請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30465
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 鍾添東(Tien Tung Chung) | |
dc.contributor.author | Yao-Jen Chang | en |
dc.contributor.author | 張耀仁 | zh_TW |
dc.date.accessioned | 2021-06-13T02:04:29Z | - |
dc.date.available | 2007-07-16 | |
dc.date.copyright | 2007-07-16 | |
dc.date.issued | 2007 | |
dc.date.submitted | 2007-07-03 | |
dc.identifier.citation | 1.Mitchell A.G.M., 'The limits of economy of material in framed structures,' Phil. Mag., series 6, 8, pp.589-597, 1904.
2.Schmit L.A., 'Structural design by systematic synthesis,' Proceedings of the 2nd Conference on Electronic Computation, New York, American Society of Civil Engineering, pp.105-122, 1960. 3.Schmit, L.A., and Farshi, B., “Some approximation concepts for structural synthesis”, AIAA Journal, Vol.12, No.5, pp.692-699, 1974. 4.Noor, A.K., and Lowder, H.E., “Structural reanalysis via a mix method”, Computers and Structures, Vol.5, pp.9-12, 1975. 5.Storaasli, O.O., and Sobieszczanski-Sobieski, J., “On the accuracy of the Taylor approximation for structure resizing”, AIAA Journal, Vol.12, pp.231-233, 1974. 6.Haftka, R.T., and Shore, C.P., “Approximation method for combined thermal structural design”, NASA TP-1428, 1979. 7.Starnes, J.H, and Haftka, R.T., “Preliminary design of composite wings for buckling, strength, and displacement constraints”, Journal of Aircraft, Vol.16, No.8, pp.564-570, 1979. 8.C. Fleury and V. Brabaint, “Structural optimization : a new dual method using mixed variables,” Int. Num. Meth. Engrg., 23, pp.409-428, 1986. 9.Chan, A.S.L., and Turlea, E., “An approximation method for structural optimization”, Computers and Structures, Vol.8, pp.357-363, 1978. 10.K. Svanberg, “The method of moving asymptotes-a new method for structural optimization,” Int. J. Num. Meth. Engrg., 24, pp.359-373, 1987. 11.Haftka, R.T., Nachlas, J.A., Watson, L.T., Rizzo, T. and Desai, R., “Two-point constraint approximation in structural optimization”, Computer methods in applied mechanics and engineering, Vol.60, pp.289-301, 1987. 12.Fadel, G.M., Riley, M.F., and Barthelemy, J.M., “Two-point exponential approximation method for structural optimization”, Structural Optimization, Vol.2, pp.117-124, 1990. 13.Belegundu A.D., Rajan S.D. and Rajgopal J., 'Exponential approximations in optimal design,' NASA CP 3064, pp.137-150, 1990. 14.邱求慧, 凸線性近似概念在結構外形最佳設計之應用, 台大機械工程學研究所碩士論文, 1990. 15.Wang, L.P., and Grandhi, R.V., “Efficient safety index calculation for structural reliability analysis”, Computers and Structures, Vol.52, No.1, pp.103-111, 1994. 16.Wang, L.P., and Grandhi, R.V., “Improved two-point function approximations for design optimization”, AIAA Journal, Vol.33, No.9, September 1995. 17.Snyman, J.A., and Stander, N., “New successive approximation method for optimum structural design”, AIAA Journal, Vol.32, No.6, June 1994. 18.Zhang, W.H., and Fleury, C., “A modification of convex approximation methods for structural optimization”, Computers and Structures, Vol.64, No.1-4, pp.89-95, 1997. 19.Xu, S., and Grandhi, R.V., “Effective two-point function approximation for design optimization”, AIAA Journal, Vol.36, No.12, December 1998. 20.Xu, G., Yamazaki, K., and Cheng, G.D., “A new two-point approximation approach for structural optimization”, Struct Multidisc Optim, Vol.20, pp.22-28, 2000. 21.Bruyneel M., Duysinx P. and Fleury C., “A family of MMA approximations for structural optimization”, Struct Multidisc Optim, Vol.24, pp.263-276, 2002. 22.黃侯瑋, 結構最佳化設計之準二次兩點指數近似法, 台大機械工程學研究所碩士論文, 2005. 23.Magazinovic G., “Two-pointmid-range approximation enhanced recursive quadratic programming method”, Struct Multidisc Optim, Vol.7, 2005. 24.Rasmussen, J., “Nonlinear programming by cumulative approximation refinement”, Structural Optimization, Vol.15, pp.1-7, 1998. 25.Salajegheh, E., “Optimum design of plate structures using three-point approximation”, Structural Optimization, Vol.13, pp.143-147, 1997. 26.Xu, S. and Grandhi, R.V., “Multipoint approximation development: thermal structural optimization case study”, Int. J. Numer. Meth. Engng, Vol.48, pp.1151-1164 2000. 27.Guo, X., Yamazaki, K., and Cheng, G.D., “A new three-point approximation approach for design optimization problems”, Int. J. Numer. Meth. Engng, Vol.50, pp.869-884, 2001. 28.Haftka, R.T., and Gurdal, Z., Elements of Structural Optimization, Dordrecht: Kluwer, 1992. 29.Kirsch, U., Structural Optimization Fundamental and Applications, Springer-Verlag Berlin Heidelberg, 1993. 30.陳建元, 兩點近似法於結構最佳化設計之應用, 台大機械工程學研究所碩士論文, 2002. 31.劉惟信, 機械最佳化設計, 全華科技圖書股份有限公司, 1996. 32.鍾添東, 最佳化理論在機械結構設計上之應用, 台大機械工程學研究所博士論文, 1986. 33.陳建岳, 使用商用有限元素軟體之結構最佳設計方法, 台大機械工程學研究所碩士論文, 1996. 34.林奕鴈, 兩點近似階數調整之結構優化法, 台大機械工程學研究所碩士論文, 1997. 35.Harless, R.I., “A method for synthesis of optimal weight structures”, Computers and Structures, Vol.12, pp.791-804, 1980. 36.Wu, C.C., and Arora, J.S., “Design sensitivity analysis and optimization of nonlinear structural response using incremental procedure”, AIAA Journal, Vol.25, No.8, pp.1118-1125, 1987. 37.邱求慧, 結構最佳設計保守近似法之改良, 台大機械工程學研究所博士論文, 2000. 38.Taleb-Agha, G., and Nelson, R.B., “Method for the optimum design of truss-type structures”, AIAA Journal, Vol.14, No.4, pp.436-445, 1976. 39.Sun, T.C., and Lin, Y.T., “Weight optimization of nonlinear structural systems using various shapes of beam elements”, Proc. of The Tenth National Conf. of CSME, pp.157-166, 1993. 40.黃俊碩, 汽車福祉椅升降機構之設計與分析, 台大機械工程學研究所碩士論文, 2006 41.劉正良, 鍾添東, 輕量模組化CNC工具機研發子計畫三:輕量化工具機結構之分析與設計, 行政院國家科學委員會專題研究計畫成果報告, 1996. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30465 | - |
dc.description.abstract | 本文改良結構最佳化設計之傳統保守近似法,並提出準二次兩點保守近似法。在本近似法中,除了採用目前設計點之函數值與靈敏度值,也參考前一設計點的函數值與靈敏度值來建構近似函數,以提昇近似函數的準確性。藉由本近似法,可將結構的各種行為函數如應力、位移、共振頻率、動態響應等轉換成為設計變數的顯函數,如此一來,結構最佳化設計問題便可以輕易地透過一般的最佳化數值方法加以求解。最後,發展一套結合準二次兩點保守近似法與有限元素分析軟體ANSYS之結構最佳化設計程式,並利用此程式來驗證數個結構最佳化問題。從這些實例的數值結果可得知,本文提出的方法能以較少的迭代次數獲得收斂且準確的結果,證明此準二次兩點保守近似法在結構最佳設計的實用性。 | zh_TW |
dc.description.abstract | This thesis improves the conventional conservative approximation method for structural optimization. A new quasi-quadratic two-point conservative approximation method is presented in this thesis. Two-point fitting scheme is applied to construct the approximation function. Both the derivatives and the functional values of the previous design point are adopted to improve the approximation accuracy. By using the new approximation method, the structural behavior functions, such as stress, displacement, natural frequency and dynamic response, can be converted to explicit functions. Therefore, utilizing the conventional optimum techniques can efficiently solve the explicit approximation problem. A computer program is also developed by integrating the approximation method with the finite element software ANSYS. Optimization of several structure design problems can be obtained with fewer design iterations. The results demonstrate that the proposed method can quickly find the convergent and accurate solutions for general structural optimization problems. It proves that the proposed method is efficient and practical in structural optimization. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T02:04:29Z (GMT). No. of bitstreams: 1 ntu-96-R94522610-1.pdf: 1665847 bytes, checksum: caed01f2e38926764559432e8c1790fd (MD5) Previous issue date: 2007 | en |
dc.description.tableofcontents | 誌謝 i
摘要 ii ABSTRACT iii 目錄 iv 圖目錄 vi 表目錄 vii 符號說明 ix 第一章 緒論 1 1.1簡介 1 1.2文獻回顧 2 1.3研究的目的和動機 5 1.4研究的策略和方法 6 1.5論文大綱介紹 7 第二章 近似理論的運用 9 2.1結構最佳設計基本理論 9 2.1.1設計變數處理方式 10 2.1.2目標函數處理方式 10 2.1.3限制條件處理方式 11 2.2單點近似法 13 2.2.1直接線性近似法 13 2.2.2倒數近似法 13 2.2.3修正倒數近似法 17 2.2.4乘項式近似法 17 2.2.5保守近似法與凸線性近似法 17 2.2.6高階凸線性近似法 18 2.3兩點一次近似法 20 2.3.1兩點修正倒數近似法 20 2.3.2兩點指數近似法 21 2.3.3兩點乘項式近似法 22 2.3.4兩點適應非線性近似法 22 2.3.5第一代兩點適應非線性近似法 23 2.3.6改良兩點近似法 24 2.4直接二次近似法 25 2.5準二次近似法 26 2.5.1球型近似法 26 2.5.2第二代兩點適應非線性近似法 26 2.5.3修正凸線性近似法 27 2.5.4第三代兩點適應非線性近似法 28 2.5.5準二次兩點指數近似法 29 第三章 準二次兩點保守近似法 31 3.1簡介 31 3.2準二次兩點保守近似法 32 3.3靈敏度分析 35 3.4最佳化數值方法 37 3.5結構最佳化設計流程與架構 38 第四章 小型結構之最佳化設計與驗證 43 4.1三桿桁架之結構最佳化設計 43 4.2四桿桁架之結構最佳化設計 45 4.3六桿桁架之結構最佳化設計 47 4.4十桿桁架之結構最佳化設計 49 4.5二十五桿桁架之結構最佳化設計 50 4.6多圓形截面實心懸臂樑之結構最佳化設計 53 4.7多圓形截面空心懸臂樑之結構最佳化設計 55 4.8多矩形截面實心懸臂樑之結構最佳化設計 57 4.9結果討論 60 第五章 大型機械結構之最佳化設計 61 5.1汽車福祉椅之結構最佳化設計 61 5.2模組化工具機之輕量化設計 67 5.2.1模組化工具機承受靜態負荷之結構最佳化設計 69 5.2.2模組化工具機動態特性之結構最佳化設計 71 5.3結果討論 73 第六章 結論與建議 75 6.1結論 75 6.2建議 76 參考文獻 77 附錄 結合ANSYS之結構最佳設計程式使用手冊 81 作者簡歷 88 | |
dc.language.iso | zh-TW | |
dc.title | 結構最佳化設計之準二次兩點保守近似法 | zh_TW |
dc.title | Quasi-quadratic Two-point Conservative Approximation Method for Structural Optimization | en |
dc.type | Thesis | |
dc.date.schoolyear | 95-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 史建中,林陽泰 | |
dc.subject.keyword | 結構最佳化設計,兩點近似法,保守近似法,凸線性化法,有限元素法, | zh_TW |
dc.subject.keyword | structural optimization,two-point approximation method,conservative approximation method,convex linearization,finite element method, | en |
dc.relation.page | 80 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2007-07-04 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-96-1.pdf 目前未授權公開取用 | 1.63 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。