請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30355完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 貝蘇章 | |
| dc.contributor.author | Hong-Jie Hsu | en |
| dc.contributor.author | 許弘傑 | zh_TW |
| dc.date.accessioned | 2021-06-13T02:01:55Z | - |
| dc.date.available | 2007-07-16 | |
| dc.date.copyright | 2007-07-16 | |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2007-07-06 | |
| dc.identifier.citation | [1] A. V. Oppenheim, R. W. Schafer, and J. R. Buck, Discrete-Time Signal Processing. 2nd ed. Englewood cliffs, NJ: Prentice-Hall, 1999.
[2] T. I. Laakso, V. Valimaki, M. Karjalainen, and U. K. Laine, “Splitting the unit delay: tool for fractional delay filter design,” IEEE Signal Processing Magazine, Vol. 13, No. 1, pp. 30-60, January 1996. [3] S. C. Pei and P. H. Wang, “Closed-form design of all-pass fractional delay filters,” IEEE Signal Processing Letters, Vol. 11, No. 10, pp. 788-791, October 2004. [4] M. A. Al-Alaoui, “Novel digital integrator and differentiator,” Electronics Letters, Vol. 29, No. 4, pp. 376-378, February 1993. [5] N. Q. Ngo, “A new approach for the design of wideband digital integrator and differentiator,” IEEE Transactions on Circuits and Systems II, Express Briefs, Vol. 53, No. 9, pp. 936-940, September 2006. [6] C. C. Tseng, “Improved design of digital fractional-order differentiators using fractional sample delay, ” IEEE Transactions on Circuits and Systems I, Regular Papers , Vol. 53, No. 1, pp.193-203, January 2006. [7] C. C. Tseng, “Digital integrator design using Simpson rule and fractional delay filter,” IEE Proceedings-Vision, Image and Signal Processing, Vol. 153, No. 1, pp.79-85, February 2006. [8] S. C. Pei and S. B. Jaw, “Comments on ”Highly selective three-dimensional recursive beam filters using intersection resonant planes”,” IEEE Transactions on Circuits and Systems, Vol. CAS-33, No. 7, pp. 669-673, July 1986. [9] L. T. Bruton and N. R. Bartley, “The enhancement and tracking of moving objects in digital images using adaptive three-dimensional recursive filters,” IEEE Transactions on Circuits and Systems, Vol. CAS-33, No. 6, pp. 604-612, June 1986. [10] S. C. Pei, W. Y. Kuo, and W. T. Huang, “Tracking moving objects in image sequences using 1-D trajectory filter,” IEEE Signal Processing Letters, Vol. 13, No. 1, pp. 13-16, January 2006. [11] B. Porat and B. Friedlander, “A frequency domain algorithm for multiframe detection and estimation of dim targets,” IEEE Conference on Computer Vision, pp.591-594, 1987. [12] M. A. Al-Alaoui, “A class of second-order integrators and low-pass differentiators,” IEEE Transactions on Circuits and Systems I, Fundamental Theory and Applications, Vol. 42, No. 4, pp. 220-223, April 1995. [13] N. Papamarkos and C. Chamzas, “A new approach for the design of digital integrators,” IEEE Transactions on Circuits and Systems I, Fundamental Theory and Applications, Vol. 43, No. 9, pp.785-791, 1996. [14] L. T. Bruton and N. R. Bartley, “Highly selective three-dimensional recursive beam filters using intersecting resonant planes,” IEEE Transactions on Circuits and Systems, Vol. CAS-30, No. 3, pp. 190-193, March 1983. [15] C. C. Tseng, “Digital differentiator design using fractional delay filter and limit computation, ” IEEE Transactions on Circuits and Systems I, Regular Papers , Vol. 52, No. 10, pp.2248-2259, October 2005. [16] C. C. Tseng, “Design of IIR integrators using Newton-Cotes quadrature rule and fractional sample delay,” Proceedings of IEEE International Symposium on Circuits and Systems, pp. 4443-4446, May 2006. [17] M. A. Al-Alaoui, “Linear phase low-pass IIR digital differentiators,” IEEE Transactions on Signal Processing, Vol. 55, No. 2, pp. 697-706, February 2007. [18] C. C. Tseng, “Design of variable fractional delay FIR filter using symmetry,” Proceedings of IEEE International Symposium on Circuits and Systems, Vol. 3, pp. 477-480, May 2004. [19] G. Maione, “A rational discrete approximation to the operator ,” IEEE Signal Processing Letters, Vol. 13, No. 3, pp. 141-144, March 2006. [20] R. S. Barbosa, J. A. Tenreiro Machado, and M. F. Silva, “Time domain design of fractional differintegrators using least-squares,” Signal Processing, Vol. 86, No. 10, pp. 2567-2581, October 2006. [21] R. W. Issler and L. T. Bruton, “Tracking and enhancement of objects in image sequences using 3-D frequency planar combined DFT/LDE filters,” Proceedings of IEEE International Symposium on Circuits and Systems, New Orleans, LA, pp. 999-1002, May 1990. [22] L. T. Bruton and N. R. Bartley, “Applications of complex filters to realize three-dimensional combined DFT/LDE transfer functions,” IEEE Transactions on Circuits and Systems II, Analog and Digital Signal Processing, Vol. 39, No. 6, pp. 391-394, June 1992. [23] A. Madanayake and L. Bruton, “A fully multiplexed first-order frequency- planar module for fan, beam, and cone plane-wave filters,” IEEE Transactions on Circuits and Systems II, Express Briefs, Vol. 53, No. 8, pp. 697-701, August 2006. [24] B. Kuenzle and L. T. Bruton, “3-D IIR filtering using decimated DFT-polyphase filter bank structures,” IEEE Transactions on Circuits and Systems I, Regular Papers, Vol. 53, No. 2, pp. 394-408, February 2006. [25] C. W. Farrow, “A continuously variable digital delay element,” Proceedings of IEEE International Symposium on Circuits and Systems, Epsoo, Finland, Vol. 3, pp. 2641-2645, June 1988. [26] C. C. Tseng, “Designs of fractional delay filter, Nyquist filter, lowpass filter and diamond-shaped filter,” Signal Processing, Vol. 87, No. 4, pp. 584-601, April 2007. [27] M. D. Ortigueira, J. A. Tenreiro Machado, and J. Sa da Costa, “Which differintegration?,” IEE Proceedings-Vision, Image and Signal Processing, Vol. 152, No. 6, pp. 846-850, December 2005. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30355 | - |
| dc.description.abstract | 這篇論文我們提出用在類比數位轉換的分數雙線性轉換。此種轉換方式是使用分數性延遲濾波器衍生而來,且包含兩種形式。一種是由拉格蘭治有限脈衝響應分數性延遲濾波器而來;另一種是由席倫無限脈衝響應分數性延遲濾波器而來。它們的低頻振幅響應都呈線性, 但是高頻振幅響應則不相似,為了用在不同的應用上。
根據此種轉換方式,可以容易地設計出數位一階微分器和數位一階積分器。此外,提出一些設計例子來顯示此種類比數位轉換的線性頻率對應性質。所設計的數位微分器和數位積分器用來和現存的微分器和積分器作比較。此種低階數的微分器可適用於使用在即時應用上。 為了改善由雙線性轉換而來,用在動態物體追蹤上的高選擇性三維遞迴濾波器,首先運用二維的實例來討論不同類比數位轉換方式對頻率響應的影響。實驗結果可顯示此種三維遞迴平面濾波器可以擷取出所需要的動態物體。 關鍵詞—雙線性轉換,數位微分器,數位積分器,分數雙線性轉換,分數性延遲濾波器,三維平面共振遞迴濾波器,動態物體追蹤。 | zh_TW |
| dc.description.abstract | The fractional bilinear transform used in analog-to-digital (A/D) conversion is proposed. This transformation is derived by means of fractional delay filter. Two forms are presented. One is approximated by Lagrange FIR fractional delay filter; the other is approximated by Thiran IIR fractional delay filter. Their magnitude responses are both linear in low frequency band, but differ in high frequency band for distinct applications.
According to this transformation, first-order digital differentiator and integrator can be easily designed. Additionally, some design examples are illustrated to show the linear frequency mapping property when performing A/D conversion. The designed digital differentiator and integrator are compared with existing differentiators and integrators. The designed low-order differentiator is suitable for real-time applications. To improve highly selective 3-D recursive filters transformed from the bilinear transformation for tracking moving objects, first use 2-D examples to discuss the effects of diverse transformations. The experimental results show that the designed 3-D recursive plane filter can extract the desired moving object. Index terms—Bilinear transformation, digital differentiator, digital integrator, fractional bilinear transformation, fractional delay filter, three-dimensional planar-resonant recursive filter, tracking moving objects. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T02:01:55Z (GMT). No. of bitstreams: 1 ntu-96-R94942123-1.pdf: 1497621 bytes, checksum: acd48716f424536d3c81f658cc85c14a (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | Chapter 1 Introduction 1
Chapter 2 Related Work in Filter Design and Tracking Moving Objects 5 2.1 The Integrator and Differentiator designed from Interpolation Method 5 2.2 The Wideband Digital Integrator and Differentiator 7 2.3 Digital Integrator Design Using Simpson Rule and Fractional Delay Filter 10 2.4 Analog-to-Digital Transformation for 2-D and 3-D Recursive Filter Design without Bending 13 2.5 Three-Dimensional Recursive Filter for Tracking Moving Objects 18 2.6 Tracking Moving Objects Using 1-D Trajectory Filter 20 2.7 Conclusion 23 Chapter 3 Fractional Bilinear Transform 25 3.1 Motivation 25 3.2 Fractional Bilinear Transform 27 3.3 Comparison with Existing Differentiators and Integrators 40 3.4 Conclusion 43 Chapter 4 Multidimensional Fractional Bilinear Transform for Object Tracking 45 4.1 Linear Analog-to-Digital (A/D) Transformation 45 4.2 Two-Dimensional Filter Design by A/D Conversion 48 4.3 Generalized Form and Discussion 55 4.4 Implementation of 3-D Planar-Resonant Filter 57 4.5 Tracking Moving Objects Using 3-D Planar-Resonant Filter Designed from Fractional Bilinear Transform 63 4.6 Conclusion 69 Chapter 5 Conclusion and Future Work 71 Reference 75 | |
| dc.language.iso | en | |
| dc.subject | 數位濾波器設計 | zh_TW |
| dc.subject | 分數雙線性轉換 | zh_TW |
| dc.subject | digital filter design | en |
| dc.subject | fractional bilinear transform | en |
| dc.title | 使用分數雙線性轉換之數位濾波器設計 | zh_TW |
| dc.title | Digital Filter Design Using Fractional Bilinear Transform | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 祁忠勇,馮世邁,曾建誠 | |
| dc.subject.keyword | 分數雙線性轉換,數位濾波器設計, | zh_TW |
| dc.subject.keyword | fractional bilinear transform,digital filter design, | en |
| dc.relation.page | 78 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2007-07-09 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-96-1.pdf 未授權公開取用 | 1.46 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
