Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 高分子科學與工程學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30502
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor謝國煌(Kuo-Huang Hsieh)
dc.contributor.authorYu-Hsin Changen
dc.contributor.author張玉新zh_TW
dc.date.accessioned2021-06-13T02:05:35Z-
dc.date.available2017-12-31
dc.date.copyright2007-07-16
dc.date.issued2007
dc.date.submitted2007-07-03
dc.identifier.citation[1] (a) C.D. Dimitrakopoulo, P.R.L. Malenfant, Adv. Mater. 14 (2002) 99; (b) G. Horowitz, Adv. Mater. 10 (1998) 365; (c) C.D. Dimitrakopoulos, D.J. Mascaro, IBM J. Res. Dev. 45 (2001) 11; (d) H. Sirringhaus, N. Tessler, R.H. Friend, Science 280 (1998) 1741.
[2] N. Kobayashi, N. Colaneri, M. Boysel, F. Wudl, A.J. Heeger, J. Org. Chem., 49 (1984) 3382.
[3] U. Salzner, P. G. Pickup, R. A. Poirier, J. B. Lagowski, J. Phys. Chem. A, 102 (1998) 2573.
[4] A. Berlin, A. Zanelli, Chem. Mater., 16 (2004) 3667.
[5] T. L. Lambert, J. P. Ferraris, J. Chem. Soc., Chem. Commun., (1991) 752.
[6] T. L. Lambert, J. P. Ferraris, J. Chem. Soc., Chem. Commun., (1991) 1268.
[7] E. E. Havinga, W. ten Hoeve, H. Wynberg, Polym. Bull., 29 (1992) 119.
[8] U. Salzner, J.B. Lagowski, P.G. Pickup, P.A. Poirier, Synth. Met. 96 (1998) 177.
[9] 白佳靈, Theoretical Analysis and Applications of Donor-Acceptor Conjugated Polymer Systems, 化學工程學研究所, 2005, 國立台灣大學.
[10] J. Roncali, Chem. Rev., 97 (1997) 173.
[11] V. Hernandez, C. Castiglioni,M. D. Zoppo, G. Zerbi, Phys. Rev. B, 50 (1994) 9815.
[12] P. M. Grant, I. P. Batra, Solid State Commun., 29 (1979) 225.
[13] M. Kobayashi, N. Colaneri, M. Boysel, F. Wudl, A. J. Heeger, J. Chem. Phys., 82 (1985) 5717.
[14] J. Poplawski, E. Ehrenfreund, H. Schaffer, F. Wudl, A. J. Heeger, Synth. Met., 28 (1989) C539.
[15] T. L. Rose, M. C. Liberto, Synth. Met., 31 (1989) 395.
[16] I. Hoogmartens, D. Vanderzande, H. Martens, J. Gelan, Synth. Met., 47 (1992) 367.
[17] R. van Asselt, I. Hoogmartens, D. Vanderzande, J. Gelan, P. E. Froehling, M. Aussems, O. Aagaard, R. Schellenkens, Synth. Met., 74 (1995) 65.
[18] Y. Ikenoue, F. Wudl, A. J. Heeger, Synth. Met. 40 ( 1991) 1.
[19] M. Pomerantz, B. Chaloner-Gill, L. O. Harding, J. J. Tseng, W. J. Pomerantz, Synth. Met., 55 (1993) 960.
[20] (a) C. Arbizzani, M. Catellani, M. Grazia Cerroni, M. Mastragostoni, Synth. Met., 84 (1997) 249.; (b) M. Pomerantz, G. Xiaormin, Synth. Met. 84 (1997) 243.; (c) S. Inaoka, D.M. Collard, Synth. Met. 84 (1997) 193.
[21] D. Lorcy, M. P. Cava, Adv. Mater., 4 (1992) 562.
[22] M. V. Lakshmikantham, D. Lorcy, C. Scordilis-Kelley, X.-L. Wu, J. P. Parakka, R. M. Metzger, M. P. Cava, Adv. Mater. 5 (1993) 723.
[23] R. M. Metzger, P. Wang, X.-L. Wu, G. V. Tormos, D. Lorcy, I. Shcherbakova, M. V. Lakshmikantham, M. P. Cava, Synth. Met., 70 (1995) 1435.
[24] C. Kitamura, S. Tanaka, Y. Yamashita, J. Chem. Soc., Chem. Commun., (1994) 1585.
[25] M. Karikomi, C. Kitamura, S. Tanaka, Y. Yamashita, J. Am. Chem. Soc., 117 (1995) 6791.
[26] T. A. Skotheim, R. L. Elsenbaumer, J. R. Reynolds, Handbook of conducting polymers, Second edition, p.364.
[27] (a) U. Scherf, K. Müllen, Makromol. Chem., Rapid Commun., 12 (1991) 489.; (b) U. Scherf, K. Müllen, Synthesis, (1992) 23.; (c) U. Scherf, K. Müllen, Macromolecules, 25 (1992) 3546.
[28] (a) G. Brocks, A. Tol, J. Phys. Chem., 100 (1996) 1838.; (b) G. Brocks, A. Tol, Synth. Met. 76 (1996) 213.
[29] (a) C. A. Thomas, K. Zong, K. A. Abboud, P. J. Steel, J. R. Reynolds, J. Am. Chem. Soc., 126 (2004) 16440; (b) G. A. Sotzing, C. A. Thomas, J. R. Reynolds, Macromolecules, 31 (1998) 3750; (c) Q. T. Zhang, J. M. Tour, J. Am. Chem. Soc., 120 (1998) 5355.
[30] A. Devasagayaraj, J.M. Tour, Macromolecules, 32 (1999) 6425.
[31] T. Yamamoto, Z.-H. Zhou, T. Kanbara, M. Shimura, K. Kizu, T. Maruyama, Y. Nakamura, T. Fukuda, B.-L. Lee, N. Ooba, S. Tomaru, T. Kurihara, T. Kaino, K. Kubota, S. Sasaki, J. Am. Chem. Soc., 118 (1996) 10389.
[32] M. Karikomi, C. Kitamura, S. Tanaka, Y. Yamashita, J. Am. Chem. Soc., 117 (1995) 6791.
[33] H. A. M. van Mullekom, J. A. J. M. Vekemans, E. W. Meijer, Chem. Commun. (1996) 2163.
[34] (a) M. A. Sato, S. Tanaka, K. Kaeriyama, J. Chem. Soc. Chem. Commun., (1986) 873; (b) T. Yamamoto, D. Komarudin, M. Arai, B. Lee, H. Suganuma, N. Asakawa, Y. Inoue, K. Kubota, S. Sasaki, T. Fukuda, H. Matsuda, J. Am. Chem. Soc., 120 (1998) 2047.
[35] S. Chen, J. Ni, Macromolecules, 25 (1992) 6081.
[36] K. Y. Jen, G. G. Miller, R. L. Elsenbaumer, J. Chem. Soc., Chem. Commun., (1986) 1346.
[37] A. F. Diaz, R. Hernandez, R. Waltman, J. Bargon, J. Phys. Chem., 88 (1984) 3333.
[38] K. Byeongyeol, Synthesis and characterization of water soluble conducting polymers and their polymer electrolyte complexes, Materials chemistry, 2003, USA.
[39] K. Tamao, Y. Kiso, K. Sumitani, M. Kumada, J. Am. Chem. Soc., 94 (1972) 9268.
[40] J. F. Fauvarque, M. A. Petit, T. Pfluger, A. Jutand, C. R. Chvrot, Macromol. Chem., Rapid Commun., 4 (1983) 455.
[41] Z. Xu, G. Horowitz, F. Garnier, J. Electroanal. Chem., 246 (1988) 467.
[42] B. M. W. Langeveld-Voss, R. A. J. Janssen, E. W. Meijer, J. Mole. Struc., 521 (2000) 285.
[43] S. P. Mishra, R. Sahoo, J. Mater. Chem.,14 (2004) 1896.
[44] M. A. Keegstra, T. H. A. Peters, L. Brandsma, Tetrahedron, 48:17 (1992) 3633.
[45] V. N. Gogte, L. G. Shah, B. D. Tilak, K. N. Gadekar, M. B. Sahasrabudhe, Tetrahedron, 23 (1967) 2437.
[46] F. Goldoni, B. M. W. Langeveld-Voss, E. W. Meijer, Synth. Commun., 28:12 (1998) 2237.
[47] N. Agarwal, C.-H. Hung, M. Ravikanth, Tetrahedron, 60 (2004) 10671.
[48] M. Pomerantz, X. Gu, S. X. Zhang, Macromolecules, 34 (2001) 1817.
[49] 陳金鑫, 黃孝文, OLED , (2005), 五南圖書出版公司.
[50] Q. Zhang, J. Feng, K. Liu, D. Zhu, M. Yang, H. Ye, X. Liu, Synth. Met., 156 (2006) 804.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30502-
dc.description.abstract在共軛高分子的領域中,由於聚噻吩衍生物擁有好的溶解度,加工性,環境穩定性,結構多樣化,以及其它有趣的性質,一直備受矚目。於聚噻吩衍生物的主鏈上引進柔軟的側鏈基團可以助其穩定性及改善其加工性質,以利進行更完整的分析。並且,導入側鏈基團亦可調整聚合物的電子性質,進而擴大其在工業界的應用可能性。
在此篇論文上,單體3,4-dihexyloxythiophene(簡稱DHOT)被合成出來,其側鏈己烷氧基團扮演兼具溶解度及推電子基之角色。以DHOT為主的聚噻吩衍生物亦被製備出來。以DHOT為主的均聚物,PDHOT,在許多有機溶劑中,如 CHCl3, toluene,DCB,呈現好的溶解性,並且具有低能隙之特性,能隙值在高分子溶液中約為1.44 e.V,在高分子薄膜中則約為1.42 e.V。
在文獻上鮮少有具官能基之低能隙共軛高分子之研究發表。在此,我們以DHOT與其它具有官能基之單體,如3-thienylacetonitril或3-thiopheneethanol,進行共聚合,期望製備出具有官能基之低能隙共軛高分子。研究發現,這些共聚物之能隙值約為2 e.V,並且對於有機溶劑具備溶解度。我們亦對這些共聚物進行基礎分析,如熱性質,光電性質之探討,在未來之應用上提供初步研究之成果。
zh_TW
dc.description.abstractOwing to the good solubility, processability, environmental stability, structural versatility, and other interesting properties, thiophene-based compounds have progressively emerged as a key system for the development of the conjugated polymers. The introduction of flexible pendants chains onto the backbone improves the stability and processability allowing a more complete characterization of the materials. Also such introduction modifies the electronic properties of the polymer enlarging the possibilities for industrial applications.
In this study, the monomer, 3,4-dihexyloxythiophene(DHOT), with characters of soluble and electron-releasing hexyloxy side chains, was synthesized. The derivatives of polythiophene based on DHOT were prepared. The homopolymer based on DHOT, PDHOT, had good solubility in many organic solvents, such as CHCl3, toluene, DCB, and had low band gaps of ca. 1.44 e.V in polymer solution and of ca. 1.42 e.V in the thin film.
There were less literatures on functionalised low band gap conjugated polymers. We copolymerized DHOT with functional monomers, 3-thienylacetonitril or 3-thiopheneethanol, in order to develop a low band gap conjugated polymers functionalised. These functionalised copolymers had band gaps of ca. 2 e.V, and they were soluble in common organic solvents. We also analysed the thermal properties, optoelectronic properties in this study to provide the preliminary study for potential applications.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T02:05:35Z (GMT). No. of bitstreams: 1
ntu-96-R94549031-1.pdf: 1104206 bytes, checksum: 8cbed1edef20e88b533661ea37018d97 (MD5)
Previous issue date: 2007
en
dc.description.tableofcontentsContents
Abstract................................................i
中文摘要..............................................iii
Contents...............................................iv
Table Captions........................................vii
Figure Captions......................................viii
Chapter 1 Introduction..................................1
1-1 Introduction of Low Band Gap Conjugated Polymers....1
1-1-1 Electronic Structures of Conjugated Polymers......2
1-1-2 Tuning of the Energy Band Gap of Conjugated Polymers................................................3
1-2 Quinoid-type Low Band Gap Conjugated Polymers.......6
1-2-1 Polyisothianaphthene..............................6
1-2-2 Derivatives of Polyisothianaphthene...............7
1-2-3 Copolymers of Polyisothianaphthene and Derivatives..8
1-2-4 Ladder Polymers..................................10
1-3 Non-aromatic-type Low Band Gap Conjugated Polymers...12
1-3-1 Acceptor-units Based on Cyano- or Nitro-substituents.............................................13
1-3-2 Acceptor-units With the Electron-deficient Atoms Close to the Conjugated Backbone.........................13
1-4 Synthesis of Polythiophenes..........................14
1-4-1 Oxidative Polymerization...........................15
1-4-2 Electrochemical Polymerization.....................16
Chapter 2 Objectives of Research.........................27
Chapter 3 Experimental Section...........................28
3-1 Materials............................................28
3-2 Instruments..........................................32
3-3 Flowchart of This Study for the Synthesis of Monomers and Polymers.............................................35
3-3-1 Synthesis of Monomers..............................35
3-3-2 Synthesis of the Derivatives of Polythiophenes.....35
3-4 Synthetic Procedures.................................35
3-4-1 Synthesis of Monomers..............................35
3-4-2 Syntheses of the Derivatives of Polythiophenes.....37
3-5 Methods of Instrumental Analysis.....................38
Chapter 4 Results and Discussion.........................46
4-1 Characterization of Monomer Structures...............46
4-2 Characterization of Polymer Structures...............47
4-3 Properties of Polymers...............................48
4-3-1 Solubility Behavior of Polymers....................48
4-3-2 Molecular Weight and Distribution of Polymers......49
4-3-3 Thermal Properties of Polymers.....................50
4-3-4 Optical Properties of Polymers.....................51
4-3-5 Electronic Structures of Polymers..................54
Chapter 5 Conclusions....................................71
References...............................................73

Table Captions
Table 3-1 The ratio of polymerization in poly(3,4-dihexyloxythiophene -co-3-
thiopheneacetonitrile)..................................43
Table 3-2 The ratio of polymerization in poly(3,4-dihexyloxythiophene -co-3-
thiopheneethanol).......................................43
Table 4-1 Solubility behavior of polymers...............56
Table 4-2 Molecular Weight and Distribution of poly(DHOT-co-ThACN)...............................................57
Table 4-3 Molecular Weight and Distribution of poly(DHOT-co-ThEtOH)..............................................57
Table 4-4 Thermal properties of poly(DHOT-co-ThACN).....58
Table 4-5 Thermal properties of poly(DHOT-co-ThEtOH)....58
Table 4-6 Optical properties of poly(DHOT-co-ThACN) in solutions and thin films................................59
Table 4-7 Optical properties of poly(DHOT-co-ThEtOH) in solutions and thin films................................59
Table 4-8 Electronic structures of poly(DHOT-co-ThACN) in thin films..............................................60
Table 4-9 Electronic structures of poly(DHOT-co-ThEtOH) in thin films..............................................60

Figure Captions
Figure1-1 Calculated energy levels of oligothiophene with n=1-4 and those of polythiophene, in which Eg=band gap...19
Figure1-2 The schematic energy diagram of conjugated polymers.................................................19
Figure1-3 Five contributions to the band gap of the conjugated polymers......................................20
Figure1-4 Two mesomeric forms in Polyaromatic conjugated polymers.................................................20
Figure1-5 Four mesomeric forms in polyisothianaphthene and the effects of relative resonance energies on the structures...............................................21
Figure1-6 The stucture of poly(5-decylisothianaphthene)..21
Figure1-7 The various structures of the analogs of polyisothianaphthene.....................................22
Figure1-8 The structure of poly(benzo[c]thiophene-alt-bithiophene).............................................22
Figure1-9 The structure of poly(naphtha[2,3-c]thiophene-alt-bithiophene).........................................22
Figure1-10 The structure of poly(thieno[3,4-b]pyrazine-alt-bithiophene).............................................23
Figure1-11 The structure of Poly(benzo[1,2-c:4,5-c’]bis(1,2,5-thiadiazole)-4,8-diyl-alt-bithiophene)............23
Figure1-12 The structure of some conjugated ladder-type polymers.................................................23
Figure1-13 The structure of polyacene....................24
Figure1-14 The structure of poly(p-phenylene)............24
Figure1-15 The hybridization of the energy levels of a donor and acceptor yielding a D-A type conjugated polymer with an unusually small band gap........................24
Figure1-16 Low band gap polymers in D-A type, with thiophene or EDOT as a donor and cyanovinylene as an acceptor................................................25
Figure1-17 A low band gap polymer in D-A type, with 3,4-dinitrothiophene as an acceptor.........................25
Figure1-18 Low band gap polymers in D-A type, with (a) quinoxaline and (b) 2,1,3-benzothiadiazole as the acceptor and thiophene as the donor.....................25
Figure1-19 A low band gap polymer in D-A type, with the special coplanarity resulting from intramolecular hydrogen bonding.................................................26
Figure1-20 The mechanism for the polymerization of polythiophene (a) the catalysis reaction , and (b) electrochemical polymerization..........................26
Figure3-1 Synthesis of 3,4-dihexyloxythiophene..........44
Figure3-2 Synthesis of poly(3,4-dihexyloxythiophene-co-3-thiopheneacetonitrile)..................................44
Figure3-3 Synthesis of poly(3,4-dihexyloxythiophene-co-3-thiopheneethanol).......................................45
Figure3-4 A principal diagram of PESA...................45
Figure 4-1 1H NMR spectrum of tetrabromothiophene.......61
Figure 4-2 1H NMR spectrum of 3,4-dibromothiophene......61
Figure 4-3 1H NMR spectrum of 3,4-dimethoxythiophene....62
Figure 4-4 1H NMR spectrum of 3,4-dihexyloxythiophene...62
Figure 4-5 FT-IR spectrum of 3,4-dihexyloxythiophene....63
Figure 4-6 1H NMR spectrum of poly(3,4-dihexyloxythiophene)....................................63
Figure 4-7 FT-IR spectra of monomers and polymers in the system of poly(DHOT-co-ThACN)...........................64
Figure 4-8 FT-IR spectra of monomers and polymers in the system of poly(DHOT-co-ThEtOH)..........................64
Figure 4-9 TGA analysis of poly(DHOT-co-ThACN)..........65
Figure 4-10 TGA analysis of poly(DHOT-co-ThEtOH)........65
Figure 4-11 DSC analysis of poly(DHOT-co-ThACN).........66
Figure 4-12 DSC analysis of poly(DHOT-co-ThEtOH)........66
Figure 4-13 Uv-vis spectra of polymers in solutions and thin films, (a) PDHOT, (b) poly(DHOT-co-ThACN)=75:25, (c) poly(DHOT-co-ThACN)= 50:50, (d) poly(DHOT-co-ThEtOH)=75:25, (e) poly(DHOT-co-ThEtOH)=50:50..................67
Figure 4-14 Uv-vis spectra of poly(DHOT-co-ThACN) solutions...............................................68
Figure 4-15 Uv-vis spectra of poly(DHOT-co-ThACN) in thin films...................................................68
Figure 4-16 Uv-vis spectra of poly(DHOT-co-ThEtOH) in solutions...............................................69
Figure 4-17 Uv-vis spectra of poly(DHOT-co-ThEtOH) in thin films...................................................69
Figure 4-18 PESA diagrams of polymer thin films (a) PDHOT, (b) poly(DHOT-co-ThACN)=75:25, (c) poly(DHOT-co-ThACN)= 50:50, (d) poly(DHOT-co-ThEtOH)=75:25, (e) poly(DHOT-co-ThEtOH)=50:50...........................................70
dc.language.isoen
dc.subject吩zh_TW
dc.subject低能隙zh_TW
dc.subject推電子基zh_TW
dc.subject可溶性zh_TW
dc.subject官能基化zh_TW
dc.subject聚噻zh_TW
dc.subjectfunctionaliseden
dc.subjectpolythiopheneen
dc.subjectelectron-releasing groupen
dc.subjectlow band gapen
dc.subjectsolubleen
dc.title具官能基之可溶性低能隙聚噻吩衍生物之合成及性質探討zh_TW
dc.titleA Study on Synthesis and Properties of Functionalised Soluble Derivatives of Polythiopheneen
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.oralexamcommittee邱文英(Wen-Yen Chiu),韓錦鈴(Jin-Lin Han),陳文章(Wen-Chang Chen)
dc.subject.keyword低能隙,推電子基,可溶性,官能基化,聚噻,吩,zh_TW
dc.subject.keywordpolythiophene,low band gap,electron-releasing group,soluble,functionalised,en
dc.relation.page77
dc.rights.note有償授權
dc.date.accepted2007-07-03
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept高分子科學與工程學研究所zh_TW
Appears in Collections:高分子科學與工程學研究所

Files in This Item:
File SizeFormat 
ntu-96-1.pdf
  Restricted Access
1.08 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved