Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農業化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30315
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳尊賢(Zueng-Sang Chen)
dc.contributor.authorChun-Chun Linen
dc.contributor.author林淳純zh_TW
dc.date.accessioned2021-06-13T02:00:55Z-
dc.date.available2007-07-31
dc.date.copyright2007-07-18
dc.date.issued2007
dc.date.submitted2007-07-06
dc.identifier.citation第六章、參考文獻
丁力行。1997。桃園RCA場址土壤污染案例研究。p.343-373。第五屆土壤污染防治研討會論文集:污染土壤之整治復育技術論文集。國立台灣師範大學教育學院大廳演講廳。台北市。1997年6月18日。
王銀波、陳尊賢、王敏昭、張仲民。1989。土壤污染改善分析之研究。135 P。行政院環境保護署報告(EPA-78-004-09-109)。
行政院環保署。2002。土壤中重金屬檢測方法—王水消化法。NIEA S321.62C。中華民國九十二年七月一日環署檢字第0920047102號公告。
李耿肇、劉禎祺、陳尊賢。1997。化學復育處理對污染土壤中鎘鉛型態轉變之影響。p.375-397。第五屆土壤污染防治研討會論文集:污染土壤之整治復育技術論文集。國立台灣師範大學教育學院大廳演講廳。台北市。1997年6月18日。
李銘全、盧虎生、朱鈞。1999。重金屬鎘在植物體的累積及其影響。科學農業 47:227-234。
林財富、鄭仲凱。2003。現地化學氧化技術之發展與案例分析。p.127-140。第八屆土壤及地下水污染整治研討會論文集。國立台灣大學理學院思亮館國際會議廳。台北市。2003年8月25日。
張均魯、Pual Wincup、呂文賢、黃世傑。2003。p.1-18。污染場址調查與整治之管理與新技術。第八屆土壤及地下水污染整治研討會論文集。國立台灣大學理學院思亮館國際會議廳。台北市。2003年8月25日。
盛澄淵。1970。土壤與肥料三要素。p.20-39。肥料學。正中書局。
陳尊賢,李毓琪、蔡呈奇。1998。台灣地區土壤環境重金屬背景值調查分析。行政院環境保護署報告(EPA-87-H104-03-03)。
陳尊賢、李達源,黃丁娜、林楨坤。1991。土壤污染改善方法之研究(一)—基力化工廠污染土壤之改善方案研究。行政院環境保護署報告(EPA-80-E3H1-09-06)。
陳尊賢、李達源,劉禎祺、梁冠群、張明暉。1990。土壤污染改善方法之研究(一) 。行政院環境保護署報告(EPA-79-004-05-046)。
陳尊賢、李達源、鍾仁賜、賴朝明、陳建德、莊愷瑋、賴鴻裕。2006。彰化縣農地污染控制場址現地植生復育重金屬污染土壤之可行性評估計畫報告。
陳尊賢。1997。台灣地區受重金屬污染土壤之整治經驗與評估。p.75-88。第五屆土壤污染防治研討會:污染土壤之整治復育技術論文集。國立台灣師範大學教育學院大廳演講廳。台北市。1997年6月18日。
陳詩文。2005。三種印度芥菜對銅鋅鎘鉛污染土壤的生長反應及重金屬累積能力。國立台灣大學農業化學研究所碩士論文。
劉宗榮等譯。2003。第二十章金屬毒性。基礎毒理學。藝軒圖書出版社。
鄭隨和。1980。向日葵。糧食作物篇。台灣農家要覽。p.460-463。
賴鴻裕,陳尊賢。2001。污染土壤之植物復育技術。p.145-170。第七屆土壤污染整治研討會論文集。國立台灣大學理學院思亮館國際會議廳。台北市。2001年6月21日。
賴鴻裕,陳尊賢。2003。重金屬污染土壤之植物復育技術與案例分析。p.167-201。第八屆土壤及地下水污染整治研討會論文集。國立台灣大學理學院思亮館國際會議廳。台北市。2003年8月25日。
賴鴻裕,陳尊賢。2005。添加化學藥劑對促進重金屬污染土壤植生萃取之可行性評估。p.75-92。第九屆土壤及地下水污染整治研討會論文集。國立台灣大學理學院思亮館國際會議廳。台北市。2005年6月21日。
賴鴻裕。2004。EDTA對促進受重金屬鎘鉛及鉛污染土壤植生復育之研究。國立台灣大學農業化學研究所博士論文。
謝桑煙。1994。向日葵。雜糧作物各論。p.773-850。
Alloway, B. J. and A. P. Jackson. 1991. The behaviour of heavy metals in sewage sludge-amended soils. Sci. Total Environ. 100:151-176.
Baker, A.J.M., and R.R. Brooks. 1989. Terrestrial higher plants which hyperaccumulate metallic elements: a review of their distribution, ecology, and phytochemistry. Biorec. 1:81-126.
Bell, P. F., B. R. James, and R. L. Chaney. 1991. Heavy metal extractability in long-term sewage sludge and metal-salt amended soils. J. Environ. Qual. 20:481-486.
Blaylock, M.J., D.E. Salt, S. Dushenkov, O. Zakharova, C. Gussman, Y. Kapulnik, B.D. Ensley, and I. Raskin. 1997. Enhanced accumulation of Pb in Indian mustard by soilapplied chelating agents. Environ. Sci. Technol. 31:860-865.
Bray, R.H., and L.T. Kurtz. 1945. Determination of total, organic, and available forms of phosphorus in soils. Soil Sci. 59:39-45.
Brooks, R.R., J. Lee, R.D. Reeves, and T. Jaffré. 1977. Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants. J. Geochem. Explor. 7:49-77.
Chandra Sekhar, K., C.T. Kamala, N.S. Chary, V. Balaram, and G. Garcia. 2005. Potential of Hemidesmus indicus for phytoextraction of lead from industrially contaminated soils. Chemosphere 58:507-514.
Chen, Y.H., Z.G. Shen, and X.D. Li. 2004. Leaching and uptake of heavy metals by ten different species of plants during an EDTA-assisted phytoextraction process. Chemosphere 57:187-196.
Chen, Y.H., Z.G. Shen, and X.D. Li. 2004a. The use of vetiver grass (Vetiveria zizanioides) in the phytoremediation of soils contaminated with heavy metals. Applied Geochem. 19:1553-1565.
Clemens, S., M.G. Palmgren, and U. Krämer. 2002. A long way ahead: understanding and engineering plant metal accumulation. Trends in Plant Sci. 7:309-315.
Cumming, J.R. and A.B. Tomsett. 1992. Metal tolerance in plants: signal transduction and acclimation mechanisms. In: Domy C. Adriano (ed.). Biogeochemistry of Trace Metals. Lewis Publisher.
Davies, B.E. 1995. Lead. p.206-223. In: B.J. Alloway (ed.). Heavy Metals in Soils. 2nd ed. Blackie Academic & Professional, Glasgow, UK.
Ebbs, S.D., and L.V. Kochian. 1998. Phytoextraction of zinc by oat (Avena sativa), barley (Hordeum vulgare), and Indian mustard (Brassica juncea). Environ. Sci. Technol. 32:802-806.
El-Hassanin, A. S., T. M. Labib, and A. T. Dobal. 1993. Potential Pb, Cd, Zn, and B contamination of sandy soils after different irrigation periods with sewage effluent. Water, Air, and Soil Pollut. 66:239-249.
Garbisu, C, and I. Alkorta. 2001. Phytoextraction: a cost-effective plant-based technology for the removal of metals from the environment. Biores Technol. 77:229-236.
Gardner, W.H. 1986. Water content. p. 493-544. In: A. Klute et al. (eds.). Methods of soil analysis. Part 1. Physical and mineralogical method. Second edition. Madison, WI, USA, Agronomy Monograph 9.
Gee, G.W., and J.W. Bauder. 1986. Partical-size analysis. p.383-412. In: A. Klute et al. (eds.). Methods of soil analysis. Part 1. Physical and mineralogical method. Second edition. Madison, WI, USA, Agronomy Monograph 9.
Goldsbrough, P. 2000. Metal tolerance in plants: The role of phytochelatins and metallothioneins. p.221-233. In: N. Terry and G. Banuelos (ed.) Phytoremediation of contaminated soil and water. CRC Press LLC, USA.
Grˇeman, H., ˇ S. Velikonja-Bolta, B. Kos, and D. Leˇstan. 2001. EDTA enhanced heavy metal phytoextraction: Metal accumulation, leaching and toxicity. Plant Soil 235:105-114.
Grcˇman, H., D. Vodnik, Sˇ. Velikonja-Bolta, and D. Lesˇtan. 2003. Ethylenediamined- isuccinate as a new chelate for environmentally safe enhanced lead phytoextraction. J. Environ. Qual. 32:500-506.
Gupta, A. K., and S. Sinha. 2006. Chemical fractionation and heavy metal accumulation in the plant of Sesamum indicum (L.) var. T55 grown on soil amended with tannery sludge: Selection of single extractants. Chemosphere 64:161-173.
Hamon, R. E., S. E. Lorenz, P. E. Holm, T. H. Christensen, and S. P. McGrath. 1995. Changes in trace metal species and other components of the rhizosphere during growth of radish. Plant Environ. 18:749-756.
Harmon, M.E., and K. Lajtha. 1999. Analysis of detritus and organic horizon for mineral and organic constitutes. p.143-165. In: G.P. Robertson, D.C. Coleman, C.S. Bledsoe, and P. Sollins (eds.). Standard soil methods for long-term ecological research. Oxford University Press, Inc., NY. USA.
Hovsepyan, A., and S. Greipsson. 2005. EDTA-enhanced phytoremediation of lead-contaminated soil by corn. J. Plant Nutr. 28: 2037-2048.
Huang, J.W., J.J. Chen, W.R. Berti, and S.D. Cunningham. 1997. Phytoremediation of lead-contaminated soils: role of synthetic chelates in lead phytoextraction. Environ. Sci. Technol. 31:800-805.
Jones, K.C., P.J. Peterson, and B.E. Davies. 1984. Extraction of silver from soils and its determination by atomic absorption spectrometry. Geoderma 33:157-168.
Kabata-Pendias, A., and H. Pendias. 2000. Trace elements in soils and plants. 3rd ed. CRC Press.
Keller C, Hammer D, Kayser A, RichnerW, Brodbeck M, and Sennhauser M. 2003. Root development and heavy metal phytoextraction efficiency : comparison of different plant species in the field. Plant Soil 249:67-81.
Kos, B., and D. Lesˇtan. 2003. Induced phytoextraction/soil washing of lead using biodegradable chelate and permeable barriers. Environ. Sci. Technol. 37:624-629.
Lai, H.Y., and Z.S. Chen. 2004. Effects of EDTA on solubility of cadmium, zinc, and lead and their uptake by rainbow pink and vetiver grass. Chemosphere 55:421-430.
Lai, H.Y., and Z.S. Chen. 2005. The EDTA effect on phytoextraction of single and combined metals-contaminated soils using rainbow pink (Dianthus chinensis). Chemosphere 60:1062-1071.
Li, H.F., Q.R. Wang, Y.SH. Cui, Y.T. Dong, and P. Christie. 2005. Slow release chelate enhancement of lead phytoextraction by corn (Zea mays L.) from contaminated soil—a preliminary study. Sci. Total Environ. 339:179-187.
Lindsay, W.L., and W.A. Norvell. 1978. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Sci. Soc. Am. J. 42:421-428.
Lofts, S., D. J. Spurgeon, C. Svendsen, and E. Tipping. 2004, Deriving soil critical limits for Cu, Zn, Cd, and pH: A method based on free ion concentrations. Environ. Sci. Tech. 38:3623-3631.
Luo, C.L., Z.G. Shen, A. J. M. Baker, and X.D. Li. 2006. A novel strategy using biodegradable EDDS for the chemically enhanced phytoextraction of soils contaminated with heavy metals. Plant Soil. 285:67-80.
Luo, C.L., Z.G. Shen, and X.D. Li. 2005. Enhanced phytoextraction of Cu, Pb, Zn and Cd with EDTA and EDDS. Chemosphere 59:1-11.
Ma LQ, T.J. Logan and S.J. Traina. 1995. Lead immobilization from aqueous solutions and contaminated soils using phosphate rocks. Environ. Sci. Tech. 29:1118-1126.
McBride, M. B., B. K. Richards, T. Stenhuis, J. J. Russo, and S. Sauve. 1997. Mobilility and solubility of toxic metals and nutrients in soil fifteen years after sludge application. Soil Sci. 162:487-500.
McBride, M., S. Sauv´e, and W. Hendershot. 1997. Solubility control of Cu, Zn, Cd and Pb in contaminated soils. Euro. J. Soil Sci. 48:337-346.
McGrath, S. P., F. J. Zhao, and E. Lombi. 2001. Plant and rhizosphere processes involved in phytoremediation of metal-contaminated soil. Plant Soil 232:207-214.
McLaughlin, M. J., B.A. Zarcinas, D.P. Stevens, and N. Cook. 2000. Soil testing for heavy metals. Comm. Soil Sci. Plant Anal. 31:1661-1700.
Meers, E., A. Ruttens, M.J. Hopgood, D. Samson, and F.M.G. Tack. 2005. Comparison of EDTA and EDDS as potential soil amendments for enhanced phytoextraction of heavy metals. Chemosphere 58:1011-1022.
Meers, E., S. Lamsal, P. Vervaeke, M. Hopgood, N. Lust, and F.M.G. Tack. 2005. Availability of heavy metals for uptake by Salix viminalis on a moderately contaminated dredged sediment disposal site. Environ. Pollut. 137:354-364.
Mehlich, A. 1953. Determination of P, Ca, Mg, K, Na, and NH4. Mimeo 1953. North Carolina Soil Test Div., Raleigh, NC, USA.
Mench, M.J., V.L. Didier, M. Loffler, A. Gomez, and P. Masson. 1994. A mimicked in-situ remediation study of metal-contaminated soils with emphasis on cadmium and lead. J. Environ. Qual. 23:58-63.
Mengel, K., and E.A. Kirkey. 2001. Ch.4 Plant water relationship. p.190-199. In: Principles of plant nutrition5th. Kluwer Academic Publishers, Dordrecht, The Netherlands.
Metsarinne, S., T. Tuhkanen, and R. Aksela. 2001. Photodegradation of ethylenediamine- tetraacetic acid (EDTA) and ethylenediamine disuccinic acid (EDDS) within natural UV radiation range. Chemosphere 45:949-955.
Mok, G.. 2005. The development of the soil and groundwater remediation technology in USA. 土壤及地下水污染整治新技術研討會論文集。
Mulligan, C.N., R.N. Yong, and B.F. Gibbs. 2001. Remediation technologies for metal-contaminated soils and groundwater:an evaluation. Eng. Geol. 60:193-207.
Nelson, D.W., and L.E. Sommers. 1996. Total carbon, organic carbon, and organic matter. p.961-1010. In: D.L. Sparks, A.L. Page, P.A. Helmke, R.H. Loeppert, P.N. Soltanpour, M.A. Tabatabai, C.T. Johnston, and M.E. Sumner (ed.) Methods of soil analysis, Part3. ASA and SSSA, Madison, WI, USA.
Novozamsky, I., T.M. Lexmond, and V.J.G. Houba. 1993. A single extraction procedure of soil for evaluation of uptake of some heavy-metals by plants. International J. Environ. Analy. Chem. 51:47-58.
Parkpian, P., S.T. Leong, P. Laortanakul, and N.T.K. Phuong. 2002. The benefits and risks of using river sediment for Vietnamese agriculture: a case study of the Nhieu Loc canal in Ho Chi Minh city. J. Environ. Sci. Health A37:1099-1122.
Peterson, P.J., and B.J. Alloway. 1979. The chemistry, bioshemistry and biology of cadmium ed. Webb, M. Elsvier/North-Holland. Amsterdam, 45-92.
Pueyo, M., J.F. López-Sánchez, and G. Rauret. 2004. Assessment of CaCl2, NaNO3 and NH4NO3 extraction procedures for the study of Cd, Cu, Pb and Zn extractability in contaminated soils. Analytica Chimica Acta 504: 217–226.
Puschenreiter, M., G. Stoger, E. Lombi, O. Horak, and W.W. Wenzel. 2001. Phytoextraction of heavy metal contaminated soils with Thlaspi goesingense and Amaranthus hybridus:rhizosphere manipulation using EDTA and ammonium sulfate. J. Plant Nutr. Soil Sci. 164:615-621.
Reeves, R.D. 1992. Hyperaccumulation of nickel by serpentine plants. p.253-277. In A.J.M. Baker, J. Proctor, and R.D. Reeve (eds.). The vegetation of ultramafic (Serpentine) soils. Intercept Ltd., Andover, UK.
Rhoades, J.K. 1982. Cation exchange capacity. p.149-158. In: A.L. Page(ed.). Methods of soil analysis. Part 2. Chemical and microbiological properties. Second edition. Madison, WI, USA, Agronomy Monograph 9.
Rieuwerts, J. S., M.R Ashmore, M.E Farago, and I. Thornton. 2006. The influence of soil characteristics on the extractability of Cd, Pb, and Zn in upland and moorland soils. Sci. Total Environ. 366:864-875.
Sas-Nowosielska, A., R. Kucharski, E. Malkowski, M. Pogrzeba, J.M. Kuperberg, and K. Krynski. 2004. Phytoextraction crop disposal – an unsolved problem. Environ. Pullot. 128:373-379.
Sastre, J., E. Hernández, R. Rodriguez , X. Alcobé, M. Vidal,, and G. Rauret. 2004. Use of sorption and extraction tests to predict the dynamics of the interaction of trace elements in agricultural soils contaminated by a mine tailing accident. Sci. Total Environ. 329:261-281.
Schowanek, D., T.C.J. Feijtel, C.M. Perkins, F.A. Hartman, T.W. Federle, and R.J. Larson. 1997. Biodegradation of [S,S], [R,R] and mixed stereoisomers of ethylene diamine disuccinic acid (EDDS), a transition metal chelator. Chemosphere 34:2375-2391.
Shen, Z.G., X.D. Li, C.C. Wang, H.M. Chen, and H. Chua. 2002. Lead phytoextraction from contaminated soil with highbiomass plant species. J. Environ. Qual. 31:1893-1900.
Soil Survey Staff. 2003. Keys to Soil Taxonomy. 9th ed. USDA Natural Resources Conservation Service, Washington, DC, USA.
Tandy, S., K. Bossart, R. Mueller, J. Ritschel, L. Hauser, R. Schulin, and B. Nowack. 2004. Extraction of heavy metals from soils using biodegradable chelating agents. Environ. Sci. Technol. 38:937-944.
Tandy, S., R. Schulin, and B. Nowack. 2006. The influence of EDDS on the uptake of heavy metals in hydroponically grown sunflowers. Chemosphere 62:1454-1463.
Tandy, S., R. Schulin, and D. Nowack. 2006. Uptake of metals during chelant-assisted phytoextraction with EDDS related to the solubilized metal concentration. Environ. Sci. Technol. 40:2753-2758.
Thomas, G.W. 1996. Soil pH and soil acidity. p.475-490. In: D.L. Sparks, A.L. Page, P.A. Helmke, R.H. Loeppert, P.N. Soltanpour, M.A. Tabatabai, C.T. Johnston, and M.E. Sumner (ed.) Methods of soil analysis, Part3. ASA and SSSA, Madison, WI, USA.
Van Devivere, P.C., H. Saveyn, W. Verstraete, T.C.J. Feijtel, and D.R. Schowanek. 2001. Biodegradation of metal– [S,S]- EDDS complexes. Environ. Sci. Technol. 35:1765-1770.
Vangronsveld, J., and S.D. Cunningham. 1999. Metal-Contaminated Soils. In: Situ Inactivation and Phytorestoration. Springer-Verlag, NY, USA.
Wang, X.P., X.Q. Shan, S.Z. Zhang, and B. Wen. 2004. A model for evaluation of the phytoavailability of trace elements to vegetables under the field conditions. Chemosphere 55:811–822.
Waring, S.A., and J.M. Bremner. 1964. Ammonium production in soil under waterlogged conditions as an index of nitrogen availability. Nature (London) 2001:951-952.
Zayed, A.M., S. Growthaman, and N. Terry. 1998. Phytoaccumulation of trace elements by wetland plants: I. Duckweed. J. Environ. Qual. 27: 715-721.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30315-
dc.description.abstract植生復育(phytoremediation)意指使用植物移除土壤中的污染物,可大量累積重金屬於植體中的植物,稱為超級累積植物。目前發現的超級累積植物大多有一共同缺點,生質量小及移除量低。國外雖有許多相關研究,但國外的植物不易取得,且不一定可以適應國內的自然環境,種植在台灣是否可達預期的效果。本研究目的為選用臺灣污染區試種過之物種,分別為繁星花(Star cluster, Pantas lanceolata Deflers.)、孔雀草(French marigold, Tagetes patula Linn.)、非洲鳳仙(Impatiens, Impatiens walleriana Hook.f.)、美女櫻(Garden verbena, Verbena bipinnatifida Nutt.)及一串紅(Scarlet sage, Salvia splendens Ker-Gawl.),種植於人工鎘、鉛污染土壤中,測試其對鎘、鉛污染土壤的生長反應及吸收累積重金屬之能力。
試驗土壤採集自桃園新屋一塊未污染農田,於國立臺灣大學人工氣候室溫室進行試驗,調控日/夜溫度為30℃/25℃。土壤重金屬處理濃度分別為對照、鎘10 mg kg-1與20 mg kg-1及對照、鉛500 mg kg-1與1000 mg kg-1,三重覆,種植35天後收割。將植物幼苗移植至人工污染土壤後,以重量法添加去離子水,維持土壤水分約為最大容水量之60%。於種植期間第0、7、14、21、28及35天以土壤水分採樣器(RSMS)收集土壤溶液,探討土壤溶液中重金屬溶出量之變化。植體收割後,以土壤萃取劑0.05M EDTA (pH 7.0)、0.005M DTPA (pH 5.3)及0.01M CaCl2萃取土壤中植物有效性重金屬含量,探討其與植物地上部累積重金屬濃度之相關性。植體以H2SO4/H2O2法分解,樣品溶液皆以原子吸收光譜儀(AAS,Hitachi 180-30型)測定重金屬含量。
研究結果顯示孔雀草及非洲鳳仙於鎘20 mg kg-1處理時地上部累積鎘濃度分別為66.3±6.5 mg kg-l及100±11 mg kg-l,非洲鳳仙更達到超累積植物之標準(100 mg kg-l),生長狀況及乾物重並無有明顯的減少,鎘移除量分別為799±106 μg plant-1及815±18 μg plant-1,建議可繼續測試受更高鎘濃度污染之累積現象。美女櫻種植於鉛1000 mg kg-1處理時累積鉛濃度達65.1±9.1 mg kg-l,其鉛移除量為651±128 μg plant-1,雖然累積鉛濃度未達超級累積植物之標準(1000 mg kg-l),鉛移除量也不如預期的高,但已比一般植物有明顯偏高之鉛濃度與吸收量。土壤萃取劑(0.05M EDTA、0.005M DTPA及0.01M CaCl2)可萃取之重金屬濃度與繁星花、孔雀草、非洲鳳仙及一串紅地上部累積之鎘濃度及繁星花、孔雀草、非洲鳳仙及美女櫻地上部累積之鉛濃度具顯著相關性(p<0.05)。
zh_TW
dc.description.abstractPhytoremediation is a technique by selecting special plants to remove heavy metals from contaminated soil. Plants which can accumulate heavy metals more than the threshold of hyperaccumulation are regarded as hyperaccumulators. Hyperaccumulators have the limitation on small biomass and low total removal of metals from soil. There are many studies on the phytoremediation in the world. However, hyperaccumulators from abroad are not obtained easily and not suitable for the natural environment of Taiwan in some cases. According to some studies on the contaminated sites of Taiwan, some highly potential species of phytoextraction are selected for this study. The objective of this study is to compare the growth condition and heavy metals accumulation of these species for growing in the soils artificially contaminated by cadmium and lead. The selected plants are star cluster (Pantas lanceolata Deflers.), french marigold (Tagetes patula Linn.), impatiens (Impatiens walleriana Hook.f.), garden verbena (Verbena bipinnatifida Nutt.), and scarlet sage (Salvia splendens Ker-Gawl.).
The studied soil was collected from uncontaminated soil in Taoyuan, Taiwan. The pots experiments were conducted in the phytotron of National Taiwan University, which the air temperature was controlled at 30℃ in day and 25℃ in the night, respectively. The treatments of heavy metals are control, 10 mg Cd kg-1, 20 mg Cd kg-1, 500 mg Pb kg-1, and 1000 mg Pb kg-1. Three replicates were conducted for each treatment. All plants were harvested at 35 days after transplanting. The soil moisture content was maintained at 60% of water holding capacity by weighing and adding deionized water. Soil solutions were collected directly by RSMS (Rhizon Soil Moisture Sampler) after transplanting at 0, 7, 14, 21, 28, and 35th day for monitoring the changes of metal concentrations in the soil solution. The bioavailability of Cd and Pb in soil were extracted by 0.05M EDTA (pH 7.0), 0.005M DTPA (pH 5.3), and 0.01M CaCl2, respectively, to evaluate the relationships between heavy metal accumulation in the plants and soil solution’s concentration extracted by different extractors. Samples of harvested plants were digested by the H2SO4/H2O2 digestion method, and heavy metal concentration in all solution samples and plants were determined by atomic absorption spectrometry (Hitachi 180-30 type).
The results indicated that Cd accumulation of french marigold and impatiens growing in the soil contaminated by 20 mg kg-1 were 66.3±6.5 and 100±11 mg kg-l, which can remove 799±106 and 815±18 μg plant-1, respectively. The maximum Cd accumulation of impatiens reached the threshold value, 100 mg kg-l, of hyperaccumulators, and impatiens did not have any toxicity effect on the growth. This result indicate that impatiens is a superaccumulator of Cd and can grow in higher Cd concentration of the soil. The Pb accumulation of garden verbena growing in 1000 mg kg-1 were 65.1±9.1 mg kg-l, and it can remove 651±128 μg plant-1. Although Pb accumulation of garden verbena did not reach the threshold concentration of 1000 mg kg-l of hyperaccumulator, but the concentration of Pb in the plant are much higher than that of general plants. There are good relationships between Cd or Pb concentrations of soil extracted by 0.05M EDTA, 0.005M DTPA, and 0.01M CaCl2 and Cd or Pb concentrations in shoots of star cluster, french marigold, and impatiens (p<0.05). These results indicated that 0.05M EDTA, 0.005M DTPA, and 0.01M CaCl2 are good extractants to predict the uptake of heavy metals in soil medium.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T02:00:55Z (GMT). No. of bitstreams: 1
ntu-96-R94623002-1.pdf: 11884969 bytes, checksum: 396b90c204f660c9ee7f23be8c52b17a (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents目 錄
頁次
中文摘要..................................................I
英文摘要................................................III
目錄......................................................V
表目錄..................................................VII
圖目錄...................................................IX
第一章、前言..............................................1
第二章、前人研究
第一節、重金屬之主要來源及台灣的污染概況..................3
一、台灣地區農田土壤之重金屬調查........................3
第二節、重金屬於土壤中之化學反應..........................7
第三節、常用的污染整治方法................................8
第四節、植生復育技術.....................................12
一、植生復育的種類.....................................13
二、超累積植物(Hyperaccumulator).......................14
三、植物累積重金屬之可能機制...........................15
第五節、植物與土壤間的關係...............................16
第六節、試驗植物的選用...................................20
第三章、材料與方法
第一節、土壤的選擇與採樣.................................25
第二節、供試土壤基本性質分析.............................27
第三節、受鎘、鉛污染土壤對於試驗植物生長之影響...........32
一、人工配製鉛、鎘污染土壤.............................32
二、土壤重金屬全量及生物有效性濃度分析.................33
三、盆栽試驗...........................................34
四、土壤與植體重金屬分析...............................35
第四章、結果與討論
第一節、供試土壤的基本性質...............................38
第二節、植物對人工鎘、鉛污染土壤之生長反應...............40
一、鎘、鉛處理對植物生長的影響.........................40
第三節、植物種植於鎘、鉛污染土壤之重金屬累積能力.........51
一、植物對鎘之累積現象.................................51
二、植物對鉛之累積現象.................................55
第四節、植物於鎘、鉛污染土壤之重金屬移除量...............59
一、植物對鎘之移除量...................................59
二、植物對鉛之移除量...................................62
第五節、於鎘鉛污染土壤中土壤溶液之重金屬濃度隨時間的變化.64
第六節、不同土壤萃取劑與植體地上部累積重金屬濃度之關係...71
一、植物種植前後土壤中生物有效性重金屬濃度的變化.......71
二、不同土壤萃取劑與植物地上部鎘累積濃度之關係.........79
三、不同土壤萃取劑與植物地上部鉛累積濃度之關係.........87
第五章、結論.............................................95
第六章、參考文獻.........................................96
附錄................................................... 107
dc.language.isozh-TW
dc.subject鎘zh_TW
dc.subject育zh_TW
dc.subject植生&#63846zh_TW
dc.subject鉛zh_TW
dc.subject孔雀草zh_TW
dc.subject非洲鳳仙zh_TW
dc.subject美&#63873zh_TW
dc.subject櫻zh_TW
dc.subjectleaden
dc.subjectcadmiumen
dc.subjectphytoremediationen
dc.subjectgarden verbenaen
dc.subjectfrench marigolden
dc.subjectimpatiensen
dc.title孔雀草與非洲鳳仙對污染土壤鎘及美女櫻對污染土壤鉛累積吸收之研究zh_TW
dc.titleCadmium Accumulation of French Marigold and Impatiens and Lead Accumulation of Garden Verbena Growing in ontaminated Soilsen
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王敏昭(Min-Chao Wang),鍾仁賜(Ren-Shih Chung)
dc.subject.keyword植生&#63846,育,鎘,鉛,孔雀草,非洲鳳仙,美&#63873,櫻,zh_TW
dc.subject.keywordphytoremediation,cadmium,lead,french marigold,impatiens,garden verbena,en
dc.relation.page125
dc.rights.note有償授權
dc.date.accepted2007-07-10
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農業化學研究所zh_TW
顯示於系所單位:農業化學系

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  未授權公開取用
11.61 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved