請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30380完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王松永 | |
| dc.contributor.author | Te-Hsin Yang | en |
| dc.contributor.author | 楊德新 | zh_TW |
| dc.date.accessioned | 2021-06-13T02:02:32Z | - |
| dc.date.available | 2007-07-16 | |
| dc.date.copyright | 2007-07-16 | |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2007-07-05 | |
| dc.identifier.citation | 參考文獻
1. 中國國家標準CNS 11031(2002)結構用集成材,經濟部標準檢驗局。 2. 中國國家標準CNS 14630(2002)針葉樹結構用製材,經濟部標準檢驗局。 3. 中國國家標準CNS 14631(2002)框組壁工法結構用製材,經濟部標準檢驗局。 4. 王松永與張鍗(1978)異樹種集成梁彎曲性質之研究(第一報)彎曲彈性模數,中華林學季刊11(1):43-52。 5. 王松永(1982)造林木之材質與利用,林產工業1(1):69-78。 6. 王松永(1985)柳杉及杉木之材質與利用(Ⅰ),林產工業4(4):79-88。 7. 王松永(1986)柳杉及杉木之材質與利用(Ⅱ),林產工業5(1):66-76。 8. 王松永、林振榮、施能毅(1992)杉木及柳杉造林木之品等與製材率之探討,拓展林產品加工利用之研究論文發表及技術轉移研討會論文集,pp.1-22。 9. 王松永與曾偉宏(1993)杉木縱向壓縮與抗彎強度之變異性探討,台大實驗林研究報告7(1):65-77。 10. 王松永與林法勤(1994)台灣栽植之柳杉栽植距離對其密度與樹種強度性質之影響,台大農學院研究報告34(2):124-152。 11. 王松永與丁昭義(1995)林產學上冊,台灣商務印書館股份有限公司,台北。 12. 王松永(1999)促進疏伐中小徑木之用途開發,人工林生態系永續經營與利用研討會論文集,pp. 65-82。 13. 王松永(2000)木材利用與環境保護,木質建築4,pp. 94-9107。 14. 王松永(2003)木質材料利用對二氧化碳涵存之效映,木質建築7,pp. 106-121。 15. 王松永與卓志隆(1985)木材之動力學與音響學特性之研究(Ⅲ)膠合對木材動彈性模數與內部摩擦之影響,林產工業4(3):2-26。 16. 內政部營建署編審委員會(2003)構造建築物設計及施工技術規範。營建雜誌社編印,台北。 17. 林憲德(2000)台灣發展木質構造建築之課題與展望,木質建築4,pp. 146-147。 18. 林法勤(1992)柳杉栽植距對其基本力學性質之影響。國立台灣大學森林學研究所碩士論文。 19. 林振榮、施能毅、王松永(1992)柳杉、杉木造林木之製材品等與彎曲性質之研究。台大實驗林研究報告6(1):71-101。 20. 林振榮(2004)非破壞性試驗評估不同疏伐修枝對台灣杉造林木材質之影響。臺灣大學森林學研究所博士論文。p. 157。 21. 李長垚(1992)集成材強度與耐候性質之探討。國立台灣大學森林學研究所碩士論文。 22. 邱志明(1987)柳杉種子苗林木與插條苗林木生長與材質之研究。國立台灣大學森林學研究所博士論文。 23. 吳順昭、黃彥三、高健章(1974)強制振動法木材彈性模數之測定。中華林學季刊7(2):49-55。 24. 卓志隆(1986)木材動力學與音響學特性之研究。國立台灣大學森林學研究所碩士論文。 25. 卓志隆(2000)應用複合振動法測定結構用製材品之彈性模數與剪斷係數,林產工業19(1):37-48。 26. 徐光平、王松永(2002)台灣杉不同栽植距離對木材性質之影響,中華林學會91年度論文發會論文集pp. 335-350. 27. 莊世滋(1999)應力波及超音波法評估木材及不同撫育處理之立木材質硏究。國立台灣大學森林學研究所博士論文。 28. 陳載永、鍾建有(1995)應力波非破壞測定法-檢測六種實木之靜曲彈性模數,林產工業14(3):363-372。 29. 陳載永、葉政翰、鍾建有(1996)木材含水率對應力波傳遞速度與振動頻率之影響,林產工業15(3):415-424。 30. 陳載永、陳合進(1997)應力波檢測木材縱向接合強度之彈性模數,林產工業16(1):8-21。 31. 陳載永、陳合進(1997)火災後木質結構用材之強度檢測。中興大學實驗林研究彙刊19(2):89-99。 32. 黃耀富(1993)粒片板及纖維板之難然化處理效果,木材應用於住宅內之居住性研討會講義,pp.127-147。 33. 黃彥三、熊如珍、陳欣欣(1990)打音頻譜分析應用於材質評估之可行性,林產工業9(1):43-54。 34. 蔡金木(1995),木質材料之耐燃處理,木質構造建築之結構與居住性研討會論文集,pp. 241-251。 35. 蔡如藩(1985)木材力學性質。徐氏基金會,台北,pp. 61-78。 36. 蔡錫堯(1996)非破壞性檢測實驗,文京圖書有限公司,台北。 37. 侯國琛(1992)非破壞性檢測法,徐氏基金會,台北,pp. 219-288。 38. 葉民權、王松永、吳元呈(2005)結構用材機械分等系統之開發,木質建築9:133-154。 39. 廖坤福(1985)木造建築物燃燒性腐朽性缺點之改善,林產工業4(2):59-69。 40. 劉正字、林正榮(1986a)結構用集成材膠合劑之研究(第一報),林產工業5(4):15-17。 41. 劉正字、林正榮(1986b)結構用集成材膠合劑之研究(第二報),農林學報35(2):147-158。 42. 劉正字、李文昭(1987a)速生樹種之理化學性質及膠合方法對集成材性能之影響(Ⅰ)-杉木、山黃麻、麻六甲合歡之基本理化學性質。林產工業6(3):11-22。 43. 劉正字、李文昭(1987b)速生樹種之理化學性質及膠合方法對集成材性能之影響(第二報)-杉木、山黃麻、麻六甲合歡製作集成材之研究。中華林學季刊20(4):27-40。 44. 劉正字、李文昭(1987c)速生樹種之理化學性質及膠合方法對集成材性能之影響(第三報)-杉木、山黃麻、麻六甲合歡 縱向接合製作集成材之研究。中華民國農學團體76年聯合年會特刊,pp. 21-43 45. 劉正字、李文昭(1988a)速生樹種之理化學性質及膠合方法對集成材性能之影響(第四報)-柳杉、泡桐、木油桐之物理機械性質。興大實驗林及森林系所研究報告第九號,pp. 125-134。 46. 劉正字、李文昭(1988b)速生樹種之理化學性質及膠合方法對集成材性能之影響(第五報)-柳杉、台灣泡桐、木油桐製作集成材之研究。林產工業7(1):109-126。 47. 劉正字、李文昭(1988c)速生樹種之理化學性質及膠合方法對集成材性能之影響(第六報)-柳杉、台灣泡桐、木油桐縱向接合製作集成材之研究。中興大學農林學報37(2):81-98。 48. 劉正字、李文昭(1989a)速生樹種之理化學性質及膠合方法對集成材性能之影響(第七報)-相思樹、楓香、台灣杉之基本理化學性質。林產工業8(2):15-27。 49. 劉正字、李文昭(1989b)速生樹種之理化學性質及膠合方法對集成材性能之影響(第八報)-相思樹、楓香、台灣杉製作集成材之研究。中興大學農學院實驗林研究報告11:41-61。 50. 劉正字、李文昭(1989c)速生樹種之理化學性質及膠合方法對集成材性能之影響(第九報)-相思樹、楓香、台灣杉縱向接合製作集成材之研究。林產工業8(4):75-84。 51. 今泉勝吉、管野蓑作(1965)實用木材加工全書第8卷-集成材,森北出版株式會社。 52. 石原茂久(1989)木材之科學與利用技術,日本木材學會,pp. 137-154。 53. 中村賢一、宮林正幸(1985)大斷面木材之耐火性(1),木材工業40:465. 54. 中村賢一、山田誠(1998)木構建築之防火設計,產調出版社株式會社,pp. 15-54。 55. 井上嘉幸(1972)木材之劣化與防止法,森比出版,pp.264-266。 56. 左野敦子、高田峰幸、山田 誠(2001)構造用LVL等之耐火性能(5),日本木材學會大會研究發表要旨集,p. 424。 57. 山田 誠、高田峰幸、左野敦子(2001)構造用LVL等之耐火性能(4),日本木材學會大會研究發表要旨集,p. 425。 58. 飯島泰男(1993)木質材料,木材ソ科學シ利用技術Ⅲ5.大規模木構造,日本木材學會編,pp. 23-62。 59. 祖父江信夫(1992)強度ズ關連エペ因子シガソ測定法,木材工業11:13-19。 60. 大熊幹章(1967)合板の機械的性質に關する研究,東大演報63:1-60。 61. 原田壽郎、上杉三郎、宮武 敦、平松 靖(2003)火災被害を受けた大斷面集成材の炭化深さと耐火性能,木材工業58(1):14-18。 62. AITC (1996) Calculation of fire resistance of glued laminated timbers. Technical Note 7. American Institute of Timber Construction. 63. AITC (2004) Superior fire resistance. OT-04. American Institute of Timber Construction. 64. AFPA (1999) calculating the fire resistance of exposed wood members, Technical Report 10, Washington, DC: American Forest & Paper Association. 65. AS 1720.4 (1990) Timber structures Part 4: fire resistance of structural timber members. North Sydney, Australia. 66. ASTM E119-96 (1996) Standard Method of Fire Endurance Tests of Building Construction and Materials: Philadelphia, PA. 67. ASTM D-245 (1999) Standard practice for establishing structural grades and related allowable properties for visually graded lumber. Philadelphia, PA. 68. Anon. (1999) Calculating the Fire Resistance of Wood Members. Technical Report 10. American Forest & Paper Association: Washington, DC. 69. Anon (2003) International Building Code. International Code Council: Fairfax, VA. 70. Bodig J, Jane BA (1982) Mechanics of wood and wood composites. pp. 268-275. 71. Blackshear PL, Murty JL (1962) The measurement of physicochemically controlled ablation rates. Tech. Rep. No.1 University of Minneapolis Institute of Technology, Minneapolis. 72. Burdzik WMG, Nkwera PD (2002) Transverse vibration tests for prediction of stiffness and strength properties of full size eucalyptus grandis. Forest Prod. J. 52(6):63-67. 73. Breyer DE (1993) Design of wood structures, 3rd edn. New York, USA. 74. CAN / ULC-S101-M89 (1989) Standard Method of Fire Endurance Tests of Building Construction and Materials. Underwriters’ Laboratories of Canada: Scarborough, Ontario, Canada. 75. Chugg WA (1964) Glulam: the theory and practice of the manufacture of glued laminated timber structure. Benn, London. 76. Colling F (1990) Bending strength of glulam beams- A statistical model. IUFRO S5.2, St. John, Canada. 77. Colling F, Ehlbeck J, Gorlacher R (1991) Glued laminated timber: Contribution to the determination of the bending strength of glulam beams. CIB W18/ 24- 12- 1, Oxford, England. 78. Colling F, Falk RH (1993) Investigation of laminating effects in glued-laminated timber. Proceedings of 26th meeting; International Council for Building Research Studies and Documentation Working Commission W18-Timber structures. Athens, GA. 79. Collier PCR (1992) Charring Rates of Timber. Study report. Branz: New Zealand. 34p. 80. Curry WT, Hearmon RFS (1974)The strength properties of plywood. In : The strength properties of Timber. MTP Construction, London, UK. pp. 6.177-208. 81. Courchene T, Lam F, Barrett JD (1998) The effect of edge knots on the strength of SPF MSR lumber, Forest Products Journal 48(4): 75–81. 82. Chiu CM, Wang SY, Lin CJ, Yang TH, Jane MC (2006) Application of the fractometer for crushing strength :Juvenile-mature wood demarcation in Taiwania, Journal of Wood Science 52(1): 9-14 83. Dinwoodie JM (1989) Wood: Nature’s cellular polymeric fibre-composite. The institute of Metals, London. 84. Dole DV, Marwardt LJ (1966) Properties of southern oine in relation to strength grading of dimension lumber. Res. Paper FPL-64. USDA Forest Serv., Forest Prod. Lab. Madison, WI. 85. Dansoh AB, Koizumi A, Hirai T (2004) Bending strength and stiffness of glued butt-jointed glulam. Forest Products Journal 54(9):40-44. 86. EC5. (1994) Eurocode 5: Design of Timber Structures. ENV 1995-1-2. CEN: Brussels, Belgium. 87. Erikson RG, Gorman TM, Green DW, Graham D (2000) Mechanical grading of lumber sawn from small-diameter lodgepole pine, ponderosa pine, and grand fir trees from northern Idaho. Forest Products Journal 50(7/8):59-65. 88. Falk RH, Solli KH, Aasheim E (1992) The Performance of Glued Laminated Beams Manufactured From Machine Stress Graded Norwegian Spruce, Norwegian Institute of Wood Technology, Report No.77. 89. Falk RH, Colling F (1995) Laminated effects in glued-laminated timber beams. Journal of Structural Engineering, ASCE, 121(12): 1857-1863. 90. Falk RH (1997) Design and performance aspects of United States and European glulam. In Proceedings of the Conference on Research Standardization Applications. C/2-1 – C/2-21. 91. Foschi RO, Barrett JD (1980) Glued-Laminated Beam Strengrh: A Model. Journal of the Structural Division, ASCE, Vol. 106, No. ST8:1735-1754. 92. Fredlund B (1988) A Model for Heat and Mass Transfer in Timber Structures During Fire:A Theoretical, Numerical and Experimental Study. Report, Lund Institute of Science and Technology: Sweden, 93p 93. Fredlund B (1993) Modelling of heat and mass transfer in wood structures during fire. Fire Safety Journal 20:39–69. 94. Frangi A, Fontana M (2003) Charring rates and temperature profiles of wood sections. Fire and Materials 27: 91-102. 95. Galligan WL (1964) A status report – nondestructive testing in wood. Forest Products Journal 14(5): 221-227. 96. Gehri E (1992) Determination of characteristic bending values of glued laminated timber. CIB-W18, Ahus, Sweden. 97. Galligan WL, Snodgrass DV, Crow GW (1977) Machine stress rating : Practical concerns for lumber producers. FPL-GTR-7. USDA Forest Serv., Forest Prod. Lab., Madison, Wis. 98. Gerhards CC (1972) Relationship of tensile trength of southern pine dimension lumber to inherent characteristics. Res. Pap. FPL-RP-174. USDA Forest Serv., Forest Prod. Lab. Madison, WI. 31p. 99. Gerhards CC (1982) Effect of knots on stress wave in lumber. Res. Pap. FPL-RP-384. USDA Forest Serv., Forest Prod. Lab. Madison, WI. 28p. 100. Grant DJ, Anton A, Lind P (1984) Bending strength, stiffness, and stress-grade of structural pinus radiata: effect of knots and timber density, New Zealand J Forestry Sci 14: 331–48 101. Gere JM, Timoshenko SP (1997) Mechanics of Materials. 4th ed. PWS Publishing Co., Boston, MA. pp. 391-396. 102. Green DW, McDonald KA (1993a) Investigation of the mechanical properties of red oak 2 by 4’s. Wood and Fiber Science 25(1):35-45. 103. Green DW, McDonald KA (1993b) Mechanical properties of red maple structure lumber. Wood and Fiber Science. 25(4):365-374. 104. Hayashi T, Miyatake A (1991) Strength properties of sugi composite- glulam beams I. Bending, tensile and partial compression strength. Mokuzai Gakkaishi, 37(3): 200-205 105. Hermamdez R, Moody RC (1996) Analysis of Glulam Timber Beans with Mechanically Graded (E-rated) Outer Laminations. Proceeding of the international wood engineering conference, New Orleans, LA. Baton Rouge, LA: Louisiana State University: Vol. 1:144-150. 106. Halabe UB, Bidigalu GM, Gangarao HVS, Ross RJ (1997) Nondestructive evaluation of green wood using stress wave and transverse vibration techniques. Materials Eval. 55(9):1013-1018. 107. Hermamdez R, Moody RC (1992) Improved Performance of Southern Pine Structural Glued-Laminated Timber. Res. Pap.FPL-Rp-514. Madison, WI: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory. 22 p. 108. Hadvig S (1981) Charring of wood in building fires. Lyngby: Technical University of Denmark. 109. Haines DW, Leban JM, Herbe C (1996) Determination of Young’s modulus for spruce, fir and isotropic materials by the resonance flexure method with comparisons to static flexure and other dynamic methods. Wood Science and Technology 30(4):253-263. 110. ISO 834 (1975) Fire-Resistance Tests – Elements of Building Construction. International Standards Organization: Geneva, Switzerland. 111. ISO 5660 (2002) Reaction-to-fire tests – Heat release, smoke production and mass loss rate – Part 1: Heat release rate (cone calorimeter method). International Standards Organization: Geneva, Switzerland. 112. Isoda H, Mori T, Sasagawa A (2000) The resistance and fracture mechanisms of glulam beams in bending. J. Struct. Constr., AIJ. No. 529. pp. 13-20. 113. Jayne B (1959) Vibrational properties of wood as indices of quality. Forest Products Journal 9(11): 413-416. 114. Johanson CJ (2002) Granding of timber with respect to mechanical properties. Timber engineering. Wiley, New York, pp. 23-43 115. Janssens ML (2004) Modeling of the thermal degradation of structural wood members exposed to fire. Fire and Materials 28:199-207. 116. Kollman F, Cote WA (1968) Principles of wood science and technology. Vol 1. Solid Wood., pp.359-379. 117. Kundson RM, Schniewind AP (1975) Performance of structural wood members exposed to fire. Forest Products Journal 25: 23-32. 118. Kikuchi S, Komazawa K (1995) Internal temperature change of wood by radiation heating. J. Hokkaido For. Prod. Res. Inst. 9(5):16-22. 119. Konig J, Walleij L (1999) One-dimensional Charring of Timber Exposed to Standard and Parametric Fires in Initially Unprotected and Postprotection Situations. Swedish Institute for Wood Technology Research: Stockholm. Report I. p.48 120. Konig J, Walleij L (2000) Timber frame assemblies exposed to standard and parametric fires – Part 2: A design model for standard fire exposure. Swedish Institute for Wood Technology: Sweden, 2000. Research Report I 0001001. 121. Kunesh RH, Johnson JW (1972) Effect of single knots on tensile strength of 2- by 8- inch Douglas-Fir dimensional lumber, Forest Products Journal 22(1): 32–37 122. Lawson DL, Webster CT, Ashton LA (1952) Fire endurance of timber beams and floors. Journal of Structural Engineering 30(1): 27-34. 123. Lie T (1977)A method for assessing the fire resistance of laminated timber beams and columns. Canadian Journal of Civil Engineering 4:161–169. 124. Larsen HJ (1982) Strength of glued laminated beams: Part 5, Report No. 8201. Institute of Building Technology and Structural Engineering, Aalborg University, Aalborg, Denmark. 125. Lau WC, White R, Zeeland IV (1999) Modelling the Charring Behaviour of Structural Lumber. Fire and Materials. 23: 209-216. 126. Lin CJ, Wang SY, Yang TH, Tsai MJ (2006)Compression propertres of young Taiwania (Taiwania cryptomerioides Hay) trees grown with different thinning and pruning treatments, Journal of Wood Science, 52(4):337-341. 127. Lee JJ, Kim GC (2000) Study on the estimation of the strength properties of structural glued laminated timber I: determination of optimum MOE as input variable, Journal of Wood Science, 46(2):115-121. 128. Markwart LJ, Wilson TRC (1935) Strength and related properties of woods grown in the United Stats. USDA Tech. Bulletin 479. Washington, DC. p.40 129. Marra GG, Pellerin RF, Galligan WL (1966) Non-destructive determination of wood strength and elasticity by vibration. Wood and Wood Prod. 24(10): 460-466. 130. Moody RC, Hernandez R, Davalos JF, Sonti SS (1993) Yellow Pop lar glulam timber beam performance. Res. Pap. FPL-RP-520. Madison, WI: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory. 28 p. 131. Mehaffey J, Cuerrier P, Carrisse G. (1994) Model for predicting heat transfer through gypsum-board/wood stud walls exposed to fire. Journal of Fire and Materials. 18:297–305. 132. Mihashi H, Itagaki N, Ito Y, Suzuki N (1996) Analytical model for the design of performance in glulam beams of Japanese cedar Ⅰ. Prediction model for flexural strength including the effect of the reinforcement by laminating and of the plastic deformation in the compressive zone. Mokuzai Gakkaishi, 42(2):122-129. 133. Moghtaderi B, Novozhilov V, Fletcher D, Kent J (1997) An integral model for the transient pyrolysis of solid materials. Journal of Fire and Materials. 21:7–16. 134. Pellerin RF (1965) A vibrational approach to nondestructive testing of structural lumber. Forest Products Journal 15(3): 93–101. 135. Pellicane PJ, Stanfill-McMillan K, Tichy RJ (1987) Effects of knots near the fingers of finger-jointed dimension lumber, Forest Products Journal 37(5): 13–16. 136. Ross RJ, Pellerin RF (1988) NDE of wood-based composites with longitudinal stress waves. Forest Products Journal. 38(5): 39–45. 137. Ross RJ, Pellerin RF (1991) Stress wave evaluation of green material: Preliminary results using dimension lumber. Forest Products Journal 41(6): 57-59. 138. Ross RJ, Pellerin RF (1994) Nondestructive testing for assessing wood members in structure: a review. FPL-GTR-70. USDA Forest Service, Forest Products Laboratory, Madison, WI. 139. Ross RJ, Green DW, McDonald KA, Schad KC (1996) NDE of logs with longitudinal stress waves. NDT 1996 10th International symposium on Nondestructuve Testing of Wood. pp. 117-123. 140. Rajesjwr B, Bender DA, Bray DE (1997) An Ultrasonic Technique for Predicting Tensile Strength of Southern Pine Lumber. Transactions of the ASAE(40):1153-1159. 141. Schaffer EL (1967) Charring Rate of Selected Woods Transverse to Grain. Research paper FPL-69. Forest Products Laboratory: Madison, WI. p.22 142. Sandoz JL (1989) Grading of construction timber by ultrasound. Wood Science and Technology 23: 95-108. 143. Sandoz JL (1993) Valorization of Forest Products as Building Materials Using Nondestructive Testing. Proceeding of the 9th ISNTW, pp. 103-109. 144. Sobue N, Mizukami K (1993) Resonance frequency of longitudinal vibration as a parameter for prediction of young’s modulus of structural timbers. J. Soc. Mat. Sci. 42: 121-125. 145. Schard KC, Kreteschman DE, McDonald KA, Ross RJ, Green DW (1995) Strees Wave Techniques for Determining Quality of Dimensional Lumber From Swith Ties. Forest Product Laboratory Research Note FPL-RN-0265. 146. Shrestha D, Cramer S, White R (1994) Time-temperature profile across a lumber section exposed to pyrolytic temperatures. Journal of Fire and Materials. 18:211–220. 147. Sweet MS (1993) Fire performance of wood: Test methods and fire retardant treatments. Proceedings of 4th annual BCC conference on flame retadancy, pp. 36-43. 148. Truax TR (1959) Fire research and results at US forest products Laboratory. United States Forest Service Research Report No.1999, Madison, WI. 149. Tavakkol-Khah M, Klingsch W (1997) Calculation model for predicting fire resistance time of timber members. In Fire Safety Science, Fifth International Symposium, Melbourne, Australia, March 3–7, 1997. International Association of Fire Safety Science: Boston, MA, 1201–1211. 150. Tran HC (1992) Experimental data om wood materials, In: Babrauskas, V.; Grayson, S.J., eds. Heat release in fires. Chapter 11, part b. New York: Elsevier Applied Science. 151. Vorreiter L (1956) Combustion and heat insulating losses of wood and fiberboards. Holzforschung 10(3):73-80. 152. Wagner FG, Gorman TM, Wu SY (2003) Assessment of intensive stress-wave scanning of ouglas-fir tees for predicting lumber MOE. Forest Products Journal 53(3): 36-39. 153. Wang SY (1984)Studies on the dynamic and acoustic behaviors of wood(1)studies on the influencing factors on the velocity of sound in wood. Q.J. Exp. Forest N.T.U. 150:1-23. 154. Wang SY, Chiu CM (1988) The wood properties of Japanese cedar originated by seed and vegetative reproduction in Taiwan Ⅲ:The variation of microfibril angles of tracheids, Mokuzai Gakkaishi, 34(11):881-888. 155. Wang SY, Chiu CM (1988)The wood properties of Japanese cedar originated by seed and vegetative reproduction in Taiwan Ⅳ:The variation of degree of crystallinity of cellulose, Mokuzai Gakkaishi, 34(11):909-916. 156. White RH (1988)Charring Rates of Different Wood Species. Ph.D. Thesis, University of Wisconsin: Madison, WI. 157. White RH, Nordheim EV (1992) Charring rate of wood for ASTM E119 exposure. Fire Technology 28(1):5-30. 158. White RH, Dietenberger MA (1999) Fire safety. Wood handbook - Wood as an engineering material. Gen. Tech. Rep. FPL–GTR–113. Madison, WI: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory. 159. White RH (2000) Charring rate of composite timber products. Proceeding of Wood and Fire Safety. pp. 353-363. 160. Wang SY, Chiu CM (1993) Variation of the modulus of toughness and wind resistance of Taiwan-grown Japanese cedar originated by seed and vegetative reproduction, Mokuzai Gakkaishi, 39(7):831-836. 161. Wang SY, Chiu CM (1993) Wood properties of Japanese cedar originated by seed and vegetative reproduction in Taiwan Ⅳ:Compression and bending properties, Mokuzai Gakkaishi, 39(10):1128-1139. 162. Wang SY, Lin SH (1996) Effects of plantation spacings on the quality of visually graded lumber and mechanical properties of Taiwan-grown Japanese cedar, Mokuzai Gakkaishi, 42(5):435-444. 163. Wang SY, Ko CY (1998) Dynamic modulus of elasticity and bending properties of large beams of Taiwan-grown Japanese cedar from diffrent plantation apacing sites. Journal of Wood Science, 44:62-68. 164. Wang SY, Chiu CM, Lin CJ (2002) Variation in ultrasonic wave velocity and dynamic young's modulus with moisture content for Taiwania plantation lumber, Wood and Fiber Science, 34(3):370-381 165. Wang SY, Lin CJ, Chiu CM (2003) The adjusted dynamic modulus of elasticity above the fiber saturation point in Taiwania plantation wood by ultrasonic-wave measurement, Holzforschung 57:547-552 166. Wang SY, Chen JH, Hsu KP (2005) Effects of planting on visually graded lumber and mechanical properties of Taiwania. Wood and Fiber Science 37(4):574-581. 167. Wang X, Ross RJ, Mattson JA, Erickson JR, Forsman JW, Geskse EA, Wehr MA (2002) Nondestructive evaluation techniques for assessing modulus of elasticity and stiffness of small-diameter logs. Forest Prod. J. 52(2): 79-85. 168. Xu P (2002) Estimating the influence of knots on the local longitudinal stiffness in radiata pine structural timber. Wood Science and Technology 36: 501–509. 169. Young SA, Clancy P (2001) Compression mechanical properties of wood at temperature simulating fire conditions. Fire and Materials 25: 83-93 170. Zeeland IMV, Salinas JJ, Mehaffey JR (2005) Compressive strength of lumber at high temperatures. Fire and Materials 29:71-90. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30380 | - |
| dc.description.abstract | 本研究乃針對集成元之配置與設計進行集成材製造,探討構造集成材之工程性能與火災性狀,以非破壞檢測技術評估省產之柳杉、台灣杉等中小徑木以及國外廣泛用於集成材之花旗松與南方松等集成元之抗彎性質,建立其強度相關性。首先,主要利用不同之目視分等方法(中國國家標準第14630號與第14631號)與超音波、橫向振動儀等非破壞檢測儀器評估集成元之材質,究明非破壞檢測法應用之可行性及其材質優劣與等級,並經有效之配置,達到構造用集成材之設計。次而依中國國家標準第11031號結構用集成材標準進行相關之抗彎強度、剪斷強度以及剝離性質等試驗,究明集成材之力學特性,並於進行強度試驗之同時,於集成材之中央側黏貼應變片,量測抗彎試驗時構成集成材之各個集成元之應變狀態,以究明不同配置下,不同位置之集成元在自由狀態及構成集成材狀態下,各個集成元之彈性模數,並依應力與應變之關係,求出集成材中立軸之位移改變狀態。最後,探討集成材於CNS 12514標準燃燒時間溫度曲線下,其炭化速度、構造內部溫度變化與構造用集成材經標準燃燒試驗後之力學性質。經上述之試驗結果指出,利用現行中國國家標準中,CNS 14630針葉樹結構用製材與CNS14631框組壁工法結構用製材兩種目視分等法進行集成元強度等級區分,在DMOEv值、DMOEt值與MOE值方面均可得結構材(一級材)>標準材(二級材)>普通材(三級材)之趨勢。在非破壞檢測法上,以橫向振動法之動彈性模數(DMOEt)評估集成元之抗彎彈性模數較佳,其R2達0.83-0.90。
利用EbI= 計算法進行集成元之配置與集成材強度之計算,集成材之抗彎彈性模數預測值(Eb(sp))與抗彎彈性模數實測值(Eb(sc))成顯著之正相關,其R2值為0.82-0.92。透過外層集成元之強度配置,集成材之抗彎彈性模數與抗彎強度均隨外層集成元之彈性模數之增加而有隨之增加之趨勢,其R2值分別為0.79-0.94與0.52-0.63。以振動法求得集成材之剪斷模數(G)值,其E/G比,柳杉、台灣杉、花旗松與南方松各集成材分別為13.2-14.5、14.4-16.6、12.1-16.6與16.0-19.1。而消除剪力撓曲影響,即可得集成材之抗彎彈性模數真實值(Ep)與抗彎強度(MOR),依本研究配置所得之柳杉集成材之Ep值與MOR值分別為10.6-13.4 GPa與48.3-61.9 MPa;台灣杉集成材之Ep值與MOR值分別為12.1-15.0 GPa與41.8-58.8 MPa;花旗松集成材之Ep值與MOR值分別為10.5-16.4 GPa與37.2-65.6 MPa;南方松集成材之Ep值與MOR值分別為14.5-20.6 GPa與70.2-78.4 MPa。利用應變片法所得之抗彎彈性模數(Eb(sg)與Eb(sa)值)與Ep值之間有顯著之正相關性存在,其R2值為0.70 - 0.96。 集成材之火災特性上,炭化速度方面:杉木集成梁側面之炭化速度為0.587 - 0.750 mm/min;底面之炭化速度為0.709 - 0.897 mm/min;柳杉集成梁側面之炭化速度為0.643 - 0.770 mm/min;底面之炭化速度為0.644 - 0.911 mm/min;台灣杉集成梁側面之炭化度為0.608 - 0.757 mm/min;底面之炭化速度為0.614 – 0.817 mm/min;花旗松集成梁側面之炭化速度為0.588 - 0.627 mm/min;底面之炭化速度為0.632 - 0.694 mm/min;南方松集成梁側面之炭化速度為0.530 - 0.568 mm/min;底面之炭化速度為0.566 - 0.583 mm/min,有南方松集成材優於花旗松集成材,依序為杉木集成材、柳杉集成材、台灣杉集成材之趨勢。而在集成材燃燒時之內部溫度分佈方面,省產之柳杉集成材與台灣杉集成材受熱時之內部溫度均有大於花旗松集成材與南方松集成材之趨勢。 經燃燒試驗後,集成材之力學性質上,集成材之抗彎強度會隨燃燒時間之增加而降低,其中,杉木集成材之MOE值由4.1 GPa降至2.5 - 3.8 GPa,MOR值由48.2 MPa降至27.1 - 36.6 MPa;柳杉集成材之MOE值由5.3 GPa降至3.7 - 4.6 GPa,MOR值由54.8 MPa降至23.0 - 39.4 MPa;台灣杉集成材之MOE值由5.3 GPa降至3.4 - 4.7 GPa,MOR值由51.4 MPa降至21.8 - 38.6 MPa;花旗松集成材之MOE值由7.7 GPa降至6.6 - 6.9 GPa,MOR值由62.7 MPa降至33.2 - 40.8 MPa;南方松集成材之MOE值由6.0 GPa降至4.4 - 5.3 GPa,MOR值由58.9 MPa降至26.4 - 42.1 MPa。但在剪斷強度與抗壓強度性質上,位於中央側之試片,其強度與未經燃燒試驗之集成材強度值間,並無顯著差異。 | zh_TW |
| dc.description.abstract | The purposes of this study was to investigate the effects of the configuration of the lamina on the engineering and fire performance of glulam made from Japanese cedar, Taiwania, Douglas-fir, and Southern pine lumber. First of all, two kinds of visually graded criterions, CNS 14630 and CNS14631, were applied to grade selected laminaes. Then, the bending properties of Japenses cedar, Taiwania, Douglas fir, and Southern pine laminaes were measured by nondestructive test methods including ultrasonic wave test, transverse vibration test, and static bending test. The relationships between two dynamic modulus of elasticity, DMOEv and DMOEt which were calculated respectively by ultrasonic wave test and transverse vibration test, and static modulus of elasticity were understood.In addition, in order to evaluate the properties of glulam, the bending properties, shear strength, and peeling properties were test according to CNS 11031. Moreover, the strain of each laminae was measured during the bending test by affixing the strain gauge at the central axis of edge face, then, the modulus of elasticity and the position of neutral axis of whole glulam were determined.Finally, the charring rate, temperature distribution inside the glulam and mechanical properties of glulam were measured after standard fire exposure test. These results were summarized as fallows:
The DMOEv, DMOEt, and MOE values for all laminaes graded by visual graded criterions showed a decreasing order in construction grade (Class 1) > standard grade (Class 2) > utility grade (Class 3). There was also significant linear relationship between the values, DMOEt, DMOEv, and MOE. The highest R2 value was ranged from 0.83 to 0.93 for laminae between the DMOEt and MOE, and it was also found that the transverse vibration test is a better nondestructive method for lamina evaluation. Consider the existence of the glue layers, the bending stiffness of glulam EbI is the sum of laminas and glue layers bending stiffness (EbI= ). It was found that the Eb(sp) increased with the Eb(sc) increasing and the R2 values were ranged from 0.82 to 0.94. Furthermore, It was also found that the Eb(sc) and MOR values of glulam increased with the MOE of the outside layers of lamina increasing, and the R2 values were ranged from 0.79 to 0.94 and 0.52 to 0.63, respectively. Because the bending glulam was subjected to the both pure bending moment and vertical shear force, the actual deflection included shear deflection. Hence, the modulus of rigidity, G, of glulam was measured by vibration test method in order to realize the shear deflection effect. The E/G values of Japanese cedar, Taiwania, Douglas-fir, and southern pine glulam were ranged form 13.2 to 14.5, 14.6 to 16.6, 12.1 to 16.6 and 16.0 to 19.1, respectively. The pure MOE(Ep) was also obtained. The Ep and MOR values of glulam were ranged from 10.6 to 13.4 GPa and 48.3 to 61.9 MPa for Japanese cedar, ranged from 12.1 to 15.0 GPa and 41.8 to 58.8 MPa for Taiwania, ranged from 10.5 to 16.4 GPa and 37.2 to 65.6 MPa for Douglas-fir, ranged from 14.5 to 20.6 GPa and 70.2 to 78.48 MPa for Southern pine, respectively. Results also indicated that a positive linear correlation between modulus of elasticity measured by strain gauge method (Eb(sg) and Eb(sa)) and values of Ep, the R2 values were ranged from 0.70-0.96. In the fire performance study, the charring rate of side and bottom were ranged from 0.587 to 0.750 mm/min and 0.709 to 0.897 mm/min for China fir glulam, 0.643 to 0.770 mm/min and 0.644 to 0.911 mm/min for Japanese cedar glulam, 0.608 to 0.757 mm/min and 0.614 to 0.817 mm/min for Taiwania glualm, 0.588 to 0.627 mm/min and 0.632 to 0.694 mm/min for Douglas-fir glulam, and 0.530 to 0.568 mm/min and 0.566 to 0.583 mm/min for Southern pine glualm, respectively. The results indicated that the charring rate in all glulam showed a decreasing order in Taiwania>Japanese cedar >China fir >Douglas-fir>Southern pine glulam. The inside temperature of Japanese cedar and Taiwania glulam were higher than that of Douglas-fir and Southern pine glualm under the standard fire exposure test After standard fire exposure test, the bending properties of glulam decreased with the fire exposure time increasing. The values of MOE and MOR decreased respectively from 4.1 GPa to 2.5-3.8 GPa and 48.2 MPa to 27.1-36.6 MPa for China fir glulam, from 5.3 GPa to 3.7-4.6 GPa and 54.8 MPa to 23.0-39.4 MPa for Japanese cedar glulam, from 5.3 GPa to 3.4-4.7 GPa and 51.4 MPa to 21.8-38.6 MPa for Taiwania glulam, from 7.7 GPa to 6.6- 6.9 GPa and 62.7 MPa to 33.2-40.8 MPa for Douglas-fir glulam, from 6.0 GPa to 4.4-5.3 GPa and 58.9 MPa to 26.4-42.1 MPa for Southern pine glulam. In addition, the difference between the strength of shear and compression of glulam before and after standard fire exposure test was not significant. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T02:02:32Z (GMT). No. of bitstreams: 1 ntu-96-D90625006-1.pdf: 5857351 bytes, checksum: c17515f838a34c00d07a5741550e06f8 (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | 第一章、前言 1
第二章、文獻探討 6 2.1集成材 6 2.1.1集成材之定義 6 2.1.2集成材之優點 6 2.1.3 集成材相關文獻 7 2.2非破壞性試驗評估集成元之強度等級 10 2.2.1非破壞性試驗 10 2.2.2非破壞性試驗之應用 10 2.3集成效應 13 2.4集成材之燃燒行為 15 2.4.1木材之高溫特性 15 2.4.2大斷面集成材之燃燒特性 16 2.4.3歐美木構件防火設計 21 第三章、試驗材料與方法 25 3.1集成元部分 25 3.2耐燃集成元部分 25 3.3膠合處理 25 3.4集成材之製作條件 26 3.4.1集成元之分等 27 3.4.2集成元之配置 27 3.4.3集成材之膠合 28 3.5集成材之性質試驗 31 3.5.1撓曲共振振動試驗 31 3.5.2超音波試驗 32 3.5.3抗彎強度試驗與應變變化測計 34 3.5.4剪斷模數試驗 38 3.5.6煮沸剝離試驗 39 3.5.7剪斷試驗 39 3.6集成材之防火安全試驗 41 3.6.1燃燒期間集成材內部溫度之測定 41 3.6.2集成材炭化速度之測定 44 3.6.3 燃燒後集成材之性質評估 44 3.6.3.1浸漬剝離試驗 44 3.6.3.2煮沸剝離試驗 44 3.6.3.3木塊剪斷試驗 44 3.6.3.4抗彎試驗 45 3.6.3.5抗壓試驗 45 3.6.4 圓錐量熱儀試驗 46 第四章、結果與討論 47 4.1集成元性質 47 4.1.1集成元之密度 47 4.1.2集成元之超音波速度與動彈性模數(DMOEv) 47 4.1.3集成元之橫向振動動彈性模數(DMOEt) 48 4.1.4集成元之抗彎彈性模數(MOE) 48 4.1.5集成元之目視分等結果 50 4.1.6目視分等與木材性質之相關性分析 54 4.1.6.1目視分等與木材密度之關係 54 4.1.6.2目視分等與超音波速之關係 54 4.1.6.3目視分等與各彈性模數(DMOEv, DMOEt, MOE)之關係 55 4.1.7集成元機械分等結果 62 4.1.8集成元密度與彈性模數之相關性分析 66 4.1.9集成元各彈性模數之相關性分析 70 4.2集成材性質 77 4.2.1集成材之抗彎性質 77 4.2.2集成材之應力應變測計 86 4.2.3集成元配置對集成材之影響 98 4.2.4集成材之剪斷強度 105 4.2.5集成材之浸漬剝離性質 105 4.2.6集成材之煮沸剝離性質 105 4.3集成材之耐燃性質 106 4.3.1集成材之炭化速度 106 4.3.2 集成材之炭化內部溫度 121 4.3.3 集成材之抗彎強度變化 127 4.3.4 集成材之剪斷強度變化 130 4.3.5 集成材之抗壓強度變化 133 第五章、結論 137 綜合建議 139 參考文獻 141 | |
| dc.language.iso | zh-TW | |
| dc.subject | 中立軸 | zh_TW |
| dc.subject | 炭化速度 | zh_TW |
| dc.subject | 集成材 | zh_TW |
| dc.subject | 火災特性 | zh_TW |
| dc.subject | 目視分等 | zh_TW |
| dc.subject | 非破壞檢測技術 | zh_TW |
| dc.subject | 力學強度 | zh_TW |
| dc.subject | 應變片法 | zh_TW |
| dc.subject | Fire performance | en |
| dc.subject | Glued Laminated Timber | en |
| dc.subject | Visual grade method | en |
| dc.subject | Nondestructive techniques | en |
| dc.subject | mechanical strength | en |
| dc.subject | Strain Gauge Method | en |
| dc.subject | Shift in the neutral axis | en |
| dc.subject | Charring rate | en |
| dc.title | 中小徑木製造構造用集成材及其工程性能之研究 | zh_TW |
| dc.title | Engineering Performance of Structural Glued Laminated Timber made from Small Diameter Trees | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 張上鎮,蔡明哲,林慶元,卓志隆,劉正字,陳載永,黃耀富 | |
| dc.subject.keyword | 集成材,目視分等,非破壞檢測技術,力學強度,應變片法,中立軸,炭化速度,火災特性, | zh_TW |
| dc.subject.keyword | Glued Laminated Timber,Visual grade method,Nondestructive techniques,mechanical strength,Strain Gauge Method,Shift in the neutral axis,Charring rate,Fire performance, | en |
| dc.relation.page | 155 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2007-07-09 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 森林環境暨資源學研究所 | zh_TW |
| 顯示於系所單位: | 森林環境暨資源學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-96-1.pdf 未授權公開取用 | 5.72 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
