Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 動物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30337
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor閔明源(Ming-Yuan Min)
dc.contributor.authorYu-Wei Wuen
dc.contributor.author吳玉威zh_TW
dc.date.accessioned2021-06-13T02:01:26Z-
dc.date.available2008-07-20
dc.date.copyright2007-07-20
dc.date.issued2007
dc.date.submitted2007-07-06
dc.identifier.citationAdams JP, Anderson AE, Varga AW, Dineley KT, Cook RG, Pfaffinger PJ, Sweatt JD (2000) The A-type potassium channel Kv4.2 is a substrate for the mitogen-activated protein kinase ERK. Journal of Neurochemistry 75:2277-2287.
An WF, Bowlby MR, Betty M, Cao J, Ling HP, Mendoza G, Hinson JW, Mattsson KI, Strassle BW, Trimmer JS, Rhodes KJ (2000) Modulation of A-type potassium channels by a family of calcium sensors. Nature 403:553-556.
Anderson AE, Adams JP, Qian Y, Cook RG, Pfaffinger PJ, Sweatt JD (2000) Kv4.2 phosphorylation by cyclic AMP-dependent protein kinase. J Biol Chem 275:5337-5346.
Bahring R, Boland LM, Varghese A, Gebauer M, Pongs O (2001a) Kinetic analysis of open- and closed-state inactivation transitions in human Kv4.2 A-type potassium channels. J Physiol 535:65-81.
Bahring R, Dannenberg J, Peters HC, Leicher T, Pongs O, Isbrandt D (2001b) Conserved Kv4 N-terminal domain critical for effects of Kv channel-interacting protein 2.2 on channel expression and gating. J Biol Chem 276:23888-23894.
Bajic D, Proudfit HK (1999) Projections of neurons in the periaqueductal gray to pontine and medullary catecholamine cell groups involved in the modulation of nociception. J Comp Neurol 405:359-379.
Barbaro NM, Hammond DL, Fields HL (1985) Effects of intrathecally administered methysergide and yohimbine on microstimulation-produced antinociception in the rat. Brain Res 343:223-229.
Basbaum AI, Fields HL (1984) Endogenous pain control systems: brainstem spinal pathways and endorphin circuitry. Annu Rev Neurosci 7:309-338.
Bear MF, Connors BW, Paradiso MA (2001) Neuroscience: exploring the brain, 2nd Edition: Lippincott Williams & Wilkins.
Beck EJ, Covarrubias M (2001) Kv4 channels exhibit modulation of closed-state inactivation in inside-out patches. Biophys J 81:867-883.
Beck EJ, Bowlby M, An WF, Rhodes KJ, Covarrubias M (2002) Remodelling inactivation gating of Kv4 channels by KChIP1, a small-molecular-weight calcium-binding protein. J Physiol 538:691-706.
Birnbaum SG, Varga AW, Yuan LL, Anderson AE, Sweatt JD, Schrader LA (2004) Structure and function of Kv4-family transient potassium channels. Physiol Rev 84:803-833.
Bourdeau ML, Morin F, Laurent CE, Azzi M, Lacaille JC (2007) Kv4.3-mediated A-type K+ currents underlie rhythmic activity in hippocampal interneurons. J Neurosci 27:1942-1953.
Burdakov D, Alexopoulos H, Vincent A, Ashcroft FM (2004) Low-voltage-activated A-current controls the firing dynamics of mouse hypothalamic orexin neurons. Eur J Neurosci 20:3281-3285.
Cai X, Liang CW, Muralidharan S, Kao JP, Tang CM, Thompson SM (2004) Unique roles of SK and Kv4.2 potassium channels in dendritic integration. Neuron 44:351-364.
Chen X, Yuan LL, Zhao C, Birnbaum SG, Frick A, Jung WE, Schwarz TL, Sweatt JD, Johnston D (2006) Deletion of Kv4.2 gene eliminates dendritic A-type K+ current and enhances induction of long-term potentiation in hippocampal CA1 pyramidal neurons. J Neurosci 26:12143-12151.
Clark FM, Proudfit HK (1991a) The projection of locus coeruleus neurons to the spinal cord in the rat determined by anterograde tracing combined with immunocytochemistry. Brain Res 538:231-245.
Clark FM, Proudfit HK (1991b) The projection of noradrenergic neurons in the A7 catecholamine cell group to the spinal cord in the rat demonstrated by anterograde tracing combined with immunocytochemistry. Brain Res 547:279-288.
Clark FM, Proudfit HK (1991c) Projections of neurons in the ventromedial medulla to pontine catecholamine cell groups involved in the modulation of nociception. Brain Res 540:105-115.
Clark FM, Proudfit HK (1993) The projections of noradrenergic neurons in the A5 catecholamine cell group to the spinal cord in the rat: anatomical evidence that A5 neurons modulate nociception. Brain Res 616:200-210.
Coetzee WA, Amarillo Y, Chiu J, Chow A, Lau D, McCormack T, Moreno H, Nadal MS, Ozaita A, Pountney D, Saganich M, Vega-Saenz de Miera E, Rudy B (1999) Molecular diversity of K+ channels. Ann N Y Acad Sci 868:233-285.
Connor JA, Stevens CF (1971a) Voltage Clamp Studies of a Transient Outward Membrane Current in Gastropod Neural Somata. Journal of Physiology-London 213:21-&.
Connor JA, Stevens CF (1971b) Prediction of Repetitive Firing Behaviour from Voltage Clamp Data on an Isolated Neurone Soma. Journal of Physiology-London 213:31-&.
Cooper EC, Milroy A, Jan YN, Jan LY, Lowenstein DH (1998) Presynaptic localization of Kv1.4-containing A-type potassium channels near excitatory synapses in the hippocampus. Journal of Neuroscience 18:965-974.
Denton JS, Leiter JC (2002) Anomalous effects of external TEA on permeation and gating of the A-type potassium current in H. aspersa neuronal somata. J Membr Biol 190:17-28.
Dilks D, Ling HP, Cockett M, Sokol P, Numann R (1999) Cloning and expression of the human kv4.3 potassium channel. J Neurophysiol 81:1974-1977.
Diochot S, Schweitz H, Beress L, Lazdunski M (1998) Sea anemone peptides with a specific blocking activity against the fast inactivating potassium channel Kv3.4. J Biol Chem 273:6744-6749.
Dodson PD, Forsythe ID (2004) Presynaptic K+ channels: electrifying regulators of synaptic terminal excitability. Trends in Neurosciences 27:210-217.
Du J, Haak LL, Phillips-Tansey E, Russell JT, McBain CJ (2000) Frequency-dependent regulation of rat hippocampal somato-dendritic excitability by the K+ channel subunit Kv2.1. Journal of Physiology-London 522:19-31.
Harvey AL, Robertson B (2004) Dendrotoxins: structure-activity relationships and effects on potassium ion channels. Curr Med Chem 11:3065-3072.
Hausser M, Spruston N, Stuart GJ (2000) Diversity and dynamics of dendritic signaling. Science 290:739-744.
Heinemann SH, Rettig J, Graack HR, Pongs O (1996) Functional characterization of Kv channel beta-subunits from rat brain. J Physiol 493 (Pt 3):625-633.
Hille B (2001) Ionic channels of excitable membranes: Sinauer Associates, Sunderland, MA.
Hodgkin AL (1947) The effect of potassium on the surface membrane of an isolated axon. J Physiol 106:319-340.
Hoffman DA, Johnston D (1999) Neuromodulation of dendritic action potentials. Journal of Neurophysiology 81:408-411.
Hoffman DA, Magee JC, Colbert CM, Johnston D (1997) K+ channel regulation of signal propagation in dendrites of hippocampal pyramidal neurons. Nature 387:869-875.
Holden JE, Pizzi JA (2003) The challenge of chronic pain. Adv Drug Deliv Rev 55:935-948.
Holden JE, Schwartz EJ, Proudfit HK (1999) Microinjection of morphine in the A7 catecholamine cell group produces opposing effects on nociception that are mediated by alpha1- and alpha2-adrenoceptors. Neuroscience 91:979-990.
Holden JE, Van Poppel AY, Thomas S (2002) Antinociception from lateral hypothalamic stimulation may be mediated by NK(1) receptors in the A7 catecholamine cell group in rat. Brain Res 953:195-204.
Holmqvist MH, Cao J, Knoppers MH, Jurman ME, Distefano PS, Rhodes KJ, Xie Y, An WF (2001) Kinetic modulation of Kv4-mediated A-current by arachidonic acid is dependent on potassium channel interacting proteins. J Neurosci 21:4154-4161.
Hu HJ, Glauner KS, Gereau RW (2003) ERK integrates PKA and PKC signaling in superficial dorsal horn neurons. I. Modulation of A-type K+ currents. Journal of Neurophysiology 90:1671-1679.
Hu HJ, Carrasquillo Y, Karim F, Jung WE, Nerbonne JM, Schwarz TL, Gereau RWt (2006) The kv4.2 potassium channel subunit is required for pain plasticity. Neuron 50:89-100.
Hunt SP, Mantyh PW (2001) The molecular dynamics of pain control. Nat Rev Neurosci 2:83-91.
Jerng HH, Pfaffinger PJ, Covarrubias M (2004a) Molecular physiology and modulation of somatodendritic A-type potassium channels. Mol Cell Neurosci 27:343-369.
Jerng HH, Qian Y, Pfaffinger PJ (2004b) Modulation of Kv4.2 channel expression and gating by dipeptidyl peptidase 10 (DPP10). Biophys J 87:2380-2396.
Jerng HH, Kunjilwar K, Pfaffinger PJ (2005) Multiprotein assembly of Kv4.2, KChIP3 and DPP10 produces ternary channel complexes with ISA-like properties. J Physiol 568:767-788.
Johnston D, Hoffman DA, Magee JC, Poolos NP, Watanabe S, Colbert CM, Migliore M (2000) Dendritic potassium channels in hippocampal pyramidal neurons. J Physiol 525 Pt 1:75-81.
Kim J, Wei DS, Hoffman DA (2005) Kv4 potassium channel subunits control action potential repolarization and frequency-dependent broadening in rat hippocampal CA1 pyramidal neurones. J Physiol 569:41-57.
Kin Y, Misumi Y, Ikehara Y (2001) Biosynthesis and characterization of the brain-specific membrane protein DPPX, a dipeptidyl peptidase IV-related protein. Journal of Biochemistry 129:289-295.
Kwiat GC, Basbaum AI (1992) The origin of brainstem noradrenergic and serotonergic projections to the spinal cord dorsal horn in the rat. Somatosens Mot Res 9:157-173.
Lau D, Vega-Saenz de Miera EC, Contreras D, Ozaita A, Harvey M, Chow A, Noebels JL, Paylor R, Morgan JI, Leonard CS, Rudy B (2000) Impaired fast-spiking, suppressed cortical inhibition, and increased susceptibility to seizures in mice lacking Kv3.2 K+ channel proteins. J Neurosci 20:9071-9085.
Lien CC, Jonas P (2003) Kv3 potassium conductance is necessary and kinetically optimized for high-frequency action potential generation in hippocampal interneurons. Journal of Neuroscience 23:2058-2068.
Lien CC, Martina M, Schultz JH, Ehmke H, Jonas P (2002) Gating, modulation and subunit composition of voltage-gated K(+) channels in dendritic inhibitory interneurones of rat hippocampus. J Physiol 538:405-419.
Liss B, Franz O, Sewing S, Bruns R, Neuhoff H, Roeper J (2001) Tuning pacemaker frequency of individual dopaminergic neurons by Kv4.3L and KChip3.1 transcription. Embo J 20:5715-5724.
Locke RE, Nerbonne JM (1997) Three kinetically distinct Ca2+-independent depolarization-activated K+ currents in callosal-projecting rat visual cortical neurons. J Neurophysiol 78:2309-2320.
Lundh H (1978) Effects of 4-aminopyridine on neuromuscular transmission. Brain Res 153:307-318.
Magee JC, Johnston D (1997) A synaptically controlled, associative signal for Hebbian plasticity in hippocampal neurons. Science 275:209-213.
Malin SA, Nerbonne JM (2000) Elimination of the fast transient in superior cervical ganglion neurons with expression of KV4.2W362F: molecular dissection of IA. J Neurosci 20:5191-5199.
Malin SA, Nerbonne JM (2001) Molecular heterogeneity of the voltage-gated fast transient outward K+ current, I(Af), in mammalian neurons. J Neurosci 21:8004-8014.
Malin SA, Nerbonne JM (2002) Delayed rectifier K+ currents, IK, are encoded by Kv2 alpha-subunits and regulate tonic firing in mammalian sympathetic neurons. J Neurosci 22:10094-10105.
Markram H, Lubke J, Frotscher M, Sakmann B (1997) Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275:213-215.
Martina M, Schultz JH, Ehmke H, Monyer H, Jonas P (1998a) Functional and molecular differences between voltage-gated K+ channels of fast-spiking interneurons and pyramidal neurons of rat hippocampus. J Neurosci 18:8111-8125.
Martina M, Schultz JH, Ehmke H, Monyer H, Jonas P (1998b) Functional and molecular differences between voltage-gated K+ channels of fast-spiking interneurons and pyramidal neurons of rat hippocampus. Journal of Neuroscience 18:8111-8125.
Millan MJ (1999) The induction of pain: an integrative review. Prog Neurobiol 57:1-164.
Min MY, Hsu PC, H.W.Yang (2004) Whole cell recording from neurons located in pontine A7 nucleus in rat brainstem slices. In: Society for Neuroscience, p Program No. 521.510. 2004 Abstract Viewer/Itinerary Planner Online:http://sfn.scholarone.com/. Washington, DC.
Min MY, Hsu PC, Lu HW, Lin CJ, Yang HW (2007) Postnatal development of noradrenergic terminals in the rat trigeminal motor nucleus: A light and electron microscopic immunocytochemical analysis. Anat Rec (Hoboken) 290:96-107.
Molgo J, Lemeignan M, Lechat P (1977) Effects of 4-aminopyridine at the frog neuromuscular junction. J Pharmacol Exp Ther 203:653-663.
Murakoshi H, Trimmer JS (1999) Identification of the Kv2.1 K+ channel as a major component of the delayed rectifier K+ current in rat hippocampal neurons. Journal of Neuroscience 19:1728-1735.
Nadal MS, Amarillo Y, Vega-Saenz de Miera E, Rudy B (2006) Differential characterization of three alternative spliced isoforms of DPPX. Brain Res 1094:1-12.
Nadal MS, Ozaita A, Amarillo Y, de Miera EVS, Ma YL, Mo WJ, Goldberg EM, Misumi Y, Ikehara Y, Neubert TA, Rudy B (2003) The CD26-related dipeptidyl aminopeptidase-like protein DPPX is a critical component of neuronal A-type K+ channels. Neuron 37:449-461.
Nuseir K, Proudfit HK (2000) Bidirectional modulation of nociception by GABA neurons in the dorsolateral pontine tegmentum that tonically inhibit spinally projecting noradrenergic A7 neurons. Neuroscience 96:773-783.
Pal B, Por A, Pocsai K, Szucs G, Rusznak Z (2005) Voltage-gated and background K+ channel subunits expressed by the bushy cells of the rat cochlear nucleus. Hear Res 199:57-70.
Paxinos G, Watson C (1998) The rat brain: in stereotaxic coordinates, 4th Edition: Academic Press.
Pertovaara A (2006) Noradrenergic pain modulation. Prog Neurobiol 80:53-83.
Proudfit HK (1988) Pharmacologic evidence for the modulation of nociception by noradrenergic neurons. Prog Brain Res 77:357-370.
Proudfit HK, Clark FM (1991) The projections of locus coeruleus neurons to the spinal cord. Prog Brain Res 88:123-141.
Proudfit HK, Monsen M (1999) Ultrastructural evidence that substance P neurons form synapses with noradrenergic neurons in the A7 catecholamine cell group that modulate nociception. Neuroscience 91:1499-1513.
Reddy SV, Yaksh TL (1980) Spinal noradrenergic terminal system mediates antinociception. Brain Res 189:391-401.
Rettig J, Heinemann SH, Wunder F, Lorra C, Parcej DN, Dolly JO, Pongs O (1994) Inactivation properties of voltage-gated K+ channels altered by presence of beta-subunit. Nature 369:289-294.
Rhodes KJ, Carroll KI, Sung MA, Doliveira LC, Monaghan MM, Burke SL, Strassle BW, Buchwalder L, Menegola M, Cao J, An WF, Trimmer JS (2004) KChIPs and Kv4 alpha subunits as integral components of A-type potassium channels in mammalian brain. Journal of Neuroscience 24:7903-7915.
Riazanski V, Becker A, Chen J, Sochivko D, Lie A, Wiestler OD, Elger CE, Beck H (2001) Functional and molecular analysis of transient voltage-dependent K+ currents in rat hippocampal granule cells. J Physiol 537:391-406.
Rogawski MA (1985) The a-Current - How Ubiquitous a Feature of Excitable Cells Is It. Trends in Neurosciences 8:214-219.
Sacco T, De Luca A, Tempia F (2006) Properties and expression of Kv3 channels in cerebellar Purkinje cells. Mol Cell Neurosci 33:170-179.
Sagen J, Proudfit HK (1981) Hypoalgesia induced by blockade of noradrenergic projections to the raphe magnus: reversal by blockade of noradrenergic projections to the spinal cord. Brain Res 223:391-396.
Sanguinetti MC, Johnson JH, Hammerland LG, Kelbaugh PR, Volkmann RA, Saccomano NA, Mueller AL (1997) Heteropodatoxins: peptides isolated from spider venom that block Kv4.2 potassium channels. Mol Pharmacol 51:491-498.
Schoppa NE, Westbrook GL (1999) Regulation of synaptic timing in the olfactory bulb by an A-type potassium current. Nat Neurosci 2:1106-1113.
Sergeant GP, Ohya S, Reihill JA, Perrino BA, Amberg GC, Imaizumi Y, Horowitz B, Sanders KM, Koh SD (2005) Regulation of Kv4.3 currents by Ca2+/calmodulin-dependent protein kinase II. Am J Physiol Cell Physiol 288:C304-313.
Serodio P, Vega-Saenz de Miera E, Rudy B (1996) Cloning of a novel component of A-type K+ channels operating at subthreshold potentials with unique expression in heart and brain. J Neurophysiol 75:2174-2179.
Sheng M, Tsaur ML, Jan YN, Jan LY (1992) Subcellular Segregation of 2 a-Type K+ Channel Proteins in Rat Central Neurons. Neuron 9:271-284.
Shi W, Wymore RS, Wang HS, Pan Z, Cohen IS, McKinnon D, Dixon JE (1997) Identification of two nervous system-specific members of the erg potassium channel gene family. J Neurosci 17:9423-9432.
Shibata R, Nakahira K, Shibasaki K, Wakazono Y, Imoto K, Ikenaka K (2000) A-type K+ current mediated by the Kv4 channel regulates the generation of action potential in developing cerebellar granule cells. J Neurosci 20:4145-4155.
Song WJ (2002) Genes responsible for native depolarization-activated K+ currents in neurons. Neurosci Res 42:7-14.
Song WJ, Tkatch T, Baranauskas G, Ichinohe N, Kitai ST, Surmeier DJ (1998) Somatodendritic depolarization-activated potassium currents in rat neostriatal cholinergic interneurons are predominantly of the A type and attributable to coexpression of Kv4.2 and Kv4.1 subunits. J Neurosci 18:3124-3137.
Strop P, Bankovich AJ, Hansen KC, Garcia KC, Brunger AT (2004) Structure of a human A-type potassium channel interacting protein DPPX, a member of the dipeptidyl aminopeptidase family. J Mol Biol 343:1055-1065.
Stuart G, Spruston N, Sakmann B, Hausser M (1997) Action potential initiation and backpropagation in neurons of the mammalian CNS. Trends Neurosci 20:125-131.
Stuart GJ, Dodt HU, Sakmann B (1993) Patch-clamp recordings from the soma and dendrites of neurons in brain slices using infrared video microscopy. Pflugers Arch 423:511-518.
Suzuki R, Dickenson A (2005) Spinal and supraspinal contributions to central sensitization in peripheral neuropathy. Neurosignals 14:175-181.
Varga AW, Yuan LL, Anderson AE, Schrader LA, Wu GY, Gatchel JR, Johnston D, Sweatt JD (2004) Calcium-calmodulin-dependent kinase II modulates Kv4.2 channel expression and upregulates neuronal A-type potassium currents. J Neurosci 24:3643-3654.
Vincent A, Lautermilch NJ, Spitzer NC (2000) Antisense suppression of potassium channel expression demonstrates its role in maturation of the action potential. Journal of Neuroscience 20:6087-6094.
Wada K, Yokotani N, Hunter C, Doi K, Wenthold RJ, Shimasaki S (1992) Differential Expression of 2 Distinct Forms of Messenger-Rna Encoding Members of a Dipeptidyl Aminopeptidase Family. Proceedings of the National Academy of Sciences of the United States of America 89:197-201.
Wang Q, Curran ME, Splawski I, Burn TC, Millholland JM, VanRaay TJ, Shen J, Timothy KW, Vincent GM, de Jager T, Schwartz PJ, Toubin JA, Moss AJ, Atkinson DL, Landes GM, Connors TD, Keating MT (1996) Positional cloning of a novel potassium channel gene: KVLQT1 mutations cause cardiac arrhythmias. Nat Genet 12:17-23.
Watanabe S, Hoffman DA, Migliore M, Johnston D (2002) Dendritic K+ channels contribute to spike-timing dependent long-term potentiation in hippocampal pyramidal neurons. Proceedings of the National Academy of Sciences of the United States of America 99:8366-8371.
Westlund KN, Coulter JD (1980) Descending projections of the locus coeruleus and subcoeruleus/medial parabrachial nuclei in monkey: axonal transport studies and dopamine-beta-hydroxylase immunocytochemistry. Brain Res 2:235-264.
Williams JT, North RA, Shefner SA, Nishi S, Egan TM (1984) Membrane properties of rat locus coeruleus neurones. Neuroscience 13:137-156.
Yellen G (2002) The voltage-gated potassium channels and their relatives. Nature 419:35-42.
Yeomans DC, Proudfit HK (1990) Projections of substance P-immunoreactive neurons located in the ventromedial medulla to the A7 noradrenergic nucleus of the rat demonstrated using retrograde tracing combined with immunocytochemistry. Brain Res 532:329-332.
Yeomans DC, Proudfit HK (1992) Antinociception induced by microinjection of substance P into the A7 catecholamine cell group in the rat. Neuroscience 49:681-691.
Yuan W, Burkhalter A, Nerbonne JM (2005) Functional role of the fast transient outward K+ current IA in pyramidal neurons in (rat) primary visual cortex. J Neurosci 25:9185-9194.
Zagha E, Ozaita A, Chang SY, Nadal MS, Lin U, Saganich MJ, McCormack T, Akinsanya KO, Qi SY, Rudy B (2005) DPP10 modulates Kv4-mediated A-type potassium channels. J Biol Chem 280:18853-18861.
Zagotta WN, Aldrich RW (1990) Voltage-dependent gating of Shaker A-type potassium channels in Drosophila muscle. J Gen Physiol 95:29-60.
Zagotta WN, Hoshi T, Aldrich RW (1989) Gating of single Shaker potassium channels in Drosophila muscle and in Xenopus oocytes injected with Shaker mRNA. Proc Natl Acad Sci U S A 86:7243-7247.
Zhou W, Qian Y, Kunjilwar K, Pfaffinger PJ, Choe S (2004) Structural insights into the functional interaction of KChIP1 with Shal-type K(+) channels. Neuron 41:573-586.
Zucker RS (1973) Changes in the statistics of transmitter release during facilitation. J Physiol 229:787-810.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30337-
dc.description.abstract橋腦中A7正腎上腺素神經核在痛覺傳遞的調控上扮演了很重要的角色,本論文為第一次對此正腎上腺素神經元所表現之A型鉀離子電流進行電生理、藥理特性及功能上的探討。此A型鉀離子電流活化閾值約在 -70 mV,半活化電位為-27.97 ± 1.71 mV,半不活化電位為 -72.31 ± 2.27 mV。此A型鉀離子電流從不活化回復非常快,在Vm = -100 mV時其回復時間長數為 21.87 ± 2.80 ms。對Kv4專一之抑制劑heteroprodotoxin2 (HpTx2)可顯著抑制此A型鉀離子電流,但是此電流不受到Kv3.4 專一之抑制劑 BDS-I所影響。此電流之生物物理及藥理特性結果顯示:A7正腎上腺素神經元之A型鉀離子電流是由Kv4次單元組成。以免疫組織化學染色方法發現Kv4.3鉀離子通道蛋白表現在A7正腎上腺素神經元之細胞本體及主要樹突上,顯示此A型鉀離子通道可能為Kv4.3所組成。此A型鉀離子通道不僅調控A7正腎上腺素神經元之動作電位的延遲產生及放射動作電位的瞬時頻率,更參與調控動作電位之寬度。實驗結果更進一步地證實:此A型鉀離子通道可被興奮性突觸後電位變化所活化,並可能在突觸訊號的傳遞與整合上扮演了重要的角色。此論文之研究結果讓我們對A7正腎上腺素神經元的電生理特性有更進一步的了解,對於A型鉀離子電流在痛覺的調控上也提供了一個可能的機制。zh_TW
dc.description.abstractThe pontine noradrenergic (NAergic) neurons located in A7 area are believed to play an important role in modulating nociception. This study provides the first functional analysis of the biophysical and pharmacological properties of A-type current (IA) in A7 NAergic neurons. IA in A7 NAergic neurons was activated at about -70 mV, with midpoint activation potential of -27.97 ± 1.71 mV. The midpoint inactivation potential was at about -72.31 ± 2.27 mV, and the recovery from inactivation was very quickly with a time constant of 21.87 ± 2.80 ms at Vm = -100 mV. The IA was sensitive to heteroprodotoxin2 (HpTx2), a Kv4 selective blocker, but not affected by BDS-I, a Kv3.4 selective blocker. These biophysical and pharmacological results demonstrated that A-type current in A7 NAergic neurons is mediated mainly by Kv4. By immunostaing, we found that Kv4.3 proteins were robustly expressed on the soma and dendrites. This result indicated that the A-type in A7 NAergic neurons may mediated by somatodendritic Kv4.3. This A-type current acted not only at subthreshold level to control the initiation of action potential and firing frequency, but was also activated at suprathreshold to shape the action potentials. Furthermore, it could be activated by membrane depolarization during excitatory synaptic transmission and might contribute to the synaptic signal propagation and integration in A7 NAergic neurons. These findings may help us understand more about the regulation of pain transmission.en
dc.description.provenanceMade available in DSpace on 2021-06-13T02:01:26Z (GMT). No. of bitstreams: 1
ntu-96-R94b41032-1.pdf: 2501988 bytes, checksum: a6a83de03967f5988ef77493c7310b79 (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents口試委員審定書 I
致謝 II
中文摘要 IV
Abstract V
Contents VI
Introduction 1
The ascending pain pathway and descending modulation of pain 1
The role of A7 catecholamine cell group in descending modulation of pain 2
The potassium channels overview 4
The voltage-gated K+ channels 4
The delayed-rectifier K+ channels 5
The A-type K+ channels 6
Objectives 9
Materials and Methods 11
Preparation of brain stem slices 11
Visualization of neurons in A7 area and whole cell patch clamp recording 11
Drugs 14
Data analysis 14
Filling recorded neurons with biocytin and immunohistochemistry 16
Immunohistochemistry for double labeling 17
Results 19
Identification and recording of NAergic neurons of A7 cell group in longitudinal brainstem slices 19
Prominent delay onset of action potential in DBH-ir neurons in the A7 cell group 20
Gating properties of IA evoked in DBH-ir neurons 22
The pharmacological profiles of IA evoked in DBH-ir neurons 24
The molecular composition of A-type potassium channels in DBH-ir neurons 25
The contribution of IA to the prominent delay in firing action potential 26
The contribution of IA to the firing frequency and action potential repolarization 27
Involvement of IA in the regulation of synaptic integration of DBH-ir neurons in A7 cell group 29
Discussions 31
Gating properties and molecular identity of IA in A7 NAergic neurons 31
Functional roles of Kv4.3 in A7 NAergic neurons 33
IA regulates the instant firing frequency in A7 NAergic neurons 34
IA regulates the spike shape in A7 NAergic neurons 35
IA regulates synaptic signal propagation and integration in A7 NAergic neurons 36
The physiological impacts of IA in A7 NAergic neurons in regulation of pain transmission 37
References 40
Table 49
Table.1 Gating properties of A-type potassium channels in A7 NAergic neurons 49
Figures 50
Fig 1. Identification and recording of A7 NAergic neurons in longitudinal brainstem slices 50
Fig 2. Prominent delay onset of action potential in A7 DBH-ir neurons 52
Fig 3. The peak amplitude and the charge density of IA in DBH-ir and non-DBH-ir neurons 53
Fig 4. The activation of IA evoked in DBH-ir neurons. 55
Figure 5. The steady-state inactivation of IA evoked in DBH-ir neurons. 56
Fig 6. The recovery from inactivation of IA evoked in DBH-ir neurons 57
Fig 7. The activation and inactivation of IA evoked in 50 mM TEA in DBH-ir neurons 58
Fig 8. The pharmacological properties of IA evoked in DBH-ir neurons – the response to 4-aminopyridine (4-AP) 60
Fig 9. The pharmacological properties of IA evoked in DBH-ir neurons - the response to BDS-I and Heteropodotoxin2 (HpTx2) 62
Fig 10. Molecular composition of A-type potassium channels in DBH-ir neurons. A1 and B1 63
Fig 11. The voltage dependence of delay onset of action potential in DBH-ir neurons 64
Fig 12. Contribution of IA to the prominent delay in firing action potential in DBH-ir neurons 65
Fig 13. Contribution of IA to the firing frequency in DBH-ir neurons 66
Fig. 14. Contribution of IA to the repolarization of action potential in DBH-ir neurons 67
Fig 15. Contribution of IA to the half-width of AHP in DBH-ir neurons 68
Fig 16. IA was activated during the interspike intervals in DBH-ir neurons 69
Fig 17. Evoked IA by subthreshold EPSP wave form in DBH-ir neurons 70
Fig 18. Increasing the stimulated response by 4-AP in DBH-ir neurons 71
dc.language.isoen
dc.subject全細胞記錄zh_TW
dc.subject腦幹zh_TW
dc.subjectA7核區zh_TW
dc.subject正腎上腺素zh_TW
dc.subjectA型鉀離子通道zh_TW
dc.subjectKv4zh_TW
dc.subject痛覺傳導zh_TW
dc.subjectbrainstemen
dc.subjectwhole-cell recordingen
dc.subjectpain transmissionen
dc.subjectA-type potassium channelsen
dc.subjectnoradrenalinen
dc.subjectA7 nucleusen
dc.subjectKv4en
dc.title大鼠A7核區兒茶酚胺神經細胞中A型鉀離子通道之功能探討zh_TW
dc.titleFunctional Role of A-Type Potassium Channels in A7 Catecholamine Cell Group in Ratsen
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.oralexamcommittee楊琇雯,陳志成,連正章
dc.subject.keyword腦幹,A7核區,正腎上腺素,A型鉀離子通道,Kv4,痛覺傳導,全細胞記錄,zh_TW
dc.subject.keywordbrainstem,A7 nucleus,noradrenalin,A-type potassium channels,Kv4,pain transmission,whole-cell recording,en
dc.relation.page48
dc.rights.note有償授權
dc.date.accepted2007-07-09
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept動物學研究研究所zh_TW
顯示於系所單位:動物學研究所

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  未授權公開取用
2.44 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved