Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 環境工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30389
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林正芳(Cheng-Fang Lin)
dc.contributor.authorArie Dipareza Syafeien
dc.contributor.author施雅笛zh_TW
dc.date.accessioned2021-06-13T02:02:44Z-
dc.date.available2008-07-16
dc.date.copyright2007-07-16
dc.date.issued2007
dc.date.submitted2007-07-05
dc.identifier.citationAl-Rasheed R., and D.J. Carding. Phtotocatalytic degradation of humic acid in saline waters. Part 1. Artificial seawater: influence of TiO2, temperature, pH and air-flow. Chemosphere 51 (2003), 925-933.
Al-Bastaki, N.M. Performance of advanced methods for treatment of wastewater: UV/TiO2, RO and UF. Chemical Engineering and Processing 43 (2004), 935-940.
Amersham Bioscieces. Gel Filtration: Principles and Methods.
Bideau M., B. Claudel, C. Dubien, L. Faure and H. Kazouan. On the “immobilization” of titanium dioxide in the photocatalytic oxidation of spent waters. Journal of Photochemistry and Photobiology A: Chemistry 91 (1995), 137-144.
Butterfield, I.M., P.A. Christensen, T.P. Curtis, and J. Gunlazuardi. Water disinfection using an immobilised titanium dioxide film in a photochemical reactor with electric field enhancement. Wat. Sci. Tech 35 (11-12) (1997), 95-100.
Chae, S. Evaluation of drinking water treatment processes focusing on natural organic matter removal and on disinfection by-product formation. Wat. Sci. Tech: Water Supply 2 (5-6) (2002), 459-464.
Chow C.W.K, J.A. van Leeuwen, M. Drikas, R. Fabris, K.M. Spark and D.W. Page. The impact of the character of natural organic matter in conventional treatment with alum. Wat. Sci. Tech 40 (9) (1999), 97-104.
Cheryan, M. (1998). Ultrafiltration and microfiltration – Handbook. Technomic Publishing Co., Inc. Lancaster PA, USA.
Decarolis J., S. Hong, and J. Taylor. Fouling behaviour of a pilot scale inside-out hollow fiber UF membrane during dead-end filtration of tertiary wastewater. J. Membrane Science 191 (2001), 165-178.
Drewes. J. E., M. Reinhard and P. Fox. Comparing microfiltration-reverse osmosis and soil-aquifer treatment for indirect potable reuse of water. Water Research 37 (2003), 3612-3621.
Drewes J. E., D. M. Quanrud, G. L. Amy and P. K. Westerhoff. Character of Organic Matter in Soil-Aquifer Treatment Systems. J. Environ. Eng., 132 (11) (2006) 1447-1458.
Goel, S., R.M. Hozalski and E.J. Bouwer. Biodegradation of NOM: effect of NOM source and ozone dose. J. AWWA. Tech 87 (10)(1995), 93-107.
Heese S., G. Kleiser and F.H. Frimmel. Characterization of refractory organic substances (ROS) in water teratment. Wat.Sci. Tech 40 (9)(1999), 1-7.
Hejzlar J., B. Szpakowska and R.L. Wershaw. Comparison of humic substances isolated from peatbog water by sorption on DEAE-cellulose and Amberlite XAD-2. Wat. Res. 28 (1994), 1961-1970.
Herman. D. J. O-I Analytical Model 1010 TIC-TOC analyzer: Daily Startup & Shut Down. 2004
Hozalski R.M., S. Goel and E.J. Bouweer. TOC removal in biological filters. J. AM. Water Works. Assoc. 87 (1995), 40-54.
Jacoby, W.A., D.M. Blake, R.D. Noble, and C.A. Koval. Kinetics of the oxidation of trichloroethylene in air via heterogeneous photocatalysis. J. Catal 157 (1995), 87-96.
Jucker C., and M.M. Clark. Adsorption of aquatic humic substances on hydrophobic ultrafiltration membranes. J. Membrane Science 97 (1994), 37-52.
Mulder, M. 1996. Basic Principles of Membrane Technology. 2nd edition. Kluwer Academic Publishers. Dordrecht.
Kaiya Y., Y. Itoh, S. Takizawa, K. Fujita, T. Tagawa. Analysis of organic matter causing membrane fouling in drinking water treatment. Wat. Sci. Tech. 41 (10-11) (2000), 59-67.
Katsoufidou K., S.G. Yiantsios, and A.J. Karabelas. A study of ultrafiltration membrane fouling by humic acids and flux recovery by backwashing: Experiments and modelling. J. Membrane Science 266 (2004), 40-50.
Krasner S.W., J.P. hagstrom, M.M. Clark and J. Mallevialle. Three approaches for characterizing NOM. J. Am. Water Works. Assoc. 88 (1996), 66-79.
Lee, N., G. Amy, H. Habarou and J. C. Schrotter. Identification and Control of Fouling of Low Pressure (MF and UF) Membranes by Drinking-Water Natural Organic Matter. Water Science and Technology: Water Supply, 3 (5-6) (2003), 217-222.
Lee, N., G. Amy, H. Habarou and J. C. Schrotter. Identification and Control of Fouling of Low Pressure (MF and UF) Membranes by Drinking-Water Natural Organic Matter. Water Science and Technology: Water Supply, 3 (5-6) (2003), 217-222.
Lin, C.F., Y.J. Huang, and O.J. Hao. Ultrafiltration processes for removing humic substances: Effect of molecular weight fractions and PAC treatment. Wat. Res. 33 (5) (1999), 1252-1264.
Lin C.Y., C.S. Li. Inactivation of microorganisms on the photocatalytic surfaces in air. Aerosol Sci. Tech. 37 (2003), 939-946.
Maartens, A., P. Swart and E. P. Jacobs. Removal of natural organic matter by ultrafiltration: characterization, fouling and cleaning. Wat. Sci. Tech. 40 (9) (1999), 113-120.
Metsämuronen S., and M. Nyström. Critical flux in cross-flow ultrafiltration of protein solutions. Desalination 175 (2005), 37-47.
Otaki, M., T. Hirata, and S. Ohgaki. Aqueous microorganisms inactivation by photocatalytic reaction.
Wat. Sci. Tech 42 (3-4) (2000), 103-108.
Quanrud, D. M., R. G. Arnold, L. G. Wilson and M. H. Conklin. Effect of soil type on water quality improvement during soil aquifer treatment. Wat. Sci. Tech. 33 (10/11) (1996) 419-431.
Ribau, T. M., H. Lucas and M. J. Rosa.. The role of pH on the ultrafiltration for drinking water production in Algarve (Portugal). Water Science and Technoogy: Water Supply 2 (5-6) (2002), 367-371.
Song. W., V. Ravindran, B. E. Koel and M. Pirbazari. Nanofiltration of natural organic matter with H2O2/UV pretreatment: fouling mitigation and membrane surface characterization. J. of Membrane Science (241) (2004) 143-160.
Tracey E.M, and R.H. Davis. Protein fouling of track-etched polycarbonate microfiltration membranes. J. Colloid Interf. Sci. 167 (1994) 104-116.
Yuan W., and A.L. Zydney. Effects of solution environment on humic acid fouling during microfiltration. Desalination 122 (1999) 63-76.
Yuan W., and A.L. Zydney. Humic acid fouling during microfiltration. J. of Membrane Science 157 (1999) 1-12.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30389-
dc.description.abstract(外籍學生無)zh_TW
dc.description.abstractUltrafiltration membrane nowadays has been increasingly used in drinking water treatment as alternative technology to conventional filtration to remove Natural Organic Matter (NOM). Efforts on how to minimize fouling, maximize flux and rejection are always on motion. This study is aimed to improve the performance of membrane by combining membrane coated photocatalyst TiO2 under UltraViolet exposure. The experiments are carried out using ceramic disc membrane which is high temperature resistant, using humic acid solutions as model substances representative of naturally occuring organic matter, they are aimed to identify the significance performance between TiO2 coated membrane and naked membrane.
A commercial humic solution was subject to UF Fractionation to study about molecular weight distribution affected during the operation of membrane. 1 kD, 15 kD and 50 kD membranes were used to demonstrate the effectivity of the coating and UV irradiation. For all TiO2-UV254 membranes used in this research exhibit the more flux decline with similar quality compare to naked membrane. Although the UF system is able to remove a significant portion amount of humic acid particles, the combination with photocatalysis exerts low performance in terms of flux. The molecular weight distribution alteration during photocatalysis appears to be the cause of the low result. Thus, TiO2 coating combined with UV254 irradiation are not better for operation in removing natural organic matter.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T02:02:44Z (GMT). No. of bitstreams: 1
ntu-96-R94541134-1.pdf: 5236837 bytes, checksum: 19b8133d86e17bd3f3dff255882915cf (MD5)
Previous issue date: 2007
en
dc.description.tableofcontentsForewords i
Abstract ii
Content List v
Table List viii
Figure List ix
Chapter 1 1
1.1 Background 1
1.2 Objectives 4
Chapter 2 5
2.1 Background 5
2.2 Ultrafiltration 5
2.3 Natural Organic Matter 7
2.4 Photocatalysis 10
2.5 Fouling 14
2.6 Gel Filtration Chromatography 18
2.7 Parameter 19
2.7.1 Dissolved Organic Carbon 19
2.7.2 UV254 20
Chapter 3 23
3.1 Background 23
3.2 Research Framework 23
3.3 Research Materials 26
3.3.1 Membrane Properties 26
3.3.2 Feed water 27
3.4 Research Methods 27
3.4.1 Membrane systems 27
3.4.2 TiO2 coating and suspension procedure 31
3.4.3 TiO2-UV irradiation batch 32
3.4.4 Apparent Molecular Weight Distribution of NOM 33
3.4.4.1 UF Fractionation 33
3.4.4.2 Gel Filtration Chromatography 34
3.5 Analytical Methods 35
3.5.1 Specific UV Absorbance (SUVA) 35
3.5.2 UV254 35
3.5.3 Total and Dissolved Organic Carbon (T/DOC) 35
3.5.4 FESEM and XRD 36
Chapter 4 Results and Discussions 37
4.1 Background 37
4.2 Permeability and recovery 37
4.3 Qualitative performance for membrane 41
4.3.1 Rejection performance for membrane without photocatalysis 41
4.3.2 Rejection of membrane, coated with TiO2 coupled with UV254
Irradiation 42
4.3.3 Specific Ultraviolet Absorbance (SUVA) 46
4.4 Flux performance 49
4.4.1 Flux based on molecular weight cut off membrane 49
4.4.2 Flux performance of TiO2 coated membrane with UV254 irradiation 51
4.5 The effect of TiO2 mass on the membrane surface towards flux and
rejection 56
4.5.1 The effect of permeability 56
4.5.2 Flux 59
4.5.3 Rejection 63
4.6 Immobilized and suspended TiO2 on membrane surface 65
4.7 The effect of UV towards the membrane performance 68
4.8 Apparent Molecular Weight Distribution 75
4.8.1 Ultrafiltration fractionation 75
4.8.2 Gel Filtration Chromatography 85
4.9 Membrane characteristic and structure 86
Chapter 5 Conclusion 93
5.1 Conclusion 93
5.2 Suggestions 93
References xiv
Appendix

TABLES LIST

Table 3.1 Membrane properties for experiments 27
Table 4.1 Permeability of membrane operation, constant TMP 10 psi 40
Table 4.2 Recovery rate of membrane operation, constant TMP 10 psi 41
Table 4.1 DOC rejection according membrane molecular weight cut off,
with and without TiO2 coated-UV irradiation 45
Table 4.4 Molecular weight (MW) distribution of raw water and TiO2-UV
photocatalysis batch (taken from DOC measurement) 75
Table 4.5 Molecular weight (MW) distribution of raw water and TiO2-UV
photocatalysis batch with 1 kD membrane 76
Table 4.6 Molecular weight (MW) distribution of raw water and TiO2-UV
photocatalysis batch with 15 kD membrane 78
Table 4.7 Molecular weight (MW) distribution of raw water and TiO2-UV
photocatalysis batch with 50 kD membrane 80
Table 4.8 Removal of DOC and molecular weight fraction 81
Table 4.9 Apparent molecular weight distribution of the commercial
humic acid (Aldrich) 82
Table 4.10 Molecular weight (MW) distribution of raw water and TiO2-UV
photocatalysis: TiO2 mass 2.96 gram 84
Table 4.11 Molecular weight distribution of humic acid solutions
after 1 hour photocatalysis 85

FIGURES LIST

Figure 2.1 Fouling Mechanisms within the surface of the membrane 15
Figure 3.1 Research experimentation to study performance of TiO2-UV
membrane 24
Figure 3.2 Physical and chemical properties analysis of TiO2-UV
experimentation 25
Figure 3.3 Ceramic disc (15 kD) membrane used for this experiment 26
Figure 3.4 Membrane support with 2 layers 27
Figure 3.5 Schematic diagram of ceramic disc membrane employed in
the filtration experiments 28
Figure 3.1 Feed tank, total 3 tanks each contain 3 L feed water 29
Figure 3.2 Membrane reactor used in this research 30
Figure 3.3 Permeate fraction collector 30
Figure 3.9 TiO2 coating scheme 32
Figure 3.4 UV/Vis Cintra 20 UV spectrometer 34
Figure 4.1 Determination of permeability of 50 kD naked membrane 39
Figure 4.2 Incremental increase steps to determine permeability of 50 kD
naked membrane 39
Figure 4.3 Incremental decrease steps to determine permeability of 50 kD
naked membrane 40
Figure 4.4 DOC rejection by 50, 15 and 1 kD naked UF filtration, HA 9 ppm,
pH 7 42
Figure 4.5 UV254 rejection by 50, 15 and 1 kD naked UF filtration,
HA 9 ppm, pH 7 42
Figure 4.6 DOC rejection of 50 kD UF filtration, with and without
photocatalysis on humic acid (HA) 9 ppm, pH 7 43
Figure 4.7 DOC rejection of 15 kD UF filtration, with and without
photocatalysis on HA 9 ppm, pH 7 44
Figure 4.8 DOC rejection of 1 kD UF filtration, with and without
photocatalysis on HA 9 ppm, pH 7 45
Figure 4.9 UV/DOC ratio of 15 kD naked membrane 47
Figure 4.10 UV/DOC ratio of 15 kD TiO2-UV membrane 47
Figure 4.11 UV/DOC ratio of 1 kD naked membrane 48
Figure 4.12 UV/DOC ratio of 1 kD TiO2-UV membrane 49
Figure 4.13 Flux naked membrane for 8 hours 49
Figure 4.14 Flux every 30 and 60 minutes for membrane operation 50
Figure 4.15 Flux of TiO2 coated membrane with UV254 irradiation for 8 hours 50
Figure 4.16 Flux every 30 and 60 minutes for TiO2 coated membrane combined
with UV254 photoirradiation 51
Figure 4.17 Flux of 50 kD membrane, one without coating and UV irradiation
and one with TiO2 coating-UV254 irradiation 52
Figure 4.18 Flux of 50 kD naked and TiO2-UV254 membrane, every
30 and 60 minutes 52
Figure 4.19 Accumulated permeate weight produced from 50 kD naked
membrane and TiO2-UV membrane 52
Figure 4.20 Flux of 15 kD membrane, naked membrane and
TiO2-UV membrane 53
Figure 4.21 Flux of 15 kD naked and TiO2-UV254 membrane, every
30 and 60 minutes 53
Figure 4.22 Accumulated permeate weight produced from 15 kD naked
membrane and TiO2-UV membrane 54
Figure 4.23 Flux of 1 kD membrane, naked membrane and
TiO2-UV membrane 54
Figure 4.24 Flux of 1 kD naked and TiO2-UV254 membrane, every 30 and
60 minutes 55
Figure 4.25 Accumulated permeate weight produced from 1 kD naked
membrane and TiO2-UV membrane 55
Figure 4.26 Flux of 0.08 gram TiO2 coated membrane with permeability
(a) 0.0154, (b) 0.009 gr/(cm2.min.psi) 57
Figure 4.27 Flux of 0.1 gram TiO2 coated membrane with permeability
(a) 0.0114, (b) 0.104 gr/(cm2.min.psi) 57
Figure 4.28 DOC rejection of 0.08 gram TiO2 coated membrane with
permeability (a) 0.0154, (b) 0.009 gr/(cm2.min.psi) 58
Figure 4.29 DOC rejection of 0.1 gram TiO2 coated membrane with
permeability (a) 0.0114, (b) 0.104 gr/(cm2.min.psi) 58
Figure 4.30 Flux of 15 kD TiO2 coated membrane with permeability (a) 0.04
gram TiO2: 0.0071, (b) 0.08 gram TiO2: 0.009 gr/(cm2.min.psi) 60
Figure 4.31 Flux (less interval) of 15 kD TiO2 coated membrane with
permeability (a) 0.04 gram TiO2: 0.0071, (b) 0.08 gram TiO2: 0.009
gr/(cm2.min.psi) 60
Figure 4.32 Flux of 15 kD TiO2 coated membrane with permeability
(a) 0.00 gram TiO2: 0.0131, (b) 0.1 gram TiO2: 0.104 gr/(cm2.min.psi) 61
Figure 4.33 Flux (less interval) of 15 kD TiO2 coated membrane with
permeability (a) 0.00 gram TiO2: 0.0131, (b) 0.1 gram TiO2: 0.104
gr/(cm2.min.psi) 62
Figure 4.34 Flux (less interval) of 15 kD TiO2 coated membrane with
permeability (a) 0.00 gram TiO2: 0.0131, (b) 0.08 gram TiO2:0.0090,
(c) 0.1 gram TiO2: 0.104 gr/(cm2.min.psi) 62
Figure 4.35 DOC rejection relative to 15 kD TiO2 mass coated on
membrane surface (a) 0.04 gram TiO2: 0.0071, (b) 0.08 gram TiO2: 0.009
gr/(cm2.min.psi) 63
Figure 4.36 DOC rejection relative to 15 kD TiO2 mass coated on
membrane surface (a) 0.00 gram TiO2: 0.0131, (b) 0.1 gram TiO2: 0.104
gr/(cm2.min.psi) 64
Figure 4.37 Flux of 15 kD TiO2 suspended membrane with permeability
(a) 0.00 gram TiO2: 0.0131, (b) 0.1 gram TiO2: 0.0062, (c) 1.18 gram TiO2:
0.0073 gr/(cm2.min.psi) 65
Figure 4.38 Flux of 15 kD TiO2 (interval 30-60 minutes) suspended membrane
with permeability (a) 0.00 gram TiO2: 0.0131, (b) 0.1 gram TiO2: 0.0062,
(c) 1.18 gram TiO2:0.0073 gr/(cm2.min.psi) 66
Figure 4.39 DOC rejection relative to TiO2 mass coated on membrane surface
(a) 0.00 gram TiO2: 0.0131, (b) 0.1 gram TiO2: 0.0062, (c) 1.18 gram TiO2:
0.0073 gr/(cm2.min.psi) 66
Figure 4.40 Flux of 15 kD TiO2 (interval 30-60 minutes) suspended and coated
membrane with permeability (a) 0.00 gram TiO2: 0.0131, (b) 0.1 gram coated
TiO2: 0.0104, (c) 0.1 gram suspended TiO2: 0.0062, (c) 1.18 gram TiO2:
0.0073 gr/(cm2.min.psi) 67
Figure 4.41 DOC rejection of 15 kD TiO2 suspended and coated membrane
with permeability (a) 0.00 gram TiO2: 0.0131, (b) 0.1 gram coated TiO2: 0.0104,
(c) 0.1 gram suspended TiO2: 0.0062, (c) 1.18 gram TiO2:0.0073
gr/(cm2.min.psi) 68
Figure 4.42 Flux between 15 kD naked membrane and UV membrane with
permeability (a) naked membrane: 0.0131, (b) UV only membrane: 0.0078
gr/(cm2.min.psi) 69
Figure 4.43 Flux (interval 30-60 minutes) between 15 kD naked membrane and
UV membrane with permeability (a) naked membrane: 0.0131, (b) UV only
membrane: 0.0078 gr/(cm2.min.psi) 70
Figure 4.44 DOC rejection between 15 kD naked membrane and UV membrane
with permeability (a) naked membrane: 0.0131, (b) UV only membrane:
0.0078 gr/(cm2.min.psi) 70
Figure 4.45 Flux (interval 30-60 minutes) between 15 kD naked (a), UV (b),
TiO2 (c) and TiO2-UV (d) membrane with permeability (a) 0.0131, (b) 0.0078,
(c) 0.00765, (d) 0.0104 gr/(cm2.min.psi) 71
Figure 4.46 DOC rejection between 15 kD naked (a), UV (b), TiO2 (c) and
TiO2-UV (d) membrane with permeability (a) 0.0131, (b) 0.0078, (c) 0.00765,
(d) 0.0104 gr/(cm2.min.psi) 72
Figure 4.47 Flux (interval 30-60 minutes) between 1 kD naked (a), UV (b),
TiO2 (c) and TiO2-UV (d) membrane with permeability (a) 0.055, (b) 0.0068,
(c) 0.0058, (d) 0.0052 gr/(cm2.min.psi) 73
Figure 4.48 DOC rejection between 1 kD naked (a), UV (b), TiO2 (c) and
TiO2-UV (d) membrane with permeability (a) 0.055, (b) 0.0068, (c) 0.0058,
(d) 0.0052 gr/(cm2.min.psi) 74
Figure 4.49 Apparent molecular weight distribution after 1 hour TiO2-UV
batch relative to initial concentration 76
Figure 4.50 Apparent molecular weight distribution for 1 kD membrane,
obtained by UF fractionation after 1 hour photocatalysis batch 77
Figure 4.51 Apparent molecular weight distribution for 15 kD membrane,
obtained by UF fractionation after 1 hour photocatalysis batch 78
Figure 4.52 Apparent molecular weight distribution for 50 kD membrane,
obtained by UF fractionation after 1 hour photocatalysis batch 79
Figure 4.53 Apparent molecular weight distribution of the commercial humic
acid (Aldrich) obtained by ultrafiltration fractionation 83
Figure 4.54 Apparent molecular weight distribution after 1 hour TiO2-UV
batch relative to initial concentration 9 ppm based on DOC 83
Figure 4.55 Molecular weight standard calibration 86
Figure 4.56 Molecular weight distribution of permeate 15 kD TiO2-UV
membrane 86
Figure 4.57 SEM of 15 kD naked membrane 87
Figure 4.58 SEM of TiO2 coated membrane 88
Figure 4.59 SEM of fouled TiO2-UV 15 kD membrane 88
Figure 4.60 X-Ray Diffraction of 15 kD naked membrane 89
Figure 4.61 X-Ray Diffraction of 15 kD membrane after 0.1 gram TiO2
coating 90
Figure 4.62 X-Ray Diffraction of fouled 15 kD TiO2-UV membrane 90
Figure 4.63 Energy Dispersive Spectrometer 15 kD naked membrane 91
Figure 4.64 Energy Dispersive Spectrometer 15 kD TiO2-UV membrane 91
Figure 4.65 Energy Dispersive Spectrometer 15 kD fouled TiO2-UV
membrane 92
dc.language.isoen
dc.subject(外籍學生無)zh_TW
dc.subjectultrafiltrationen
dc.subjectNOMen
dc.subjectfluxen
dc.subjectmembrane foulingen
dc.subjecthumic aciden
dc.subjectphotocatalysisen
dc.subjectTiO2en
dc.title以二氧化鈦覆鍍薄膜及UV程序
去除水中天然有機物
zh_TW
dc.titleTiO2 coated membrane coupled with UV irradiation for natural organic matter removalen
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林郁真(Yu-Chen Lin),郝晶瑾(Oliver J. Hao)
dc.subject.keyword(外籍學生無),zh_TW
dc.subject.keywordultrafiltration,TiO2,photocatalysis,humic acid,membrane fouling,flux,NOM,en
dc.relation.page109
dc.rights.note有償授權
dc.date.accepted2007-07-09
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept環境工程學研究所zh_TW
顯示於系所單位:環境工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  未授權公開取用
5.11 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved