Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 流行病學與預防醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30532
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳宏
dc.contributor.authorHuey-Fan Nien
dc.contributor.author倪惠芬zh_TW
dc.date.accessioned2021-06-13T02:07:21Z-
dc.date.available2009-07-12
dc.date.copyright2007-07-12
dc.date.issued2007
dc.date.submitted2007-07-03
dc.identifier.citation[1] Bose, R. C. (1947). The design of experiments. Proc. Indian Sci. Congr., 34(II), 1-25.
[2] Birkes, D., Dodge, Y. and Seely, J. (1976). Spanning sets for estimable contrasts in classification models. Ann. Statist., 4, 86-107.
[3] Callows, M. J., Dudoit, S., Gong, E. L., Speed, T. P. and Rubin, E. M. (2000). Microarray expression profiling identifies genes with altered expression in HDL-deficient mice. Genome Res., 10, 2022-2029.
[4] Chakrabarti, M. C. (1963). On the C-matrix in design of experiments. J. Ind. Statist. Assoc., 1, 8-23.
[5] Chen, Y., Dougherty, E. R. and Bittner, M. L. (1997). Ratio-based decisions and the quantitative analysis of cDNA microarray image. J. Biomed. Optics., 2, 364-374.
[6] Dodge, Y. ( 1985). Analysis of experiments with missing data. New York Wiley.
[7] Dudoit, S., Yang, Y. H., Luu, P., Lin, D. M., Peng, V., Ngai, J. and Speed, T. P. (2002a). Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Research, 30, e15.
[8] Dudoit, S., Yang, Y. H., Speed, T. P. and Callows, M. J. (2002b). Statistical methods for identifying differentially expressed genes in replicated cDNA Microarray Experiments. Statistica Sinica, 12, 111-139.
[9] Eccleston, J. A. and Russell, K. (1975). Connectedness and orthogonality in multifactor designs. Biometrika, 62, 341-345.
[10] Fan, J., Tam, P., Vande Woude, G. and Ren, Y. (2004). Normalization and analysis of cDNA micro-arrays using within-array replications applied to neuroblastoma cell response to a cytokine. Proceedings of the National Academy of Science., 101, 1135-1140.
[11] Fan, J., Huang, T. and Peng, H. (2005). Semilinear high-dimensional model for normalization of microarray data: a theoretical analysis and partial consistency.
(with discussion) J. Amer. Statist. Assoc., 100, 781-813.
[12] Godolphin, J. D. (2004). Simple pilot procedures for the avoidance of disconnected experimental designs. Appl. Statist., 53, 133-147.
[13] Heiligers, B. (1991). A note on connectedness of block designs. Metrika, 38, 377-381.
[14] Huang, J., Wang, D. and Zhang, C. (2005). A two-way semi-linear model for normalization and analysis of cDNA microarray data. J. Amer. Statist. Assoc., 100, 814-829.
[15] Huang, J. and Zhang, C. H. (2005). Asymptotic analysis of a two-way semiparametric regression model for microarray data. Statistica Sinica, 15, 597-618.
[16] Kerr, M. K., Martin, M. and Churchill, G. A. (2000). Analysis of variance for gene expression microarray data. J. Comput. Biol., 7, 819-837.
[17] Park, D. K. and Shah, K. R. (1995). On connectedness of row-column designs. Comm. Statis. Theory Methods, 24(1), 87-96.
[18] Searle, S. R. (1987). Linear Models for Unbalanced Data. Wiley, New York.
[19] Shah, K. R. and Sinha, B. K. (1996). Row-column designs. In: Ghosh and Rao, eds., Linear Models for Unbalanced Data. Vol 13, 903-937, Wiley, New York.
[20] Stone, C. J. (1975). Nearest neighbor estimators of a nonlinear regressionfunction. Proc. Computer Sci. Statist. 8th Ann. Symp. Interface, 413-418, Health Sciences Computer Facility, UCLA.
[21] Stone, C. J. (1977). Consistent nonparametric regression (with discussion). Ann. Statist., 5, 549-645.
[22] Stone, C. J. (1982). Optimal global rates of convergence for nonparametric regression. Ann. Statist., 10, 1040-1053.
[23] Stone, C. J. (1985). Additive regression and other nonparametric models. Ann. Statist., 13, 689-705.
[24] Neyman, J. and Scott, E. L. (1948). Consistent estimates based on partially consistent observations. Econometricka, 16, 1-32.
[25] Yang, Y. H. and Speed, T. (2002). Design issues for cDNA microarray experiments. Nature Reviews Genetics, 3(8):579-588.
[26] Weeks, D. L. and Williams, D. R. (1964). A note on the determination of connectedness in an N-way cross classification. Technometrics, 6, 319-324. Errata, Technometrics, 7, 281, 1965.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30532-
dc.description.abstract這個研究的動機來自於將微陣列實驗(microarray experiment)所得到之基因表現值正規化(normalization), 我們考慮具有基因與區塊(block)二個因子(factor)的實驗. 由於每個基因複製(replication)的次數遠小於區塊的個數, 所以我們考慮的二因子實驗為不完整的(incomplete). 當對由微陣列實驗所產生的資料配適(fit)具相加性的二方式分類模型(additive two-way classification model), 是否所有由未之參數所形成的對比(contrast)皆為可估(estimable)是一個值得討論的問題.
假設第i個因子為不完整的N-因子實驗中主要感興趣的因子. 當對由實驗所產生的資料配適具相加性的N-方式分類模型, 我們討論消去與其他因子有關的未知參數(unknown parameter)所獲得之縮小的正規方程(reduced normal equation)的係數矩陣(coefficient matrix)之結構. 然後, 以此係數矩陣之分解為起點, 我們提出一個演算法使得具相加性的N-方式分類模型中的有效參數(effective parameter)可以被確認. 針對具相加性的二方式分類模型, 我們提出得到具一致性(consistency)之未知參數估計的充分且必要條件(sufficient and necessary condition). 最後, 我們以每一個格子(cell)至少具有一個觀查值的行列設計(row-column design)與一組由微陣列實驗所產生的資料來闡明研究中所提出之係數矩陣的分解與演算法.
zh_TW
dc.description.abstractMotivated by 'local normalization' to remove bias in the measured gene expressions of microarray experiments, we consider the two-factor experiment with the factors gene and block. Since the number of replications of each gene is much smaller than the number of blocks, the considered two-factor experiment is incomplete. As an additive two-way classification model is fitted to the microarray data, whether all contrasts formed by unknown parameter are estimable has to be discussed.
Suppose that the ith factor of the incomplete N-factor experiment is the factor of interest. As an additive N-way classification model is fitted to the data, the structure of the coefficient matrix of reduced normal equation obtained by eliminating the parameters of the other factors is discussed. Then, an algorithm is proposed to identify the effective parameters in an additive N-way classification model based on the proposed decomposition of the coefficient matrix. A necessary and sufficient condition for getting consistent estimates of unknown parameters in an additive two-way classification model is provided. The new decomposition and algorithm are illustrated by a row-column design with at least one observation per cell and 'normalization' for microarray data in which the pin and dye bias are considered to be corrected.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T02:07:21Z (GMT). No. of bitstreams: 1
ntu-96-D92842007-1.pdf: 2691261 bytes, checksum: 1b92850fd71fcd661fe5a64a90273708 (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents中文摘要 ii
英文摘要 iii
1 Introduction 1
1.1 Normalization for Microarray Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
1.3 Organization of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2 Literature Review 6
2.1 Two Semiparametric Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Convergence for Nonparametric Regression Estimation . . . . . . . . . . . . . . . . . . . . 8
2.2.1 Nonparametric Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2 An Additive Approximation to f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Connectedness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
3 Preliminaries 15
3.1 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
3.1.1 The Additive Two-way Classification Model . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1.2 The Additive N-way Classification Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
3.2 Parameter Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.1 Least-squared Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
3.2.2 Interpretation of the Estimating Procedure when . . . . . . . . . . . . . . . . . .22
3.3 A Novel Decomposition of the C-matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3.1 Structure of the C-matrix when N = 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3.2 Determination of the Effective Parameters when N = 2 . . . . . . . . . . . . . . . . . . .25
3.3.3 Structure of the C-matrix when N > 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29
3.3.4 Determination of the Effective Parameters when N > 2 . . . . . . . . . . . . . . . . . . 37
4 Large Sample Properties 41
4.1 The Variance and Covariance of the Estimators . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2 Consistent Property of the Estimators under the Unstructured Design . . . . . . . 44
4.3 Consistent Property of the Estimators under the Structured Design . . . . . . . . . . .47
5 Algorithms to Determine Effective Parameters 49
5.1 The Algorithm to Determine the Effective Parameters when N = 2 . . . . . . . . . . .49
5.2 The Algorithm to Determine the Effective Parameters when N > 2 . . . . . . . . . . .51
5.3 The Suggestion to Produce a Connected Design . . . . . . . . . . . . . . . . . . . . . . . . . 54
6 Illustration 56
6.1 Simulation Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56
6.1.1 Empirically Illustration of the Proposed Decomposition of the C-matrix . . . . .56
6.1.2 Empirically Illustration of the Proposed Algorithm in Section 5.1 . . . . . . . . .58
6.1.3 Consistent Property of the Estimators when the Data is Unbalanced . . . . . . . . 60
6.1.4 Empirically Illustration of the Proposed Algorithm in Section 5.2 . . . . . . . . .63
6.2 Analysis of the Microarray Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67
7 Conclusion and Discussion 72
A The Estimability of Parameters in ANOVA Model II 75
B Proof of Lemma 1 79
C Proof of Theorem 2 81
D Proof of Theorem 3 85
E Proof of large sample properties of estimators 86
E.1 Proof of Theorem 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
E.2 Proof of Lemma 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87
E.3 Proof of Theorem 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88
E.4 Proof of Theorem 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88
E.5 Proof of Theorem 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88
E.6 Proof of Theorem 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89
F Proof of Lemma 3 92
Biliography 93
dc.language.isoen
dc.subject連接性zh_TW
dc.subject有效的參數zh_TW
dc.subject對比zh_TW
dc.subject可估計zh_TW
dc.subject分類模型zh_TW
dc.subject一致估計zh_TW
dc.subject不完整的N-因子實驗zh_TW
dc.subject行列設計zh_TW
dc.subjectconsistent estimatoren
dc.subjectconnectednessen
dc.subjecteffective parameteren
dc.subjectcontrasten
dc.subjectestimableen
dc.subjectClassification modelen
dc.subjectrow-column designen
dc.subjectincomplete N-factor experimenten
dc.title具相加性的無母數迴歸模式在一般性設計中的估計問題zh_TW
dc.titleEstimation Problem in Nonparametric Additive Regression Model under General Designen
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree博士
dc.contributor.coadvisor戴政
dc.contributor.oralexamcommittee張淑惠,陳秀熙,蔡風順,鄭光甫
dc.subject.keyword分類模型,可估計,對比,有效的參數,連接性,不完整的N-因子實驗,行列設計,一致估計,zh_TW
dc.subject.keywordClassification model,estimable,contrast,effective parameter,connectedness,incomplete N-factor experiment,row-column design,consistent estimator,en
dc.relation.page95
dc.rights.note有償授權
dc.date.accepted2007-07-03
dc.contributor.author-college公共衛生學院zh_TW
dc.contributor.author-dept流行病學研究所zh_TW
顯示於系所單位:流行病學與預防醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  未授權公開取用
2.63 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved