. Microbiol. 34:2464-2468.
92. Zetola, N., J. S. Francis, E. L. Nuermberger and W. R. Bishai. 2005. Community-acquired methicillin-resistant Staphylococcus aureus: an emerging threat. Lancet Infect. Dis. 5:275-286.
93. Zucol, F., R. A. Ammann, C. Berger, C. Aebi, M. Altwegg, F. K. Niggli and D. Nadal. 2006. Real-time quantitative broad-range PCR assay for detection of the 16S rRNA gene followed by sequencing for species identification. J. Clin. Microbiol. 44:2750-2759.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30535-
dc.description.abstract過去數十年來,金黃色葡萄球菌(Staphylococcus aureus)在社區及院內感染均有顯著增加,其中methicillin抗藥性金黃色葡萄球菌 (methicillin-resistant S. aureus, MRSA) 為重要原因。MRSA菌血症不僅是一個預後不良的因子,更可能造成持續性的感染,菌血症的復發,住院天數延長及高死亡率;因此,建立有效的新指標來追蹤治療,刻不容緩。隨著分子生物技術的進步,已有研究建立以即時性聚合酶連鎖反應 (real-time polymerase chain reaction, real-time PCR) 用於血液培養瓶及鼻腔拭子的MRSA快速偵測,但目前仍缺乏以此作為MRSA定量及追蹤指標的相關研究。
  本研究的第一部份,我們利用Franocois等人所發表的mecA探針及引子建立一即時性聚合酶連鎖反應 (J. Clin. Microbiol. 2003;41:254),以已知mecA DNA copy number之標準質體 (plasmid standard) 來定量檢體中之未知mecA DNA copy number。我們也建立了femASE的即時性聚合酶連鎖反應來排除常見的汙染菌 – Staphylococcus epidermidis。mecA DNA copy number與已知MRSA菌量呈線性關係 (相關係數 = 0.9967),與含有已知MRSA菌量之健康成人全血亦呈線性關係 (相關係數 = 0.9995),每毫升全血之敏感度達100 copies mecA DNA。經四日攝氏4度保存下,mecA DNA copy number維持一定值,證實以攝氏4度保存四日之血液檢體做定量分析仍為可行。
本研究的第二部份,我們利用此即時性聚合酶連鎖反應來定量以血液培養確診為MRSA菌血症的病人,血液中mecA DNA copy number,探討與臨床指標與病程之關係。在這個前瞻性觀察性研究中,在民國九十五年七月一日至九十六年一月三十一日間,於台大醫院加護病房住院病人中,以血液培養確診為MRSA菌血症者,計有20位病人加入本研究,共250個全血檢體,其中87個檢體採檢同時有血液培養同時送檢。其中7位病人死於MRSA菌血症 (死亡組),13位病人存活 (存活組)。除了死亡組的病人有較高比例曾經接受機械性瓣膜置換術 (43% vs. 0%, P = 0.03),兩組病人的本身疾病、MRSA感染部位、抗生素之選擇、抗MRSA抗生素給予之時間延誤及感染性導管之移除時間延誤均無顯著差異。
mecA DNA level在血液培養MRSA陽性時較血液培養陰性時高 (1.65x105 vs. 3.49x104 copies/mL, P = 0.00002),在發燒時較退燒時高 (9.38x104 vs. 2.81x104 copies/mL, P = 0.00005),在MRSA治療小於三天時較治療大於或等於三天時高(9.26x104 vs. 3.07x104 copies/mL, P = 0.002)。這樣的關係在其他臨床常使用之參考因子,如白血球數及C-reactive protein,則不一定。值得注意的是,血液培養陰性時往往仍能測得mecA DNA level (interquartile range [IQR], 5.45 x103-7.56 x104 copies/mL)。
  比較死亡組與存活組,在第一套MRSA陽性血液培養採檢而尚未投予治療時,mecA DNA level兩組間並沒有差異(2.34 x105 vs. 3.98 x104 copies/mL, P = 0.074)。但在MRSA治療後第三天(7.17x105 vs. 2.00 x104 copies/mL, P = 0.02)及第七天(1.62x105 vs 2.31x104 copies/mL, P = 0.04),死亡組之mecA DNA level較存活組高。死亡組mecA DNA在治療第三天(0.49 vs -0.37 log, P = 0.06)及第七天(0.00 vs -0.42 log, P = 0.07)有上升或持續的趨勢,但未達統計意義。
  本研究主要目的在於建立一個即時性聚合酶連鎖反應以定量mecA gene,並以此探討以血液培養確診之MRSA菌血症病人血液中mecA DNA量與臨床指標及病程的關係。本研究發現,此即時性聚合酶反應可用於MRSA菌血症之病程監測,在治療後第三天mecA DNA level可作為評估治療成效之有效新指標。未來以更多病人的不同病程可證實並深入探討本研究之進一步發現。
zh_TW
dc.description.abstractDuring the last decade, methicillin-resistant Staphylococcus aureus (MRSA) has become an increasingly important pathogen in both nosocomial and community - acquired infections. The recent report that MRSA bacteremia, a poor prognostic factor for MRSA infections, was responsible for persistent infections, recurrent episodes, prolonged hospital stay and high mortality rate, suggested the importance and the need of developing new methods and good parameters to monitor MRSA bacteremia. With the advancement in molecular technologies, several real-time polymerase chain reaction (PCR) assays were reported to detect MRSA in various clinical samples. However, the possibility of using a quantitative real-time PCR to quantify and monitor MRSA bacteremia has not been explored.
For the first specific aim of this study, we have established a quantitative real-time PCR assay for mecA gene by using known copy numbers of a plasmid containing mecA DNA as standard and the previously described mecA specific primers and probes (Francois et al., J. Clin. Microbiol. 2003;41:254). A real-time PCR assay for femASE was also established to exclude the possibility of contamination by Staphylococcus epidermidis. A linear relationship was found between mecA DNA copy numbers detected and the colony forming units (CFU) of a MRSA reference strain (correlation coefficient = 0.9967) and in MRSA-spiked whole blood samples (correlation coefficient = 0.9995). The sensitivity of the assay was estimated to be 100 copies of mecA DNA per mL whole blood. The levels of mecA DNA detected for DNA extracted from MRSA in whole blood stored at 4°C for up to 4 days remain stable, suggesting the feasibility of quantifying mecA DNA derived from MRSA in stored whole blood samples.
For the second aim of this study, we employed the quantitative real-time PCR assay for mecA gene to investigate the mecA DNA load in patients with culture-confirmed MRSA bacteremia and its relationships to various clinical parameters and disease outcome. This prospective observational study enrolled patients with culture-proven MRSA bacteremia in the intensive care units of National Taiwan University Hospital between July 1, 2006 and January 31, 2007. A total of 250 blood samples from 20 patients were collected, and 87 blood samples of them had concomitant blood culture performed. Among the 20 patients, 7 patients died of MRSA infection (non-survivor group) and 13 patients survived the episode (survivor group). The underlying illness was not significantly different between the two groups except for a higher percentage of mechanical valve implantation in patients of the non-survivor group than those of the survivor group (43% vs. 0%, P = 0.03). The foci of MRSA infection, the choice and delay of initial anti-MRSA therapy, delay in catheter removal were not statistically different between the two groups.
The level of mecA DNA levels were higher in samples with concomitant positive blood culture than those with negative blood cultures (1.65x105 vs. 3.49 x104 copies/mL, P = 0.00002), in samples taken during febrile period than those taken during afebrile period (9.38x104 vs. 2.81x104 copies/mL, P = 0.00005), and samples from patients receiving less than 3 days of anti-MRSA therapy than those from patients receiving >= 3 days of anti-MRSA therapy (9.26x104 vs. 3.07x104 copies/mL, P = 0.002). This trend was variable in other clinical parameters, such as white blood cell counts and C-reactive protein. Of note, the concomitant mecA DNA levels in the blood culture-negative samples were not zero (interquartile range (IQR), 5.45 x103-7.56 x104 copies/mL).
On the day of first positive blood culture when the treatment was not initiated, non-survivors and survivors had similar mecA DNA levels (2.34 x105 vs. 3.98 x104 copies/mL, P = 0.07). mecA DNA levels on the third day of treatment (7.17x105 vs. 2.00 x104 copies/mL, P = 0.02) and on the seventh day of treatment (1.62x105 vs 2.31x104 copies/mL, P = 0.04) were higher in the non-survivors than those in the survivors. There was a trend of persistence or increase of mecA DNA levels in the non-survivors and decreasing mecA DNA levels in the survivors at day 3 (0.49 vs -0.37 log, P = 0.06) and day 7 of treatment (0.00 vs -0.42 log, P = 0.07), though this has not reach statistical significance.
The overall objective of this study is to develop a quantitative real-time PCR assay for mecA gene and employ this assay to investigate the mecA DNA load in patients with culture-confirmed MRSA bacteremia and its relationships to various clinical parameters and disease outcome. Our study suggested that this mecA real-time PCR assay can be used to monitor MRSA bacteremia at day 3 and day 7 of treatment and has potentials to provide novel and useful parameters to evaluate treatment of MRSA bacteremia. Future investigation with a larger number of patients of MRSA bacteremia with different clinical outcomes would validate and extend the findings from this study.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T02:07:27Z (GMT). No. of bitstreams: 1
ntu-96-P94421023-1.pdf: 1739665 bytes, checksum: 7e4b76bd372e51ff5d444f4cb01c3338 (MD5)
Previous issue date: 2007
en
dc.description.tableofcontentsI. Abstract 1
II. Abstract (Chinese) 3
III. Introduction 5
3.1 Staphylococcus aureus 5
3.2 Methicillin-resistant S. aureus (MRSA) 5
3.3 MRSA bacteremia 5
3.4 Diagnosis of bacteremia 6
3.5 Real-time polymerase chain reaction (PCR) 6
3.6 Real-time PCR assays in MRSA 7
3.7 Aims of this study 7
IV. Materials and methods 9
4.1 Methods 9
4.1.1 Quantification of staphylococci by spread-plate method 9
4.1.2 Bacteria-spiked blood samples 9
4.1.3 DNA extraction from blood samples 9
4.1.4 Construction of plasmid standards 9
4.1.4.1 Design of primers and probes 9
4.1.4.2 Isolation of genomic DNA from MRSA and Staphylococcus epidermidis 10
4.1.4.3 PCR 10
4.1.4.4 Purification of DNA 11
4.1.4.5 Transformation 11
4.1.4.6 DNA mini-preparation 12
4.1.4.7 Restriction enzyme digestion 13
4.1.4.8 Sequencing analysis 13
4.1.4.9 Maxi-DNA preparation of plasmid standard 13
4.1.5 Real-time PCR 13
4.1.5.1 Quantitative real-time PCR for mecA DNA 13
4.1.5.2 Quantitative real-time PCR for femASE DNA 14
4.2 Study participants 14
4.2.1 Study design 14
4.2.2 Inclusion criteria 14
4.2.3 Exclusion criteria 15
4.2.4 Sample collection 15
4.2.5 Clinical parameters 15
4.2.6 Definitions 15
4.3 Statistic analysis 16
V. Results 17
5.1 Establishment of a quantitative real-time PCR assay for mecA gene 17
5.2 Quantification of mecA DNA derived from MRSA in whole blood 17
5.3 Study patients 18
5.3.1 Underlying conditions 18
5.3.2 MRSA bacteremia 18
5.4 Quantification of mecA DNA in blood samples of the study patients 18
5.5 Comparison of mecA DNA level with clinical parameters 19
5.5.1 Blood culture 19
5.5.2 Fever 19
5.5.3 Treatment 20
5.6 Comparison between survivors and non-survivors 20
VI. Discussion 22
6.1 The use of mecA and femASE real-time PCR assay 22
6.2 Quantification of bacteria in blood 23
6.3 Clinical correlation of bacterial DNA copies in blood samples 24
6.4 Bacterial DNA copies during the course of infection 25
6.5 Clinical implications of the quantity of mecA DNA 25
6.6 Conclusion 27
VII. Perspectives 28
7.1 Patients with prosthetic valves 28
7.2 Positive blood culture 28
7.3 Duration of therapy 28
7.4 Guide of treatment 29
7.5 Perspectives 29
VIII. References 30
IX. Tables 39
Table 1. The sequences of the primers and probes 39
Table 2. Clinical characteristics of the study patients 40
Table 3. Features of MRSA infection of the study patients 41
Table 4. Parameters in blood culture-positive and blood culture-negative samples 42
Table 5. Parameters in samples taken during the febrile and afebrile periods 43
Table 6. Parameters in samples taken < 3 days or >= 3days of anti-MRSA treatment 44
Table 7. Parameters on the day of first MRSA-positive blood culture 45
Table 8. Parameters at day 3 and day 7 of appropriate treatment 46
Table 9. Changes in clinical parameters after appropriate treatment 47
Table 10. Summary of studies of quantification of bacterial and fungal pathogens in blood 48
X. Figures 49
Fig. 1. The quantitative real-time PCR assays for the mecA genes 49
Fig. 2. The quantitative real-time PCR assays for femASE genes 50
Fig. 3. Quantification of mecA DNA derived from known colony forming units (CFU) of MRSA in normal saline and fresh whole blood samples 51
Fig. 4. Quantification of mecA DNA derived from known CFU of MRSA in stored whole blood samples 52
Fig. 5. Quantification of mecA DNA in blood samples from four patients during the course of MRSA bacteremia 53
Fig. 6. Parameters in blood culture-positive and blood culture-negative samples 54
Fig. 7. Parameters in samples taken during the febrile and afebrile periods 55
Fig. 8. Parameters in samples taken < 3 days or >= 3days of anti-MRSA treatment 56
XI. Appendix: Institutional review board certification 57
dc.language.isoen
dc.subject菌血症zh_TW
dc.subject即時性聚合&#37238zh_TW
dc.subjectmecAzh_TW
dc.subjectmethicillin抗藥性金黃色葡萄球菌zh_TW
dc.subject連鎖反應zh_TW
dc.subjectreal-time PCRen
dc.subjectbacteremiaen
dc.subjectmecAen
dc.subjectMRSAen
dc.title利用聚合酶連鎖反應定量methicillin 抗藥性金黃色葡萄球菌血液中菌量並監測療效zh_TW
dc.titleQuantification of methicillin-resistant Staphylococcus aureus in blood by a real-time polymerase chain reaction assay and its application in monitoring the treatment of
methicillin-resistant Staphylococcus aureus bacteremia
en
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張峰義(Feng-Yee Chang),江伯倫(Bor-Luen Chiang)
dc.subject.keywordmethicillin抗藥性金黃色葡萄球菌,mecA,即時性聚合&#37238,連鎖反應,菌血症,zh_TW
dc.subject.keywordMRSA,mecA,real-time PCR,bacteremia,en
dc.relation.page57
dc.rights.note有償授權
dc.date.accepted2007-07-03
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept臨床醫學研究所zh_TW
顯示於系所單位:臨床醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  未授權公開取用
1.7 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved