Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地質科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30339
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉聰桂(Tsung-Kwei Liu)
dc.contributor.authorLi-Chun Liuen
dc.contributor.author劉麗純zh_TW
dc.date.accessioned2021-06-13T02:01:30Z-
dc.date.available2012-07-24
dc.date.copyright2007-07-24
dc.date.issued2007
dc.date.submitted2007-07-06
dc.identifier.citation參考文獻(中文)
王榮德、胡賦強、江錦燁、吳新英 (1983) 飲用水改善前後,烏腳病發生率之研究,烏腳病之研究報告,第18輯,台灣省烏腳病防治中心,頁21-25。
台灣省水利局 (1990) 改善台灣地區地下水文基本資料收集系統規劃研究報告,第二期:台中地區、濁水溪沖積扇、嘉南平原。行政院農委會主管計畫,計畫編號:78農建-7.1-林-31-(2)。
石再添 (1979) 台灣西南部嘉南潟洲海岸的地形及其演變,國立台灣師範大學地理學研究報告,第五期,頁12- 31。
行政院環境保護署環境檢驗所 (1994) 自然水體中腐植物質螢光強度檢測方法-Ⅰ:NIEA W940.50T
行政院環境保護署環境檢驗所 (2000) 水中總有機碳檢測方法-過氧焦硫酸鹽加熱氧化/紅外線測定法:NIEA W532.51C
行政院環境保護署環境檢驗所 (2003) 水中鹼度檢測方法:NIEA W449.00B
行政院環境保護署環境檢驗所 (2004) 廢棄物中碳、氫、硫、氧、氮元素含量檢測方法-元素分析儀法:NIEA R409.21C
行政院環境保護署環境檢驗所 (2005) 監測井地下水採樣方法:NIEA W103.53B
吳建民 (1989) 烏腳病地區地下水之水文地質特性,經濟部中央地質調查所水文地質研討會論文專輯。
吳樂群 (1999) 嘉南平原沈積物與沈積環境分析及地層對比研究,台灣地區地下水觀測網第二期計畫-水文地質調查研究-八十八年度報告,共119頁。
呂鋒洲(1986)螢光物質與烏腳病。景福醫訊,第3卷第11期:頁204-205。
呂鋒洲、郭浩然、江漢聲、洪清霖(1986)烏腳病地區膀胱癌流行病學調查報告第五報—井水螢光強度與膀胱癌發病率的關係。中華癌醫學誌,第2卷第3期:頁14-23。
呂鋒洲、山村行夫、山內博 (1988)台灣烏腳病患區一口井水中螢光物質之研究:腐植物質,台灣醫誌,第87卷第1號:頁66-74。
李志威 (2000) 台灣西南港尾及新塭岩心孔隙水及沈積物地球化學特性之研究,國立台灣大學地質學研究所碩士論文,共59頁。
林義棟 (1996)台南縣宅港及三寮灣鑽探岩心沈積環境分析,國立成功大學地質科學研究所碩士論文,共120頁。
畢如蓮 (1995) 台灣嘉南平原地下水砷生成途徑與地質環境之初步探討,國立台灣大學地質學研究所碩士論文,共77頁。
高聰明、高尚榮 (1954) 考察特發性脫疽的原因,台灣醫學會雜誌,第53卷:第272頁。
夏明鴻 (1998)台灣西南海岸平原義竹井岩心地球化學研究,國立台灣大學地質學研究所碩士論文,共94頁。
張瑞津、石再添、陳翰霖 (1996) 古倒風內海地形變遷之研究,台灣第四紀第六次研討會暨台北盆地地下地質與工程環境綜合調查研究成果發表會論文摘要,頁159-163。
曾文賓 (1976) 烏腳病之診斷、預防與治療,烏腳病防治研究報告第一輯,台灣省烏腳病防治小組。
郭崇義 (1993) 腐植物質在地化系統上之研究,國立台灣大學海洋研究所博士論文,共185頁。
陳于高 (1993) 晚更新世以來南台灣地區海水面變化與新構造運動研究,國立台灣大學地質學研究所博士論文,共158頁。
陳于高 (1997) 全新世之海水面變化曲線及其在台灣西南部新構造運動上之應用,海峽兩岸地形與環境教育研討會,頁136- 140。
陳拱北 (1974) 烏腳病人的分布調查研究,省衛生處委託研究的烏腳病調查研究中間報告:頁7-25。
陳冠宇 (1996) 台灣西南宅港與三寮灣地層孔隙水地球化學研究,國立台灣大學地質學研究所碩士論文,共71頁。
陳冠宇 (2007) 台灣西南海岸平原地下水中砷之遷移與富集,國立台灣大學地質學研究所博士論文,共164頁。
陳郁挺 (2004) 嘉南平原布袋鑽井岩心硫酸根還原菌之研究,國立台灣大學地質科學研究所碩士論文,共81頁。
陳麒全 (2003) 台灣嘉南平原新東及錦湖兩地沈積物砷富集與釋出之研究,國立台灣大學地質學研究所碩士論文,共69頁。
賈儀平 (1997) 台灣西南海岸平原水文地質特性研究-北港溪至二仁溪。行政院國科會研究計畫報告。
經濟部水資源局 (2001) 台灣地區地下水觀測網-水質監測調查分析(3/5)。經濟部水資源局。
經濟部水利署 (2003) 台灣地區新建地下水觀測井之地下水定年分析及垂向水質變化調查(3/4)。經濟部水利署。
歐東坤 (2005) 嘉南地區地下水砷濃度之研究,國立台灣大學地質學研究所碩士論文,共88頁。
劉聰桂 (1999) 嘉南平原地下水定年分析及垂向水質變化研究。經濟部水資源局。
賴典章、費立沅、呂學諭 (2002) 嘉南平原地下水分層架構-兼論台灣西南部地下水分區界線,第五屆地下水資源及保護研討會論文集:A-1~ A-6。
賴典章、費立沅、江崇榮 (2003)台灣地區地下水分區特性,水文地質調查與應用研討會論文集:1-24頁。

參考文獻(英文)
Aiken, G.R. (1985) Isolation and concentration techniques for aquatic humic substances. In: Aiken, G.R. et al., eds. Humic substances in soil, sediment, and water- geochemistry, isolation, and characterization. New York: Wiley, Pp. 363-385
Aiken, G.R., Malcolm, R.L. (1987) Molecular weight of aquatic fulvic acid by vapor pressure osmometry. Geochim. Cosmochim. Acta, 51: 2177-2184
Alberts, J.J., Filip, Z. Price, M.T., Williams, D.J. and Williams, M. (1988) Elemental composition, stable carbon isotope ratios and spectrophotometric properities of humic substances occurring in a salt marsh estuary. Org. Geochem. 12: 455-467
Battin, T.J. (1998) Dissolved organic materials and its optical properities in a blackwater tributary of the upper Orinoco River, Venezuela. Org. Geochem., 28: 561-569
Buckau, G., Artinger, R., Geyer, S., Wolf, M., Fritz, P. and Kim, J.I. (2000) Groundwater in-situ generation of aquatic humic and fulvic acids and the mineralization of sedimentary organic carbon. Appl. Geochem., 15:819-832
Bhumbla, D.K. and Keefer, R.F. (1994) Arsenic mobilization and bioavailability in soils. In: Nraigu, J.O. Ed. Arsenic in the Environment. Part I: Cycling and Characterization. New York:Wiley. Pp.51-82
Blough, N.V. and Green, S.A. (1995) Spectroscopic characterization and remote sensing of non-living organic matter. In: Zepp, R.G. and Sonntag, C. (Eds.), The Role of Non-living Organic Matter in the Earth’s Carbon Cycle. Proc. Dahlem Conf. Wiley, New York, pp. 23-45
Chen, S.L., Dzeng,S.R. and Yang,M.H. (1994) Arsenic species in groundwaters of the Blackfoot Disease area, Taiwan. Environ. Sci. Technol., 28:877-881
Chen, Y.J., Sue, H.Y., Chiu, D.T.Y. and Lu, F.J. (1999) Humic acid-mediated oxidative damages to human Erythrocytes: a possible mechanism leading to anemia in blackfoot disease. Free Radical Biology & Medicine, 27: 470- 477
Chen, Y.J., Sue, L.C., Huang, T.S., Yang, M.L. and Lu, F.J. (2001) Humic acid induced growth retardation in a Sertoli cell line, TM4. Life Science, 69: 1269-1284
Cherry, J.A., Shaikh, A.U., Tallman, D.E. and Nicholson, R.V. (1979) Arsenic species as an indicator of redox conditions in groundwater. Journal of Hydrology, 43: 373-392
Coble, P.G. (1996) Characterization of marine and terrstrial DOM in seawater suing excitation-emission matrix spectroscopy. Marine Chemistry, 51: 325-346
Frimmel, F.H. and Christman, R.F. (1988) Humic substances and their role in the environment. New York: John Wiley & Sons, pp. 45-56
Gaffney, J.S., Marley, N.A. and Clark, S.B. (1996) Humic and fulvic acids: isolation, structure, and environmental role. Washington, DC: American Chemical Society, pp. 26-40
Grøn, C., Wassenaar, L. and Krog, M. (1996) Origin and structures of groudwater humic substances from three Danish aquifers. Environment International, 22(5):519-534
Gueguen, C., Guo, L. and Tanaka, N. (2005) Distributions and characteristics of colored dissolved organic matter in the Western Artic Ocean. Continental Shelf Research, 25: 1195-1207
Kim, M.J., Nriagu, J. and Haack, S. (2002) Arsenic species and chemistry in groundwater of southeast Michigan. Environmental Pollution, 120: 379-390
Kirk, M.F, Holm, T.R., Park, J., Jin, Q., Sanford, R.A., Fouke, B.W. and Bethke, C.M. (2004) Bacterial sulfate reduction limits natural arsenic contamination in groundwater. Geology, 32(11): 953-956
Jaffe, R., Boyer, J.N., Lu, X. Maie, N., Yang, C., Scully, N.M. and Mock, S. (2004) Source characterization of dissolved organic matter in a subtropical mangrove-dominated estuary by fluorescence analysis. Marine Chemistry, 84: 195-210
Jain, C.K. and Ali, I. (2000) Arsenic: occurrence, toxicity and speciation techniques. Water Research, 34(17): 4304-4312
Leenheer, J.A. (1981) Comprehensive approach to preparative isolation and fractionation of dissolved organic carbon from natural waters and wastewaters. Environmental Science & Technology, 15(5):578-587
Libes, S.M. (1992) An introduction to marine biogeochemistry. New York: John Wiley & Sons, p. 411
Lin, H.T., Wang, M. C. and Li, G.C. (2004) Complexation of arsenate with humic substance in water extract of compost. Chemosphere, 56: 1105-1112
Mandal, B.K. and Suzuki, K.T. (2002) Arsenic around the world: a review. Talanta, 58: 201-235
Malcolm, R.L. (1990) The uniqueness of humic substances in each of soil, stream and marine environments. Analytica Chimica Acta, 232: 19-30
Martin-Mousset, B., Croue, J.P., Lefebvre, E. and Legube, B. (1997) Distribution and characteristic of dissolved organic matter of surface water. Water Res., 31, 541-553
Matschullat, J. (2000) Arsenic in the geosphere- a review. The Science of the Total Environment, 249:297-312
McDonald, S., Bishop, A.G., Prenzler, P.D. and Robards, K. (2004)Analytical chemistry of freshwater humic substances. Anal. Chim. Acta., 471: 105-124
McKnight, D.M. and Aiken, G.R. (1998) in: Hessen, D.O. and Tranvik, L.J. (Eds.), Aquatic Humic Substances: Ecology and Biogeochemistry, Springer-Verlag, Berlin, Heidelberg, Germany
Miano, T.M. and Senesi, N. (1992) Synchronous excitation fluorescence spectroscopy applied to soil humic substances chemistry. Sci. Total Environ., 117/118, 41-51
Mobed, J.J., Hemmingsen, S.L., Autry, J.L. and Mcgown, L.B. (1996) Fluorescence characterization of IHSS humic substances: Total luminescence spectra with absorbance correction. Environ. Sci. Technol., 30, 3061-3065
Nickson, R.T., McArthur, J.M., Ravenscroft, P., Burgess, W.G. and Ahmed, K.M. (2000) Mechanism of arsenic release to groundwater, Bangladesh and West Bengal. Applied Geochemisry, 15: 403-413
Otero, M., Mendonca, A., Valega, M., Santos, E.B.H., Pereira, E., Esteves, V.I. and Duarte, A. (2007) Fluorescence and DOC contents of estuarine pore waters from colonized and non-colonized sediments: Effects of sampling preservation. Chemosphere, 67: 211-220
Penny, E., Morton, C. and Lee, M.G. (2003) Groundwater and microbial process of Alabama coastal plain aquifers. Water resources research, 39 (11): 1320
Peuravuori, J., Lehtonen,T. and Pihlaja, K. (2002) Sorption of aquatic humic matter by DAX-8 and XAD-8 resins comparative study using prolysis gas chromatography. Anal. Chim. Acta, 471:219-226
Peuravuori, J., Pihlaja, K. and Välimäki, N. (1997) Isolation and characterization of natural organic matter from lake water: two different adsorption chromatographic methods. Environment International, 23(4):453-464
Pferfer, H., Gueye-Girardet, A., Reymond, D., Schlegel, C., Temgoua, E. Hesterberg, D.L. and Chou, J.W. (2004) Dispersion of natural arsenic in the Malcantone watershed, Southern Switzerland: field evidence for repeated sorption-desorption and oxidation-reduction process. Geoderma, 122: 205-234
Rice, J.A. and MacCarthy, P. (1991) Statistical evaluation of the elemental composition of humic substances. Org. Geochem., 17:635-648
Rittle, K.A., Drever, J.I. and Colberg, P.J.S. (1995) Precipitation of arsenic during bacterial sulphate reduction. Geomicrobiology Journal, 13: 1-11
Senesi, N. (1990) Molecular and quantitative aspects of the chemistry if fulvic acid and its interaction with metal ions and organic chemicals. Analytica Chimica Acta, 232:77-106
Sierra, M.M.D., Giovanela, W., Parlanti, E. and Soriano-Sierra, E. J. (1994) Fluorescence fingerprint of fulvic and humic acids from varied origins as viewed by single-scan and excitation/emission matrix techniques. Chemosphere, 58: 715-733
Sierra, M.M.D., Donard, O.F.X., Lamotte, M., Belin, C. and Ewald, M. (1994) Fluorescence spectroscopy of coastal and marine waters. Marine Chemistry, 47: 127-144
Sierra, M.M.D., Giovanela, M., Parlanti, E. and Soriano-Sierra, E.J. (2005) Fluorescence fingerprint of fulvic and humic acids from varied origins as viewed by sungle-scan and excitation/emission matrix techniques. Chemosphere, 58: 715-733
Skoog,A., Wedborg, M., Lara,R. and Kattner, G. (2005) Spring distribution of dissolved organic matter in a system encompassing the Northeast Water Polynya: Implications for early-season sources and sinks. Marine Chemistry, 94:175-188
Šlejkovec, Z., Kápolna E., Ipolyi I. and Elteren J.T. (2006) Arsenosugars and other arsenic compounds in littoral zone algae from the Adriatic Sea. Chemosphere, 63(7): 1098-1105
Smedley, P.L. and Kinniburgh, D.G. (2002) A review of the source, behaviour and distribution of arsenic in natureal waters. Applied Geochemistry, 17: 517-568
Stumm, W. and Morgan, J.J. (1996) Aquatic chemistry, 3rd ed. New York: John Wiley & Sons
Thurman, E.M. and Malcolm, R.L. (1981) Preparative isolation of humic substances. Environmental Science & Technology, 15(4): 463-466
Thurman, E. M. (1985) Organic Geochemistry of Natural Waters. Dortrecht: Martinus Nijhoff/Dr W. Junk Publishers
Thurman, E.M. and Malcolm, R.L. (1981) Preparative isolation of humic substances. Environmental Science & Technology, 15(4):463-466
Uyguner, C. S. and Bekbolet, M. (2005) Implementation of spectroscopic parameters for practical monitoring of natural organic matter. Desalination, 176: 47-55
Varsanyi, I. and Kovacs, L.O. (2006) Arsenic, iron and organic matter in sediments and groundwater in the Pannonian Basin, Hungary. Applied Geochemistry, 21: 949-963
WHO (2001) Environmental Health Criteria 224: Arsenic compounds 2nd edtion. World Health Organization, Geneva.
Zara, L.F., Rosa, A.H., Toscano, I.A.S and Rocha, J.C. (2006) A structural conformation of aquatic humic acid. J. Braz. Chem. Soc., 17(5) 1014-1019
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30339-
dc.description.abstract嘉南平原烏腳病盛行地區的地下水,含有高濃度的砷及腐植物質。早期的研究顯示,居民長期飲用當地地下水可能導致烏腳病及癌症。水體中的腐植物質具有多官能基的特性,對金屬有很強的螯合能力,形成能產生螢光的「有機金屬錯合物」,對砷在沈積物及水體間的遷移扮演著重要的角色。本研究採取嘉南地區7個觀測站的13個分層地下水樣進行研究。以分子篩配合500及5000分子量的濾膜及DAX-8樹脂分離水中之有機物,利用水樣的光學特性、碳與的氮的比值以及碳同位素,了解腐植物質的組成及來源,並探討水中砷及有機物質含量間的關係。
研究結果顯示在常溫下,水中腐植物質螢光強度有隨樣本保存時間而衰減的現象,且衰減的程度為陽光照射組>日光燈照射組>黑暗組。可能是腐植物質受光照而發生光化學反應導致。故欲分析腐植物質濃度的水樣必須以遮光和冷凍的方式保存,並儘快分析。本研究所採水樣的腐植物質約占溶解性有機碳(DOC)的80%,平均發光能力約為8.7 QSU/mg/L。由總鹼度、溶解無機碳的碳十四年代與穩定碳同位素,以及水樣的螢光強度和DOC濃度相比較,可以得知嘉南地區地下水中DOC主要由沈積物的有機碳轉化而來,造成越老地下水的螢光強度也越高。
利用螢光激發-發射矩陣光譜的最高峰位置,及紫外光-可見光光譜於波長 254 nm和 436 nm的吸收值來看,可以發現這些水樣中的有機物主要以陸源性的腐植物質為主,含有較高比例的芳香環成分及較強的金屬結合能力。以紫外光-可見光光譜測量腐植物質特性的方法,較不受腐植物質不均質性及水樣離子強度、pH、有機物濃度等因素的干擾,可以達到方便、快速判斷水中腐植物質的來源及組成的目的。
本研究大部分水樣的砷與分子量大於500 Da.的腐植物質結合。以DAX-8樹脂分離腐植物質的實驗發現水樣以鹽酸酸化至pH 2時,砷會從腐植物質釋出,顯示嘉南地區地下水中的砷主要與腐植物質的官能基結合,並形成「有機金屬錯合物」。砷濃度的高水樣,通常腐植物質的濃度亦偏高;但腐植物質濃度高的水樣,其砷濃度卻不一定高。因此,腐植物質可能為嘉南平原地下水中砷富集的重要控制因素之一。
zh_TW
dc.description.abstractIt has been well known that there are high contents of arsenic and humic substances in deep groundwater of the Chianan plain. Drinking the groundwater of this area may causes cancers and blackfoot disease. Humic substances have varieties of functional groups and high metal-chelating ability, which forms organo-metallic complexes and emits fluorescence when irradiated by ultra-violet light. Humic substances may play an important role in mobilization of arsenic in sediments and groundwater.
In this study, 13 groundwater samples from 7 monitoring well sites were collected to isolate humic substances by DAX-8 resin or Molecular/Por® stirred cell to explore the relationship between humic substances and arsenic in groundwater. Fluorescence characteristics and UV/visible light absorption of groundwater were also used to investigate the composition and origin of dissolved organic matters (DOMs). The results obtained show that the decay rate of fluorescence intensity decreases in the order of sunlight exposure, lamplight exposure and light-shield. Accordingly, it is suggested that samples must be frozen and store in the dark to prevent decomposition of humic substances.
In average, about 80% of total dissolved organic carbon in these samples is humic substances, and their fluorescence efficiency is about 8.7 QSU per mg/L of humic substances. By combining the results of total alkalinity, C-14 age and δ13C of dissolved inorganic carbon, dissolved organic carbon and fluorescence intensity, the author suggestes that the dissolved inoeganic carbon and humic substances were derived from sedimentary organic matters.
The peaks of excitation-emission matrices (EEMs) and absorption rate of UV-visible light at 250 and 436 nm suggest that that the dissolved humic substances of the Chianan plain are mainly of terrestrial origin with high contents of aromatic ring, which leads to higher metal-chelating ability. Because of the variable compositions of humic substances and background quality of groundwater samples, UV-visible spectrum analysis is an easier method to investigate the origins and compositions of humic substances than EEMs method.
It has been found that dissolved arsenic of the Chianan plain is combined mainly with humic substances with molecular weights greater than 500 Dalton. Arsenic is released from humic substances when groundwater is acidified to pH 2 with HCl during humic substance isolation processes. In addition, the results show that arsenic is mainly chelated with humic substances, forming organo-metallic complex. Samples with high concentrations of arsenic often have high humic substances contents, but not vice versa. Obviously, humic substances content is one of the important factors controlling arsenic concentrations of groundwater in the Chianan plain.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T02:01:30Z (GMT). No. of bitstreams: 1
ntu-96-R93224104-1.pdf: 2967698 bytes, checksum: feebe27a4346aeb1cd94dddf60dba578 (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents第一章 前言 1
1.1 研究動機與目的 1
1.2 研究地區概述 1
1.2.1 地質概況 1
1.2.2 水文地質概述 2
1.3 地下水的一般化學特性 4
1.4 前人相關研究 5
1.5 砷的化學特性 7
1.5.1 砷在環境中的分佈 7
1.5.2 砷的物種及毒性 8
1.5.3 砷在沈積物與水間的遷移 9
1.6 腐植物質的特性 9
1.6.1 腐植物質的分類和基本特性 9
1.6.2 水體中腐植物質的來源及形成方式 11
1.6.3 腐植物質的螢光特性 14
1.6.4 過去腐植物質的分離方法 15
第二章 研究方法 17
2.1 採樣地點 17
2.2 採樣方法及前處理 18
2.3 野外觀察與量測 19
2.4 室內水質分析 19
2.4.1 陰離子 19
2.4.2 陽離子 20
2.4.3 總鹼度 20
2.4.4 溶解性總有機碳 20
2.4.5 砷 21
2.4.6 不同分子量溶解性有機物的分離 21
2.5 腐植物質的萃取及分析 21
2.5.1 腐植物質的濃縮與分離 21
2.5.2 螢光強度 23
2.5.3 紫外光-可見光光譜 24
2.5.4 腐植物質元素分析 24
2.5.5 腐植物質碳同位素分析 24
2.6 分析樣品之品管與品保方法 25
第三章 分析樣品之品管與品保 27
3.1 陰離子 27
3.2 總鹼度 29
3.3 陽離子 29
3.4 離子平衡 30
3.5 溶解性有機碳 31
3.6 螢光強度 32
3.7 砷濃度 32
第四章 結果與討論 34
4.1 基本水質分析結果 34
4.2 水中溶解性有機物分析結果 37
4.2.1 腐植物質的含量 37
4.2.2 腐植物質的結構與光譜分析 44
4.2.3 腐植物質的元素組成 49
4.2.4 腐植物質的碳同位素分析 51
4.3 砷濃度分析結果 52
4.3.1 砷的分布 52
4.3.2 砷與腐植物質 56
4.4 綜合討論 59
4.4.1 腐植物質的特性及分析方法 59
4.4.2 腐植物質與砷的遷移 60
第五章 結論 62
參考文獻(中文) 63
參考文獻(英文) 65
附錄一:本研究中各樣品的EEMs 69
dc.language.isozh-TW
dc.subject地下水zh_TW
dc.subject嘉南平原zh_TW
dc.subject砷zh_TW
dc.subject腐植物質zh_TW
dc.subject螢光zh_TW
dc.subjecthumic substancesen
dc.subjectChianan plainen
dc.subjectfluorescenceen
dc.subjectgroundwateren
dc.subjectarsenicen
dc.title嘉南平原高砷地下水腐植物質的特性zh_TW
dc.titleCharacteristics of Humic Substances in High Arsenic Groundwater in the Chianan Plain, SW Taiwanen
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.oralexamcommittee呂鋒洲,林曉武,楊新玲,陳于高
dc.subject.keyword嘉南平原,地下水,砷,腐植物質,螢光,zh_TW
dc.subject.keywordChianan plain,groundwater,arsenic,humic substances,fluorescence,en
dc.relation.page68
dc.rights.note有償授權
dc.date.accepted2007-07-09
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept地質科學研究所zh_TW
顯示於系所單位:地質科學系

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  未授權公開取用
2.9 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved