請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30474完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 管永恕(Yung-Shu Kuan) | |
| dc.contributor.author | Ching-Hsu Yang | en |
| dc.contributor.author | 楊景旭 | zh_TW |
| dc.date.accessioned | 2021-06-13T02:04:47Z | - |
| dc.date.available | 2014-08-10 | |
| dc.date.copyright | 2011-08-10 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-08-02 | |
| dc.identifier.citation | Reference List
Aberle,H., Bauer,A., Stappert,J., Kispert,A., and Kemler,R. (1997). beta-catenin is a target for the ubiquitin-proteasome pathway. EMBO J. 16, 3797-3804. Amit,S., Hatzubai,A., Birman,Y., Andersen,J.S., Ben-Shushan,E., Mann,M., Ben-Neriah,Y., and Alkalay,I. (2002). Axin-mediated CKI phosphorylation of beta-catenin at Ser 45: a molecular switch for the Wnt pathway. Genes Dev. 16, 1066-1076. Bafico,A., Liu,G., Yaniv,A., Gazit,A., and Aaronson,S.A. (2001). Novel mechanism of Wnt signalling inhibition mediated by Dickkopf-1 interaction with LRP6/Arrow. Nat. Cell Biol. 3, 683-686. Banziger,C., Soldini,D., Schutt,C., Zipperlen,P., Hausmann,G., and Basler,K. (2006). Wntless, a conserved membrane protein dedicated to the secretion of Wnt proteins from signaling cells. Cell 125, 509-522. Bartscherer,K., Pelte,N., Ingelfinger,D., and Boutros,M. (2006). Secretion of Wnt ligands requires Evi, a conserved transmembrane protein. Cell 125, 523-533. Behrens,J., Jerchow,B.A., Wurtele,M., Grimm,J., Asbrand,C., Wirtz,R., Kuhl,M., Wedlich,D., and Birchmeier,W. (1998). Functional interaction of an axin homolog, conductin, with beta-catenin, APC, and GSK3beta. Science 280, 596-599. Caricasole,A., Copani,A., Caraci,F., Aronica,E., Rozemuller,A.J., Caruso,A., Storto,M., Gaviraghi,G., Terstappen,G.C., and Nicoletti,F. (2004). Induction of Dickkopf-1, a negative modulator of the Wnt pathway, is associated with neuronal degeneration in Alzheimer's brain. J. Neurosci. 24, 6021-6027. Ching,W., Hang,H.C., and Nusse,R. (2008). Lipid-independent secretion of a Drosophila Wnt protein. J. Biol. Chem. 283, 17092-17098. Clevers,H. (2006). Wnt/beta-catenin signaling in development and disease. Cell 127, 469-480. Eastman,Q. and Grosschedl,R. (1999). Regulation of LEF-1/TCF transcription factors by Wnt and other signals. Curr. Opin. Cell Biol. 11, 233-240. Fiedler,M., Mendoza-Topaz,C., Rutherford,T.J., Mieszczanek,J., and Bienz,M. (2011). Dishevelled interacts with the DIX domain polymerization interface of Axin to interfere with its function in down-regulating beta-catenin. Proc. Natl. Acad. Sci. U. S. A 108, 1937-1942. Goodman,R.M., Thombre,S., Firtina,Z., Gray,D., Betts,D., Roebuck,J., Spana,E.P., and Selva,E.M. (2006). Sprinter: a novel transmembrane protein required for Wg secretion and signaling. Development 133, 4901-4911. Gregorieff,A. and Clevers,H. (2005). Wnt signaling in the intestinal epithelium: from endoderm to cancer. Genes Dev. 19, 877-890. Grotewold,L. and Ruther,U. (2002). The Wnt antagonist Dickkopf-1 is regulated by Bmp signaling and c-Jun and modulates programmed cell death. EMBO J. 21, 966-975. Hays,R., Gibori,G.B., and Bejsovec,A. (1997). Wingless signaling generates pattern through two distinct mechanisms. Development 124, 3727-3736. He,X., Semenov,M., Tamai,K., and Zeng,X. (2004). LDL receptor-related proteins 5 and 6 in Wnt/beta-catenin signaling: arrows point the way. Development 131, 1663-1677. Hofmann,K. (2000). A superfamily of membrane-bound O-acyltransferases with implications for wnt signaling. Trends Biochem. Sci. 25, 111-112. Kadowaki,T., Wilder,E., Klingensmith,J., Zachary,K., and Perrimon,N. (1996). The segment polarity gene porcupine encodes a putative multitransmembrane protein involved in Wingless processing. Genes Dev. 10, 3116-3128. Kawakami,K. and Shima,A. (1999). Identification of the Tol2 transposase of the medaka fish Oryzias latipes that catalyzes excision of a nonautonomous Tol2 element in zebrafish Danio rerio. Gene 240, 239-244. Komiya,Y. and Habas,R. (2008). Wnt signal transduction pathways. Organogenesis. 4, 68-75. Liu,C., Li,Y., Semenov,M., Han,C., Baeg,G.H., Tan,Y., Zhang,Z., Lin,X., and He,X. (2002). Control of beta-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell 108, 837-847. Logan,C.Y. and Nusse,R. (2004). The Wnt signaling pathway in development and disease. Annu. Rev. Cell Dev. Biol. 20, 781-810. Malbon,C.C. and Wang,H.Y. (2006). Dishevelled: a mobile scaffold catalyzing development. Curr. Top. Dev. Biol. 72, 153-166. Marchler-Bauer,A., Lu,S., Anderson,J.B., Chitsaz,F., Derbyshire,M.K., DeWeese-Scott,C., Fong,J.H., Geer,L.Y., Geer,R.C., Gonzales,N.R., Gwadz,M., Hurwitz,D.I., Jackson,J.D., Ke,Z., Lanczycki,C.J., Lu,F., Marchler,G.H., Mullokandov,M., Omelchenko,M.V., Robertson,C.L., Song,J.S., Thanki,N., Yamashita,R.A., Zhang,D., Zhang,N., Zheng,C., and Bryant,S.H. (2011). CDD: a Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Res. 39, D225-D229. Niehrs,C. (2006). Function and biological roles of the Dickkopf family of Wnt modulators. Oncogene 25, 7469-7481. Nusse,R. and Varmus,H.E. (1982). Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell 31, 99-109. Nusse,R. and Varmus,H.E. (1992). Wnt genes. Cell 69, 1073-1087. Riggleman,B., Schedl,P., and Wieschaus,E. (1990). Spatial expression of the Drosophila segment polarity gene armadillo is posttranscriptionally regulated by wingless. Cell 63, 549-560. Rijsewijk,F., Schuermann,M., Wagenaar,E., Parren,P., Weigel,D., and Nusse,R. (1987). The Drosophila homolog of the mouse mammary oncogene int-1 is identical to the segment polarity gene wingless. Cell 50, 649-657. Schwarz-Romond,T., Merrifield,C., Nichols,B.J., and Bienz,M. (2005). The Wnt signalling effector Dishevelled forms dynamic protein assemblies rather than stable associations with cytoplasmic vesicles. J. Cell Sci. 118, 5269-5277. Schwarz-Romond,T., Metcalfe,C., and Bienz,M. (2007). Dynamic recruitment of axin by Dishevelled protein assemblies. J. Cell Sci. 120, 2402-2412. Shackleford,G.M., Shivakumar,S., Shiue,L., Mason,J., Kenyon,C., and Varmus,H.E. (1993). Two wnt genes in Caenorhabditis elegans. Oncogene 8, 1857-1864. Sharma,R.P. and Chopra,V.L. (1976). Effect of the Wingless (wg1) mutation on wing and haltere development in Drosophila melanogaster. Dev. Biol. 48, 461-465. Tanaka,K., Kitagawa,Y., and Kadowaki,T. (2002). Drosophila segment polarity gene product porcupine stimulates the posttranslational N-glycosylation of wingless in the endoplasmic reticulum. J. Biol. Chem. 277, 12816-12823. Veeman,M.T., Axelrod,J.D., and Moon,R.T. (2003). A second canon. Functions and mechanisms of beta-catenin-independent Wnt signaling. Dev. Cell 5, 367-377. Willert,K., Brown,J.D., Danenberg,E., Duncan,A.W., Weissman,I.L., Reya,T., Yates,J.R., III, and Nusse,R. (2003). Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature 423, 448-452. Zhai,L., Chaturvedi,D., and Cumberledge,S. (2004). Drosophila wnt-1 undergoes a hydrophobic modification and is targeted to lipid rafts, a process that requires porcupine. J. Biol. Chem. 279, 33220-33227. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30474 | - |
| dc.description.abstract | Wnt 蛋白由一個細胞分泌後,結合至目標細胞後的訊息傳導扮演很重要的角色,如:體軸生成、神經發育與器官生成。從果蠅與哺乳類細胞突變篩選分析中找到的Wntless(Wls)蛋白具有將Wnt輸送到細胞膜使其分泌的功能。在果蠅與線蟲的研究中發現如果缺少Wls ,Wnt無法被運送;小鼠如果缺少Wnt則產生顱骨與腦部缺陷。然而,wls基因與Wls蛋白在脊椎動物胚胎發育中所扮演的角色仍有許多未知。
wls突變的斑馬魚具有內耳(inner ear)、下顎軟骨(jaw cartilage)與韁核(habenular nuclei) 的缺陷。先前我們實驗室發現dickkopf1b (dkk1b)在出生後兩天wls突變的斑馬魚的內耳與咽弓(pharyngeal arch)表現量下降。為了釐清Wls功能與dkk1b表現量的關係,於是我進行尋找dkk1b 啟動子(promoter)的工作。我複製了dkk1b上游2055鹼基對,黏合至帶有報導基因的Tol2質體。顯微注射(microinjection) 的結果顯示這段序列可以啟動GFP報導基因,表現位置也與出生後一天與兩天大胚胎dkk1b表現位置相似。為了了解哪些Wls蛋白區段負責其在斑馬魚胚胎發與中的功能,我製作了被刪除序列的wls,顯微注射經過轉錄後的mRNA進入wls突變魚魚卵。結果顯示Wls胺基酸221-420 與 421-542在活體中有絕對重要性。 | zh_TW |
| dc.description.abstract | Secreted Wnt molecules bind to receptors on receiving cells play pivotal roles in body axis formation, neural patterning and organogenesis. Wntless (Wls), identified from mutagenesis screens of Drosophila and cultured mammalian cells is suggested to function in promoting Wnt molecules to secrete out from their producing cells. Studies from Drosophila melanogaster and Caenorhabditis elegans showed that lack of Wls activities results in failure of Wnt processing, and lack of Wls activities in mice caused craniofacial and brain defects. However, the genetic and molecular roles of Wls in vertebrate embryonic development are still largely unknown.
In zebrafish, null mutations in wls locus result in jaw cartilage malformation and defects in habenular nuclei development. Previously, our laboratory discovered that dickkopf1b (dkk1b) expression in the inner ear and pharyngeal arch is greatly reduced in 2 days post-fertilization (dpf) wls mutants. In order to understand the relationship between the function of Wls and dkk1b expression, it is required to identify dkk1b promoter that drives endogenous dkk1b expression. I have cloned the 5'-upstream 2055 base pairs fragment from dkk1b gene locus into Tol2 reporter vectors and the microinjection results showed that this fragment is able to drive reporter GFP gene expression in tissues that are similar to the tissue domains where endogenous dkk1b are expressed in 1 dpf and 2 dpf embryos. In order to understand the roles of different protein domains that are required for the biological function of Wls, I generated truncated Wls constructs carrying deletions of various domains and injected in vitro transcribed mRNAs into wls-/- embryos to examine which domain(s) is responsible for Wls in vivo function during zebrafish embryonic development. My results suggest that the domain containing amino acids 221 to 420 and 421 to 542 of Wls is crucial for its function in vivo. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T02:04:47Z (GMT). No. of bitstreams: 1 ntu-100-R98b46026-1.pdf: 7626220 bytes, checksum: 016ea9cc428839a3286f91f2b127a9f0 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 中文摘要 iv
Abstract v Introduction 1 1. Wnt signaling 2 2. Wntlss is a protein that helps promoting the release of Wnt. 5 3. Dickkopf-1 (Dkk-1) is a negative regulator of Wnt signaling pathway 6 Motivation 8 Material and Methods 10 Results 19 1. Identification of dkk1b promoter 20 2. Co-localization study of GFP transcripts driven by dkk1b promoter and endogenous dkk1b transcripts 21 3. Relationship between Wls activity and dkk1b promoter activity 22 4. Functional evaluation of Wls protein domains in vivo 23 Discussion 26 Figures 31 Reference List 42 Appendix 47 | |
| dc.language.iso | en | |
| dc.subject | 啟動子 | zh_TW |
| dc.subject | dkk1b | zh_TW |
| dc.subject | wntless | zh_TW |
| dc.subject | tol2-輔助的基因轉殖 | zh_TW |
| dc.subject | wntless | en |
| dc.subject | dkk1b | en |
| dc.subject | tol2-mediated transgenesis | en |
| dc.subject | promoter | en |
| dc.title | 探討Wntless蛋白在斑馬魚胚胎發育中的功能 | zh_TW |
| dc.title | Investigating the molecular function of Wntless protein in zebrafish embryonic development | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 黃聲蘋(Sheng-Ping L. Hwang),劉福清(Fu-Chin Liu),胡清華(Ching-Hua Hu) | |
| dc.subject.keyword | wntless,dkk1b,啟動子,tol2-輔助的基因轉殖, | zh_TW |
| dc.subject.keyword | wntless,dkk1b,promoter,tol2-mediated transgenesis, | en |
| dc.relation.page | 49 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-08-02 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生化科學研究所 | zh_TW |
| 顯示於系所單位: | 生化科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 7.45 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
