Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30420
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor廖運炫
dc.contributor.authorHsien-Mou Linen
dc.contributor.author林憲茂zh_TW
dc.date.accessioned2021-06-13T02:03:23Z-
dc.date.available2008-07-16
dc.date.copyright2007-07-16
dc.date.issued2007
dc.date.submitted2007-07-06
dc.identifier.citation參考文獻
1. 台灣區模具同業公會(http://www.tmdia.org.tw/content/analysis02.asp)
2. F. Klocke, G. Eisenblatter, Dry Cutting, Annals of CIRP 46 (2) (1997) 519-526.
3. P.S. Sreejith, B.K.A. Ngoi, Dry machining: Machining of the future, Journal of Materials Processing Technology 101 (1) (2000) 287-291.
4. E.M. Trent, P.K. Wright, Metal Cutting, 4th ed., Butterworth-Heinemann, Oxford, 2000.
5. M. Stanford, P.M. Lister, The future role of metalworking fluids in metal cutting operations, Industrial Lubrication and Tribology 54 (1) (2002) 11-19.
6. M.C. Shaw, Metal Cutting Principles, 2nd ed., Oxford, New York, 2005.
7. T. Kurimoto, G. Barrow, The influence of aqueous fluid on the wear characteristics and life of carbide cutting tools, Annals of CIRP 31 (1) (1982) 19-23.
8. W. Konig, R.L. Klinger, Machining Hard Materials with Geometrically Defined Cutting Edges-Field of Applications and Limitations, Annals of the CIRP 39 (1) (1990) 61-64.
9. M.A. Elbestawi﹐L. Chen﹐C.E. Becze, T.I. EI-Wardany﹐High-speed milling of dies and models in their hardened state, Annals of CIRP 46 (1) (1997) 57-62.
10. J.M. Vieira, A.R. Machado, E.O. Ezugwu, Performance of cutting fluids during face milling of steels, Journal of Materials Processing Technology 116 (2001) 244-251.
11. Innovation of dry machining-reduction of cutting oil realizes to combine environmental improvement and cost merit, with MQL (minimum quantity lubrication) machining method (http://www.horkos.co.jp/default-e.htm)
12. Durval U. Braga, Anselmo E. Diniz, Gilberto W.A. Miranda, Nivaldo L. Coppini, Using a minimum quantity of lubricant (MQL) and a diamond coated tool in the drilling of aluminum-silicon alloys, Journal of Materials Processing Technology 122 (1) (2002) 127-138.
13. J.F. Kelly, M.G. Cotterell, Minimal lubrication machining of aluminium alloys, Journal of Materials Processing Technology 120 (1-3) (2002) 327-334.
14. K. Weinert, I. Inasaki, J.W. Sutherland, T. Wakabayashi, Dry machining and minimum quantity lubrication, Annals of CIRP 53 (2) (2004) 511-537.
15. Y. Saikawa, T. Ichikawa, T. Aoyama, T. Takada, High speed drilling and tapping using the technique of spindle through MQL supply, Key Engineering Materials 257-258 (2004) 559-564.
16. M. Liu, J. Takagi, K. Yanagida, A study of chip formation and chip removal in dry drilling of aluminum cast alloy, Key Engineering Materials 257-258 (2004) 575-580.
17. H.A. Kishawy, M. Dumitrescu, E.-G. Ng, M.A. Elbestawi, Effect of coolant strategy on tool performance, chip morphology and surface quality during high speedmachining of A356 aluminum alloy, International Journal of Machine Tools and Manufacture 45 (2) (2005) 219-227.
18. F. Itoigawa, T.H.C. Childs, T. Nakamura, W. Belluco, Effects and mechanisms in minimal quantity lubrication machining of an aluminum alloy, Wear 260 (3) (2006) 339-344.
19. U. Heisel, M. Lutz, Application of minimum quantity cooling lubrication technology in cutting processes, Production Engineering Research and Development in Germany 2 (1) (1994) 49-54.
20. A. R. Machado, J. Wallbank, The effect of extremely low lubricant volumes in machining, Wear 210 (1-2) (1997) 76-82.
21. T. Wakabayashi, H. Sato, I. Inasaki, Turning using extremely small amount of cutting fluids, JSME International Journal, Serials C 41 (1) (1998) 143-148.
22. A.S. Varadarajan, P.K. Philip, B. Ramamoorthy, Investigations on hard turning with minimal cutting fluid application (HTMF) and its comparison with dry and wet turning, International Journal of Machine Tools and Manufacture 42 (2) (2002) 193-200.
23. A.E. Diniz, J.R. Ferreira, F.T. Filho, Influence of refrigeration/lubrication condition on SAE 52100 hardened steel turning at several cutting speeds, International Journal of Machine Tools and Manufacture 43 (3) (2003) 317-326.
24. C. Bruni, A. Forcellese, F. Gabrielli, M. Simoncini, Effect of the lubrication-cooling technique, insert technology and machine bed material on the workpart surface finish and tool wear in finish turning of AISI 420B, International Journal of Machine Tools and Manufacture 46 (12-13) (2006) 1547-1554.
25. A. Attanasio, M. Gelfi, C. Giardini, C. Remino, Minimal quantity lubrication in turning: Effect on tool wear, Wear 260 (3) (2006) 333-338.
26. N.R. Dhar, M.W. Islam, S. Islam, M.A.H. Mithu, The influence of minimum quantity of lubrication (MQL) on cutting temperature, chip and dimensional accuracy in turning AISI-1040 steel, Journal of Materials Processing Technology 171 (1) (2006) 93-99.
27. N.R. Dhar, M. Kamruzzaman, Mahiuddin Ahmed, Effect of minimum quantity lubrication (MQL) on tool wear and surface roughness in turning AISI-4340 steel, Journal of Materials Processing Technology 172 (2) (2006) 299-304.
28. N.R. Dhar, M.T. Ahmed, S. Islam, An experimental investigation on effect of minimum quantity lubrication in machining AISI 1040 steel, International Journal of Machine Tools and Manufacture 47 (5) (2007) 748-753.
29. T. Obikawa, Y. Kamata, J. Shinozuka, High-speed grooving with applying MQL, International Journal of Machine Tools and Manufacture 46 (14) (2006) 1854-1861.
30. F. Klocke, G. Eisenblatter, Machinability investigation of the drilling process using minimal cooling lubrication techniques, Production Engineering Research and Development in Germany 4 (1) (1997) 19-24.
31. R. Heinemann, S. Hinduja, G. Barrow, G. Petuelli, Effect of MQL on the tool life of small twist drills in deep-hole drilling, International Journal of Machine Tools and Manufacture 46 (1) (2006) 1-6.
32. Y. Murakami, T. Yamamoto, Ecological deep hole drilling by novel coated and designed drill, Key Engineering Materials 329 (2007) 657-662.
33. T. Nguyen, L. C. Zhang, An Assessment of Applicability of Cold Air and Oil Mist in Surface Grinding, Journal of Materials Processing Technology 140 (2003) 224-230.
34. S. Inoue, T. Aoyama, Application of Air Cooling Technology and Minimum Quantity Lubrication to Relief Grinding of Cutting Tools, Key Engineering Materials 257-258 (2004) 345-350.
35. S. Inoue, T. Aoyama, Performance of Metal Cutting on Endmills Manufactured by Cooling, JSME International Journal, Series C 48 (3) (2005) 381-386.
36. L.R. da Silva, E.C. Bianchi, R.Y. Fusse, R.E. Catai, T.V. Franca, P.R. Aguiar, Analysis of surface integrity for minimum quantity lubricant-MQL in grinding, International Journal of Machine Tools and Manufacture 47 (2) (2007) 412-418.
37. M. Rahman, A. Senthil Kumar, M.U. Salam, Experimental evaluation on the effect of minimal quantities of lubricant in milling, International Journal of Machine Tools and Manufacture 42 (5) (2002) 539-547.
38. 陳健峰, 微量潤滑劑之高速銑削實驗探討, 國立中興大學機械工程研究所碩士論文, 民國91年1月。
39. J. Sun, Y.S. Wong, M. Rahman, Z.G. Wang, K.S. Neo, C.H. Tan, H. Onozuka, Effects of coolant supply methods and cutting conditions on tool life in end milling titanium alloy, Machining Science and Technology 10 (3) (2006) 355-370.
40. W. Zhao, N. He, L. Li, High speed milling of Ti6Al4V alloy with minimal quantity lubrication, Key Engineering Materials 329 (2007) 663-668.
41. T. Wakabayashi, I. Inasaki, S. Suda, H. Yokota, Tribological characteristics and cutting performance of lubricant esters for semi-dry machining, Annals of CIRP 52 (1) (2003) 61-64.
42. S. Suda, T. Wakabayashi, I. Inasaki, H. Yokota, Multifunctional application of a synthetic ester to machine tool lubrication based on MQL machining lubricants, Annals of CIRP 53 (1) (2004) 61-64.
43. S. Min, I. Inasaki, S. Fujimura, T. Wakabayashi, S. Suda, A study on tribology in minimal quantity lubrication cutting, Annals of CIRP 54 (1) (2005) 105-108.
44. S. Min, I. Inasaki, S. Fujimura, T. Wakabayashi, S. Suda, Investigation of adsorption behaviour of lubricants in near-dry machining, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 219 (9) (2005) 665-671.
45. C. Salomon, Process for the machining of metals and similarly acting materials when being worked by cutting tools, German patent No. 523594 (1931).
46. H. Schulz, T. Moriwaki﹐High-Speed Machining, Annals of CIRP 41 (2) (1992) 637-643.
47. G. Boothroyd, W. A. Knight, Fundamentals of Machining and Machine Tools, 3rd ed., Taylor & Francis, Boca Raton, 2006.
48. E.M. Trent, P.K. Wright, Metal Cutting, 4th ed., Butterworth-Heinemann, London, 2000.
49. B.M. Kramer, On tool materials for high speed machining, Journal of Engineering for Industry, Transactions of the ASME 109 (1987) 87-91.
50. H. Chandrasekaran, J.O. Johansson, Chip flow and notch wear mechanisms during the machining of high austenitic stainless steels, Annals of CIRP 43 (1) (1994) 101-105.
51. G. Tlusty, Manufacturing Processes and Equipment, Prentice Hall, New Jersey, 2000.
52. B. Bhushan, Principles and Applications of Tribology, Wiley, New York, 1999.
53. K. Holmberg, A. Matthews, Coatings Tribology : Properties, Techniques, and Applications in Surface Engineering, Amsterdam, New York, 1994.
54. E. Lenz, Z. Katz, A. Ber, Investigation of the flank wear of cemented carbide tools, Journal of Engineering for Industry, Transactions of the ASME 98 (1976) 246-250.
55. Y. Yamada, T. Aoki, Y. Tanaka, K. Wakihira, Cutting performance of coated carbide tools for hard work materials, Transactions of the Japan Society of Mechanical Engineers﹐Part C 60 (1994) 2906-2910.
56. S. Minamino, K. Kitajima, Y. Sakamoto, H. Nakano, K. Kishimoto﹐High-speed cutting characteristics for hot die steel by using high performance end mill, International Conference on Precision Engineering (1997) 345-350.
57. P.C. Jindal, A.T. Santhanam, Performance of PVD TiN, TiCN, and TiAlN coated cemented carbide tools in turning, International Journal of Refractory Metals and Hard Materials 17 (1-3) (1999) 163-170.
58. H.G. Prengel, P.C. Jindal, K.H. Wendt, A.T. Santhanam, P.L. Hedge, R.M. Penich, A new class of high performance PVD coatings for carbide cutting tools, Surface and Coating Technology 139 (2001) 25–34.
59. H.K. Tonshoff, A. Mohlfeld, PVD-coatings for wear protection in dry cutting operations, Surface and Coating Technology 93 (1997) 8–92.
60. R.T. Coelho, Eu-G. Ng, M.A. Elbestawi, Tool wear when turning hardened AISI 4340 with coated PCBN tools using finishing cutting conditions, International Journal of Machine Tools and Manufacture 47 (2) (2007) 263-272.
61. W. Grzesik, Experimental investigation of the cutting temperature when turning with coated indexable inserts, International Journal of Machine Tools & Manufacture 39 (3) (1999) 355-369.
62. Product Catalogue, International Mold Steel, Inc. (http://www.imsteel.com/nak80.htm)
63. T. Nakagawa, Emerging new technologies in the die and mould manufacturing industry in high speed milling, grinding and polishing, Proc. 7th Int. Conf. Tool, Die and Mold Industry, International Special tooling Association, Bergamo, Italy (1992).
64. T. Ikeda, I. Takahashi, T. Matsuoka, T. Nakagawa, Ultra high speed milling of die steel with ball-nose endmill, Proc. 2nd Int. Conf. Die and Mould Technology (ICDMT), Singapore (1992) 48-56.
65. T. Nakagawa, T. Ikeda, T. Matsuoda, High speed milling of steel and tool life, Proc. 8th Int. Conf. Tool, Die and Mold Industry, International Special tooling Association, Barcelona, Spain (1995).
66. S. Nelson﹐J. K. Schueller, J. Tlusty﹐Tool Wear in Milling Hardened Die Steel, Journal of Manufacturing Science and Engineering 120 (1998) 669-673.
67. P. Koshy, R.C. Dewes, D.K. Aspinwall, High speed end milling of hardened AISI D2 tool steel (58 HRC), Journal of Materials Processing Technology 127 (2002) 266–273
68. N. Camuscu, E. Aslan, A comparative study on cutting tool performance in end milling of AISI D3 tool steel, Journal of Materials Processing Technology 170 (1-2) (2005) 121-126.
69. 廖運炫, 車削高硬度合金鋼刀具的破壞研究, 機械月刊, 第二十六卷第五期, 364-374頁。
70. T. Mang, W. Dresel, Lubricants and Lubrications, Wiley, Weinheim, 2001.
71. L. R. Rudnick, Synthetics, Mineral Oils, and Bio-Based Lubricants: Chemistry and Technology, Taylor & Francis, Boca Raton, 2006.
72. http://www.2456.com/trad/epub/details.asp?epubiid=6&id=5219
73. 台灣山域(SANDVIK),微量潤滑簡介與切削應用, 2002.
74. S. Suda, H. Yokota, I. Inasaki, T. Wakabayashi, A synthetic ester as an optimal cutting fluid for minimal quantity lubrication machining, CIRP 51/1 (2002) 95-98.
75. D.A. Axinte, R.C. Dewes, Surface Integrity of Hot Work Tool Steel after High Speed Milling Experimental Data and Empirical Models, Journal of Materials Processing Technology 127 (2002) 325-335.
76. C. N. Shiao, “TEM Microstructures of Phase Transformations and Precipitation Hardening in Copper Containing Steel,” PHD Thesis, Department of Materials Science and Engineering, National Taiwan University, 2000.
77. H. Opitz, Tool wear and tool Life, International Research in Production Engineering, ASME (1963) 107.
78. J.A. Williams, D. Tabor, The role of lubricants in machining, Wear 43 (1977) 275-292.
79. K.M. Li, S.Y. Liang, Modeling of cutting temperature in near dry machining, Journal of Manufacturing Science and Engineering, Transactions of the ASME 128 (2) (2006) 416-424.
80. V.C. Venkatesh, D.Q. Zhou, W. Xue, D.T. Quinto, A study of chip surface characteristics during the machining of steel, CIRP 42 (1) (1993) 631-636.
81. Y. Naerheim, E.M. Trent, Diffusion wear of cemented carbide tools when cutting steel at high speeds, Metals Technology 4 (12) (1977) 548-556.
82. H.K. Tonshoff, H.-G. Wobker, C. Cassel, Wear characteristics of cermet cutting tools, Annals of CIRP 43 (1) (1994) 89-92
83. Y.S. Liao, R.H. Shiue, Carbide tool wear mechanism in turning of Inconel 718 superalloy, Wear 193 (1996) 16-24.
84. J.A. Arsecularatne, L.C. Zhang, C. Montross, Wear and tool life of tungsten carbide, PCBN and PCD cutting tools, International Journal of Machine Tools and Manufacture 46 (5) (2006) 482-491.
85. Y. Yamane, H. Usuki, B. Yan, N. Narutaki, Formation of a protective oxide layer in machining resulphurized free-cutting steels and cast irons, Wear 139 (2) (1990) 195-208.
86. Y. Yamane, Tribology in Metal Cutting and Grinding, the Institution of Mechanical Engineers, London, 1993.
87. O. Bletton, R. Duet, P. Pedarr, Influence of oxide nature on the machinability of 316L stainless steels, Wear 139 (1993) 179-193.
88. K. Ramanujachar, S.V. Subramanian, Micromechanisms of tool wear in machining free cutting steels, Wear 197 (1-2) (1996) 45-55.
89. X.D. Fang, D. Zhang, Investigation of adhering layer formation during tool wear progression in turning of free-cutting stainless steel, Wear 197 (1-2) (1996) 169-178.
90. 林富慧等, 潤滑油脂採購指南, 石油情報, 1993.
91. S.Dolinsek, B. Sustarsic, J. Kopac, Wear mechanisms of cutting tools in high-speed cutting processes, Wear 250 (2001) 349-356.
92. E. Brinksmeier, A. Walter, R. Janssen, P. Diersen, Aspects of cooling lubrication reduction in machining advanced materials, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 213 (8) (1999) 769-778.
93. A.K. Tieu, X.D. Fang, D. Zhang, FE analysis of cutting tool temperature field with adhering layer formation, Wear 214 (2) (1998) 252-258.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30420-
dc.description.abstract本文之目的係探討最少量潤滑(MQL)對於NAK80模具鋼高速銑削之影響。在使用TiAlN鍍層碳化物刀具及低黏度油之情況下,不論在較低或較高之切削速度,MQL均能改善乾切削之刀具壽命與表面光度,濕切削則因為劇烈熱震造成刀具的裂痕而導致刀刃的崩裂,以致刀具壽命最差,不適用於高速切削。在切削速度較低時,使用高黏度油可得到較好的刀具壽命。當切削速度較高時,低黏度油因為具有較多的低分子量成分,比較容易被蒸發而帶走熱能,可以發揮較佳的冷卻效果,同時也可延緩刀具黏屑的發生,有助於刀具壽命的改善。此外,油滴可增進MQL的冷卻效果,幫助改善刀具壽命。然而噴油量過多時,熱應力變化變大,使刀具容易發生裂痕,反而不利於刀具壽命。MQL還可在氧化物層的生成上扮演促進劑(promoter)的角色,因為MQL可以提供豐富的氧來促進切屑材料和TiAlN鍍層氧化作用之進行以形成氧化物層,該層氧化物可以發揮保護刀具之作用,有延長刀具壽命之效果。
基於上述之研究,本文提出MQL於NAK80模具鋼高速銑削的刀具壽命影響機制,除了一般所認知的冷卻效果可減少刀具軟化以延長刀具壽命之機制外,還包括過量的冷卻所造成熱疲勞會導致裂痕容易發生而對刀具壽命產生負面效應,以及氧化物保護層的形成對刀具壽命之正面效果,上述三項機制的綜合效應決定刀具之壽命。因此,以碳化物刀具高速銑削NAK80模具鋼時,若是使用TiAlN鍍層碳化物刀具及低黏度油,並適當的選擇切削速度及噴油量,刀具壽命將可因為MQL的適度冷卻效果及氧化物層的保護作用而獲得最顯著的改善。
zh_TW
dc.description.abstractThe influence of the minimum quantity lubrication (MQL) in high speed milling (HSM) of NAK80 mould steel was studied in this thesis. The TiAlN coated carbide tool and the lower viscous oil were adopted. It is found that cutting under flood cooling condition results in the shortest tool life due to severe thermal cracks. While the use of MQL, in comparison with dry cutting, is beneficial to tool life and surface funish both in the lower speed cutting and the higher speed cutting conditions. The oil with a higher viscosity is preferable to increase the tool life in the lower speed cutting. In the higher cutting speed, the less viscous oil containing a higher fraction of low molecular weight components that could volatilize more easily is essential so that cooling effect can be effective and welding of chips can be delayed. It in turn leads to the enhancement of tool life. The oil droplets are proved to increase the cooling effect of MQL so as to improve the tool life. However, the tool life will be decreased due to cracks resulted from the large fluctuation of temperature on tool face when there is too much flow rate of oil in MQL. MQL can provide extra oxygen to activate the oxidation of the chip and TiAlN coating, as a result to generate the oxide layer. The cutting tool can be protected by this layer, which in turn leads to an increase of tool life.
Based on this study, the mechanism dominating the tool life of HSM of NAK80 mould steel with MQL is proposed below. Firstly, the cooling effect by MQL can retain the strength and wear resistance of cutting tool, so as to enhance the tool life. Secondly, thermal fatigue induced by the excessive supply of oils would reduce the tool life. Thirdly, the formation of the protective layer can prolong the tool life. The tool life is determined by the combined effect of the aforementioned three factors. Hence, it is concluded that the tool life can be significantly improved due to the appropriate cooling effect by MQL together with the protection of oxide layer in HSM of mould steels with the use of TiAlN coating tool and lower viscous lubricant when cutting speed and flow rate of oil are chosen properly.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T02:03:23Z (GMT). No. of bitstreams: 1
ntu-96-D90522013-1.pdf: 11486880 bytes, checksum: 37b63b7971569f698babb80edd396dfe (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents目 錄
中文摘要 Ⅰ
英文摘要 Ⅱ
目錄 IV
圖目錄 VII
表目錄 XII
符號說明 XIII
第一章 緒論 1
1.1研究背景與動機 1
1.2研究目的 3
1.3本文架構 3
第二章 相關學理與文獻 5
2.1 高速切削概論 5
2.1.1高速切削的定義 5
2.1.2高速切削的特性及應用領域 5
2.2 刀具磨耗 7
2.2.1 刀具的磨耗型式 7
2.2.2 刀具的磨耗機構 10
2.3 刀具之材料與選用 13
2.4 切削液之功用與MQL之發展緣起 16
2.4.1切削液之功能 16
2.4.2 MQL之發展緣起 16
2.5 MQL之相關研究 19
2.5.1 鋁合金之切削 19
2.5.2 鋼鐵材料之切削 20
2.5.3 鈦合金之切削 24
2.5.4 MQL作用機制之探討 24
第三章 MQL於NAK80模具鋼高速銑削切削性研究 27
3.1實驗方法 27
3.2實驗設備 29
3.3結果與討論 30
3.3.1切削環境對刀具壽命之影響 31
3.3.2切削環境對表面光度之影響 45
3.3本章小結 47
第四章 MQL扮演的角色與作用之探討 48
4.1 MQL對冷卻效果之影響 48
4.1.1 MQL與高壓空氣及乾切削之比較 48
4.1.2不同噴油量之比較 51
4.2 MQL對氧化層的生成與刀具壽命之影響 57
4.3綜合討論(刀具壽命影響機制) 66
4.4本章小結 69
第五章 結論與未來展望 70
5.1 結論 70
5.2未來展望 70
參考文獻 72
附錄:實驗設備 82
作者簡歷 88
dc.language.isozh-TW
dc.title最少量潤滑(MQL)應用於NAK80模具鋼高速銑削之研究zh_TW
dc.titleThe Study of Minimum Quantity Lubrication (MQL) in High Speed Milling of NAK80 Mould Steelen
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree博士
dc.contributor.oralexamcommittee傅光華,顏炳華,羅勝益,蔡 志 成,蔡曜陽
dc.subject.keyword高速切削,模具鋼,最少量潤滑,氧化物層,刀具壽命,表面光度,zh_TW
dc.subject.keywordhigh speed milling,mould steel,MQL,oxide layer,tool life,surface finish,en
dc.relation.page89
dc.rights.note有償授權
dc.date.accepted2007-07-06
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  目前未授權公開取用
11.22 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved