請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30299
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 劉如熹(Ru-Shi Liu) | |
dc.contributor.author | Chun-Che Lin | en |
dc.contributor.author | 林群哲 | zh_TW |
dc.date.accessioned | 2021-06-13T02:00:27Z | - |
dc.date.available | 2008-07-25 | |
dc.date.copyright | 2007-07-25 | |
dc.date.issued | 2007 | |
dc.date.submitted | 2007-07-07 | |
dc.identifier.citation | 1.徐敘瑢,發光學與發光材料;化學工業出版社。
2.維基百科全書;http://zh.wikipedia.org/w/index. 3.鄧昌蔚,科學教育月刊,246期,32(民91)。 4.林金明,化學發光基礎理論與應用;化學工業出版社:台北,民 71。 5.三思科學电子月刊,29期,30(民94)。 6.郝允祥,光度學;北京師範大學出版社,1988。 7.染料客主型強誘電性液晶元件色彩性之探討,光電科技,2(民94)。 8.林益山,白光發光二極體用之具釔鋁石榴石結構螢光粉合成及其特性分析;台灣大學碩士論文:台北,民94。 9.日本照明學會,照明手冊;中國建築工業出版社,1985。 10.東亞照明;http://www.chinaelectric.com.tw. 11.老羊攝影學苑;http://taiwan-photoschool.com/index.htm. 12.陳宏步,照明原理;機械月刊叢書:台北,民68。 13.高逸峰,中鼎月刊,331期,11(民95)。 14.歐司朗光電半導體公司;http://cn.ledlive.info/car/led-car-29.htm. 15.IT IS智網;http://www.itis.org.tw/ 16.楊素華,科學發展,高雄應用科技大學電子工程系,358期,71(民91)。 17. Clegg, R. M.; Wang, X. F.; Herman, B. Chemical Analysis Series,1996, 137, 196. 18. Ropp, R. C. Luminescence and the Solid State-2nd ed.; Elsevier: Amsterdam, 2004. 19. Kitai, A. H. Visible luminescence-Solid state materials&applications;Chapman&Hall:London, 1992. 20. Deluca, J. A. J. Chem. Edu. 1980, 57, 541. 21. Blasse, G. J. Chem. Phys. 1965, 48, 3108. 22. Lakowicz, J. R. Principle of Fluorescence Spectroscopy-2nd ed.;Kluwer Academic/Plenum Pub.: New York, 1999. 23. Jüstel, T. Phosphor global summit, March 13, 2006, PGS, San Diego,CA. 24. Sullivan, S. C.; Woo, W. K.; Steckel, J. S.; Bawendi, M.; Bulovi V.Organic Electronics, 2003, 4, 123. 25. Feldmann, C.; Jüstel, T.; Ronda, C. R.; Schmidt, P. J. Adv. Funct.Mater. 2003, 13, 7. 26. Poort, S. H. M.; Janssen, W.; Blasse, G. J. Alloys Compd. 1997, 260,93. 27. Erdei, S.; Ainger, F. W.; Ravichandran, D.; White, W. B.; Cross, L.E. Mater. Lett. 1997, 30, 389. 28. Lenggoro, I. W.; Xia, B.; Mizushima, H.; Okuyama, K.; Kijima, N.Mater. Lett. 2001, 50, 92. 29. Rambabu, U.; Munirathnam, N. R.; Prakash, T. L.; Buddhudub, S.Mater. Chem. Phys. 2002, 78, 160. 30. Sohn, K. S.; Lee, J. M.; Jeon, W.; Park, H. D. J. Electrochem. Soc.2003, 150, H182. 31. Buissette, V.; Moreau, M.; Gacoin, T.; Boilot, J. P.; Ching, J. Y. C.;Mercier, T. L. Chem. Mater. 2004, 16, 3767. 32. Shimomura, Y.; Kurushima, T.; Olivia, R.; Kijima, N. Jap. J. Appl.Phys. 2005, 44, 1356. 33. Wu, Z. C.; Shi, J. X.; Wang, J.; Gong, M. L.; Su, Q. J. Solid State Chem. 2006, 179, 2356. 34. Lambert, P. M. Mater. Res. Bull. 2000, 35, 383. 35. West, A. R. Basic Solid State Chemistry; John Wiley&Sons:Singapore, 1991. 36. 王素蘭,科儀新知;第十三卷,第六期,6(民81)。 37. 吳翼貽,科儀新知;第十三卷,第六期,6(民81)。 38. 杜正恭,儀器總覽;國家科學委員會精密儀器發展中心,(1998)。 39. 吳泰伯與許樹恩,X-光繞射原理與材料結構分析;中國產材料科學學會:台北,民82。 40. Mielenz, K. D. Optical Radiation Measurement Volume 3 Measurement of Photoluminescence;Academic Press Inc.: New York,2004. 41. Issler, S. L.; Torardi, C. C. J. Alloys Compd. 2003, 229, 54. 42. Jentoft, F. Diffuse Reflectance IR and UV-vis Spectroscopy; Modern Methods in Heterogeneous Catalysis, 2004. 43. NCKU Micro-Nano Technology Center/Southern Region MEMS Center. 44. 汪建民,材料分析;中國材料學會:新竹,民87。 45. Blasse, G. Luminescent centers in insulators, Solid State Luminescence; Chapman&Hall press: Cambridge, 1993. 46. Ganguly, P.; Shah, N.; Phadke, M.; Ramaswamy, V.; Mulla, I. S.Phys. Rev. B 1993, 47, 991. 47. 劉宇桓,發光二極體激發之氧氮化合物螢光粉合成與其特性研 究;台灣大學碩士論文:台北,民95。 48. 劉如熹與紀喨勝,紫外光發光二極體用螢光粉介紹;全華科技圖書公司:台北,民92。 49. Jermann, F.; Fiedler, T.; Zwaschka, F.; Zachau, M. Phosphor global summit, November 07, 2006, Osram R&D Development Phosphor. 50. Li, Y. C.; Chang, Y. H.; Lin, Y. F.; Chang, Y. S.; Lin, Y. J.Electrochem. Solid St. 2006, 9, H74. 51. Chen, W.; Su, M. J. Phys. Chem. Solids 1999, 60, 371. 52. Tang, T. P.; Lee, C. M.; Yen, F. C. Ceram. Int. 2006, 32, 665. 53. Kim, J. S.; Park, Y. H.; Choi, J. C.; Park, H. L. Electrochem.Solid-State Lett. 2005, 8, H65. 54. Phosphor Research Society, Phosphor Handbook; CRC Press: New York, 1999. 55. Yamamoto, H. Phosphor global summit, March 19, 2003, Tokyo University of Technology. 56. Bhushan, S.; Chukichev, M. V. J. Mater. Sci. Lett. 1998, 9, 319. 57. Dexter, D. L.; Schulman, J. A. J. Chem. Phys. 1954, 22, 1063. 58. Blasse, G. Philips Res. Rep. 1969, 24, 131. 59. Roop, R. C. Design of Phosphors, Luminescence and the solid state;Elsevier Sciemce Publishers: B. V. The Netherlands, 1991. 60. Vij, D. R. Luminescence of Solid; Plenum Press: New York, 1998. 61. Kim, J. S.; Park, Y. H.; Kim, S. M.; Choi, J. C.; Park, H. L.Solid-State Commun. 2005, 133, 445. 62. Varshini, Y. P. Physica B 1967, 34, 149. 63. Shionoya, S.; Yen, W. M. Phosphor Handbook; CRC Press: New York, 1998. 64. Kim, J. S.; Park, Y. H.; Choi, J. C.; Park, H. L. J. Electrochem. Soc.2005, 152, H152. 65. Shionoya, S. Photoluminescence, Luminescence of Solids; Plenum press 1998. 66. Blasse, G.; Grabmaier, B. C. Luminescent Materials; Springer: Berlin, 1994. 67. Xie, R. J.; Hirosaki, N.; Mitomo, M.; Yamamoto, Y.; Suehiro, T.2004, 108, 12027. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30299 | - |
dc.description.abstract | 世界能源危機意識逐漸提升,各國均投入大量人力研發新穎之照明設備,而發展具省電、低污染、發熱量低、反應速度快、壽命長等優點之發光二極體(light emitting diode; LED)作為光源,已是現代照明之發展趨勢。自1996年,日本日亞化學公司(Nichia)以藍光晶片(InGaN)激發鈰掺雜之釔鋁石榴石(cerium doped yttrium aluminum garnet; YAG:Ce)之黃色螢光粉而研發白光發光二極體,造就人類照明之一大躍進,亦觸發LED邁入照明應用之門檻。
經過持續不斷地研究與發展,傳統藍光LED晶片搭配黃色螢光粉(YAG:Ce)所形成之白光,因藍光晶片所激發之螢光粉其能量轉換效率較紫外光激發低,且YAG型螢光粉之光譜所涵蓋範圍較狹隘,造成其生成轉換效率低、色溫高與演色性差之白光光源。鑒於目前研發多種之螢光粉,均須考慮和評估粉體於使用上所產生之發光效率、持效性、色溫、演色性指數、熱穩定性等性質。故本研究重點乃研發具高色純度且熱穩定性佳之紅綠藍(RGB)三原色磷酸鹽類化合物螢光粉,其可適用於紫外光與藍光所激發。 本研究主要乃利用固態反應法製備磷酸鹽類化合物之螢光粉,其通式為ABPO4 (A = Li, K;B = Sr, Ba),採用LiSrPO4、KSrPO4、KBaPO4三系列為主體晶格,並添加銪(Eu2+)、鋱(Tb3+)、釤(Sm3+)稀土元素為發光中心。主體晶格係由陽離子與陰離子配位所構成,探討陽離子分別由鹼金屬(Li、K)與鹼土金屬(Sr、Ba)組成其晶格場改變之影響,並研究添加不同濃度之發光中心離子,其發光機制與濃度淬滅(concentration quenching)效應,最後利用不同之燒結環境,進而探討其放光特性與化學性質。 於本研究中所使用之分析方法主要有:以X-光粉末繞射儀(X-ray diffraction; XRD)鑑定樣品之純度與其長程有序晶體結構;利用光激發光光譜儀(photoluminescence; PL)分析螢光粉之激發光譜與放射光譜特性,並將放射光譜以程式轉換為其色度座標;以紫外可見光擴散式反射光譜(UV-vis. diffuse reflectance spectra; UV-vis. DRS)分析固態螢光粉末於紫外光與可見光其吸收特性;以掃描式電子顯微鏡(scanning electron microscope; SEM)進行樣品表面型態分析與觀察其粒徑大小之差異性;以熱重分析與差式掃描熱分析【(thermo gravimetric analysis(TGA) and differential scanning calorimetric(DSC)】分析樣品熱分解過程之重量變化與化學反應過程;以熱螢光光譜儀(thermoluminescence; TL)測試粉體實際應用之熱穩定性。本研究部分成果已發表於Appl. Phys. Lett. 90, 151108 (2007)期刊與申請一件專利。 | zh_TW |
dc.description.abstract | The energy crisis awareness is improving gradually and many countries diverted their research propaganda towards the development of the novel lighting equipments. In this regard, the new trend has been developed to use light-emitting diodes (LEDs) as a source of light, which is considered to be advantageous in many respects such as energy saving, lower contamination, lower heat generation, higher response speed and longer lifetime. In 1996, the first white LED was developed by Nichia Chemical Company, Japan. They utilized a blue LED chip (InGaN) in combination with a yellow phosphor (cerium doped yttrium aluminum garnet; YAG:Ce) to generate white light. This opens up the new directions for the development of LEDs with great advantages that will leap forward and march towards its optimum use in illumination.
However, the above white LED presented the major drawbacks of lower color rendering index (CRI), cool light and lower thermal stability. To overcome this problem, there is a kind of phosphor technology being developed at leading companies, which focuses on improving their efficiency, power stability for prolonged period, color temperature and thermal stability. The aim of this work is to develop the novel phosphors based on phosphate host matrix, which can produce superior blue, green and red lights under excitation by UV-LED or blue range and exhibit thermal stability at higher temperature. In this study, we prepared the phosphate compounds by using solid state reaction. The general chemical formula of these materials is ABPO4 (A = Li, K;B = Sr, Ba). The host matrixes were doped with different rare earth elements (Eu, Tb and Sm). We investigated the influence of change in crystal field which composed of different alkaline metal (Li, K) or alkaline-earth metal (Sr, Ba) cations. The effect of sintering of these materials at different temperatures to explore their PL and chemical properties has also been investigated. In addition to this we also studied their luminescent mechanism and concentration quenching effect. The characterization of the phosphors was carried out by X-ray diffraction (XRD) to study the crystal structure and photoluminescence (PL) measurements were carried out to show excitation and emission properties. The emission spectra were transformed to the Commission International de I ‘Eclairage (CIE) by the Colortt program to realize their color coordinates. The reflective ultraviolet/visible spectrometer (UV-Vis) revealed the absorption mechanism of phosphor in consistent with the PL measurements. We also used scanning electron microscope (SEM) and energy dispersive X-ray spectrometer (EDX) to obtain particle size, morphology, and chemical composition respectively. The thermo gravimetric analysis (TGA) and differential scanning calorimetric (DSC) analyses were performed to examine the weight loss and chemical reactions occur during the heat treatment. Finally, the thermoluminescence (TL) measurements suggested luminescence stability of the powders at higher temperature. The part of our work has been published in Appl. Phys. Lett. [90, 151108 (2007)] and also we have filed a patent. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T02:00:27Z (GMT). No. of bitstreams: 1 ntu-96-R94223037-1.pdf: 7519322 bytes, checksum: 3e41a025bdf395c389bc66979e1ae26c (MD5) Previous issue date: 2007 | en |
dc.description.tableofcontents | 總目錄....................................................I
圖目錄...................................................VI 表目錄...................................................XI 第一章 緒論...............................................1 1.1光-豐富人生,世界更加絢麗與奇妙........................................................1 1.1.1發光之定義........................................................2 1.1.2發光之種類........................................................2 1.2視覺與顏色.............................................5 1.2.1視覺與形成過程.......................................5 1.2.2顏色之物理性質.......................................6 1.2.3 CIE色度座標(CIE chromaticity diagram) ..............7 1.2.4 RGB表色系統.........................................9 1.2.5色溫(color temperature) ............................10 1.2.6演色性(color rendering index) ......................12 1.2.7專有名詞............................................14 1.3人類照明之變革........................................14 1.3.1白熾燈泡............................................14 1.3.2鹵素燈泡............................................15 1.3.3日光燈..............................................15 1.3.4各種照明設備........................................17 1.4 LED之應用與未來發展趨勢..............................18 1.4.1 LED之照明應用......................................19 1.4.2 LED未來發展趨勢....................................21 1.5螢光粉發光上之應用....................................23 1.5.1霓虹燈..............................................23 1.5.2場發射顯示器........................................24 1.5.3真空螢光顯示器......................................25 1.5.4電激發光顯示器......................................26 1.5.5電漿顯示器..........................................27 1.5.6白光發光二極體(white light emitting diodes;WLEDs)..28 1.6發光二極體用之螢光粉..................................30 1.6.1螢光粉之發光原理....................................30 1.6.2主體晶格之選擇......................................32 1.6.3活化劑之選擇........................................33 1.6.4抑制劑之選擇........................................34 1.6.5稀土離子............................................34 1.7影響發光效率之因素與定則..............................36 1.7.1主體晶格效應(Host effect) ..........................37 1.7.2濃度淬滅效應(Concentration quenching effect) .......37 1.7.3熱消滅(Thermal quenching) ..........................38 1.7.4斯托克位移(Stokes shift)與卡薩定則(Kasha rule) .....39 1.7.5法蘭克-康頓原理(Franck-Condon Principle) ...........41 1.7.6能量傳遞(Energy transfer) ..........................42 1.8文獻與專利回顧........................................44 1.8.1磷酸鹽類發展歷史....................................46 1.8.2焦磷酸鹽............................................46 1.8.3鹼土磷酸鹽..........................................46 1.8.4稀土磷酸鹽..........................................47 1.8.5磷酸鹽類之文獻與專利回顧............................47 1.8.6磷酸鹽類之整理......................................50 1.8.7磷酸鹽類之結構整理..................................57 1.9本研究目的............................................64 第二章 樣品合成與儀器分析原理............................65 2.1 化學藥品.............................................65 2.2 樣品之製備...........................................66 2.2.1高溫固相反應製備發光材料............................66 2.2.2助熔劑法............................................68 2.2.3實驗流程............................................68 2.2.4 LiSr1-xPO4:Lnx (Ln = Eu, Tb, Sm)之合成.............69 2.2.5 KB1-xPO4:Lnx (B = Sr, Ba;Ln = Eu, Tb, Sm)之合成...70 2.3 樣品鑑定分析.........................................70 2.4粉末X-光繞射儀........................................71 2.4.1 X光基本原理........................................72 2.4.2繞射原理............................................73 2.4.3結構精算............................................74 2.4.4 XRD實驗儀器........................................77 2.5光激發光譜儀(Photoluminescence; PL) ..................78 2.5.1 PL實驗儀器.........................................80 2.6紫外可見光擴散式反射光譜(UV-Vis diffuse reflectance spectra; UV-VisDRS) .....................................82 2.6.1 固態粉體之吸收光譜.................................82 2.7掃描式電子顯微鏡(Scanning Electron Microscope; SEM) ..84 2.7.1工作原理............................................84 2.7.2 X-射線能量散佈分析儀(EDS) .........................85 2.8時間解析與靜態螢光光譜儀(time resolved and steady state fluorescence spectrometers) .............................86 2.9 熱螢光光譜儀(thermoluminescence; TL) ................86 第三章 結果與討論........................................87 3.1 LiSr1-xPO4:Lnx (Ln = Eu, Tb, Sm)特性分析.............88 3.1.1 LiSr1-xPO4:Lnx (Ln = Eu, Tb, Sm)之XRD結構鑑定與精算分析.......................................................88 3.1.2 LiSr1-xPO4:Lnx (Ln = Eu, Tb, Sm)之光譜與色度座標圖.94 3.1.3 LiSr1-xPO4:Lnx (Ln = Eu, Tb, Sm)之熱性質與活化能..105 3.2 KSrPO4:Ln (Ln = Eu, Tb, Sm)特性分析.................111 3.2.1 KSrPO4:Ln (Ln = Eu, Tb, Sm)晶體結構...............111 3.2.2 KSrPO4:Ln (Ln = Eu, Tb, Sm)光譜分析與放光機制.....117 3.2.3 KSrPO4:Ln (Ln = Eu, Tb, Sm)之濃度淬滅與臨界距離...123 3.2.4 KSrPO4:Ln(Ln = Eu, Tb, Sm)光致發光之衰減現象......125 3.2.5 KSrPO4:Ln (Ln = Eu, Tb, Sm)之表面型態分析.........128 3.2.6 KSrPO4:Ln (Ln = Eu, Tb, Sm)之熱螢光與波長位移.....131 3.3 KBaPO4:Ln (Ln = Eu, Tb, Sm)特性分析.................138 3.3.1 KBaPO4:Ln (Ln = Eu, Tb, Sm)晶體結構...............138 3.3.2 KBaPO4:Ln (Ln = Eu, Tb, Sm)光譜特性...............143 3.3.3 KBaPO4:Ln (Ln = Eu, Tb, Sm)熱螢光光譜分析.........149 3.4綜合整理.............................................152 3.4.1活化中心(Eu2+, Tb3+, Sm3+)之特性分析與發光機制.....152 3.4.2粉體搭配與色彩表現.................................157 第四章 結論.............................................158 參考文獻................................................160 圖目錄 圖1.1螢光棒發光原理.......................................4 圖1.2螢火蟲發光原理.......................................5 圖1.3視網膜結構圖.........................................6 圖1.4可見光光譜圖.........................................7 圖1.5三維CIE色度座標圖....................................8 圖1.6 RGB色彩立方體.......................................9 圖1.7 CIE色度座標圖上之黑體軌跡..........................10 圖1.8自然光與人工光之色溫度圖............................11 圖1.9螢光燈管之光譜分析圖................................16 圖1.10 LED作為汽車照明設備...............................20 圖1.11 LED室內外照明設備.................................21 圖1.12 LED技術發展趨勢與應用範圍.........................22 圖1.13場發射顯示器結構圖.................................25 圖1.14真空螢光顯示器結構圖...............................26 圖1.15電激發光顯示器結構圖...............................27 圖1.16電漿顯示器結構圖...................................28 圖1.17 LED內部結構圖.....................................29 圖1.18物質吸光與放光過程電子轉移路徑.....................31 圖1.19三價稀土元素之能階圖...............................36 圖1.20活化劑於主體晶格能量轉移示意圖.....................38 圖1.21淬滅溫度之曲線圖...................................39 圖1.22熱消滅之能階圖.....................................39 圖1.23螢光體之Stokes shift示意圖.........................40 圖1.24法蘭克-康頓原理之位能曲線示意......................42 圖1.25庫倫力作用導致之能量傳遞圖.........................43 圖1.26製作白光發光二極體之四種方法.......................45 圖2.1固態反應流程圖......................................69 圖2.2 X-光原理示意圖 (a)銅靶之1s電子游離形成電洞,2p電子填入並釋出X-光 (b)銅靶釋出之X-光光譜.......................73 圖2.3 X-光繞射示意圖.....................................74 圖2.4晶體繞射結構解析之一般流程..........................77 圖2.5 X-光粉末繞射儀(PANalytical X’Pert PRO XRD) .......78 圖2.6螢光體光譜量測過程..................................79 圖2.7光激發光譜儀構造....................................81 圖2.8光激發光譜儀(FluoroMax-3)儀器外觀...................81 圖2.9光吸收、反射、散射與穿透圖..........................82 圖2.12電子束與試片作用產生各種電子示意圖.................85 圖2.13熱螢光光譜儀器外觀.................................86 圖3.1 LiSr0.9PO4:Eu0.1之X-光粉末繞射結構精算圖...........90 圖3.2 LiSr0.9PO4:Tb0.1之X-光粉末繞射結構精算圖...........91 圖3.3 LiSr0.9PO4:Sm0.1之X-光粉末繞射結構精算圖...........92 圖3.4 LiSrPO4結構示意圖,(a)c軸方向之a,b軸剖面圖;(b)b軸方向之a,c軸剖面圖..........................................93 圖3.5 LiSrPO4原子結構示意圖,(a)c軸方向之a,b軸剖面圖;(b)b軸方向之a,c軸剖面圖......................................93 圖3.6稀土離子f-d能階躍遷受晶格場與電子雲影響之示意圖.....96 圖3.7 LiSr1-xPO4:Eux不同摻雜濃度之激發與發射光譜圖......100 圖3.8 LiSr1-xPO4:Eux不同摻雜濃度與螢光強度關係圖,內圖:濃度衰減效應示意圖........................................100 圖3.9 LiSr1-xPO4:Tbx不同摻雜濃度之激發光譜圖............101 圖3.10 LiSr1-xPO4:Tbx不同摻雜濃度之發射光譜圖...........101 圖3.11 LiSr1-xPO4:Tbx不同摻雜濃度之擴散式反射光譜圖.....102 圖3.12 LiSr1-xPO4:Smx不同摻雜濃度之激發光譜圖...........102 圖3.13 LiSr1-xPO4:Smx不同摻雜濃度之發射光譜圖...........103 圖3.14 LiSr1-xPO4:Smx不同摻雜濃度與螢光強度關係圖.......103 圖3.15 LiSr1-xPO4:Lnx (Ln = Eu, Tb, Sm)不同摻雜濃度之色度座標圖....................................................104 圖3.16 LiSr0.93PO4:Eu0.07樣品之熱螢光光譜圖.............106 圖3.17基態能階與激發態能階構成之結構座標圖..............107 圖3.18 LiSr0.95PO4:Tb0.05樣品之熱螢光光譜圖.............109 圖3.19 LiSr0.99PO4:Sm0.01樣品之熱螢光光譜圖.............109 圖3.20 LiSr1-xPO4:Lnx (Ln = Eu, Tb, Sm)樣品之活化能示意圖......................................................110 圖3.21 KSr1-xPO4:Eux (x = 0∼0.010)之XRD圖譜............113 圖3.22 KSr1-xPO4:Tbx (x = 0∼0.15)之XRD圖譜,其中*表SrO2雜相之繞射峰..............................................114 圖3.23 KSr1-xPO4:Smx (x = 0∼0.10)之XRD圖譜.............115 圖3.24 KSrPO4之晶體結構圖...............................116 圖3.25 KSr1-xPO4:Eux (x = 0∼0.010)之PL光譜圖...........119 圖3.26 KSr1-xPO4:Eux (x = 0∼0.010)之擴散式反射光譜圖...119 圖3.27 KSr1-xPO4:Tbx不同摻雜濃度之激發光譜圖............120 圖3.28 KSr1-xPO4:Tbx不同摻雜濃度之發射光譜圖............120 圖3.29 KSr1-xPO4:Smx不同摻雜濃度之激發光譜圖............121 圖3.30 KSr1-xPO4:Smx不同摻雜濃度之發射光譜圖............121 圖3.31 KSr1-xPO4:Lnx (Ln = Eu, Tb, Sm)之色度座標圖......122 圖3.32KSr1-xPO4:Lnx (Ln = Eu, Tb, Sm)摻雜濃度與放射強度變化之關係圖................................................124 圖3.33 KSr1-xPO4:Eux之發光強度衰減曲線圖................126 圖3.34 KSr1-xPO4:Tbx之發光強度衰減曲線圖................127 圖3.35 KSr1-xPO4:Smx之發光強度衰減曲線圖................127 圖3.36固態法合成KSrPO4:Ln螢光粉之SEM圖,(a)Ln = Eu2+;(b)Ln = Tb3+;(c)Ln = Sm3+.................................129 圖3.37 KSr0.995PO4:Eu0.0052+之粒徑分布圖................130 圖3.38 KSrPO4之EDX圖....................................130 圖3.39 KSr0.995PO4:Eu0.0052+溫度與其放光波長位置圖......132 圖3.40高低溫時,其分裂之激發光譜能量轉移與放光之相應圖..132 圖3.41 KSr0.995PO4:Eu0.005樣品之熱螢光光譜圖............133 圖3.42非輻射轉移基態能階與激發態能階構成之結構座標圖,(a)強偶合, S>5;(b)弱偶合, S<1;(c)中間偶合,1<S<5........135 圖3.43 KSr0.93PO4:Tb0.07樣品之熱螢光光譜圖..............136 圖3.44 KSr0.99PO4:Sm0.01樣品之熱螢光光譜圖..............136 圖3.45 KSr1-xPO4:Lnx (Ln = Eu, Tb, Sm)樣品之活化能示意圖137 圖3.46 KBa1-xPO4:Eux (x = 0∼0.01)之XRD圖譜.............139 圖3.47 KBa1-xPO4:Tbx (x = 0∼0.4)之XRD圖譜,其中*表BaO金屬氧化物之繞射峰..........................................140 圖3.48 KBa1-xPO4:Smx (x = 0∼0.1)之XRD圖譜,其中*表BaO金屬氧化物之繞射峰..........................................141 圖3.49 KBaPO4之晶體結構圖...............................142 圖3.50 KBa1-xPO4:Eux (x = 0.001∼0.010)之激發光譜.......145 圖3.51 KBa1-xPO4:Eux (x = 0.001∼0.010)之發射光譜.......145 圖3.52 KBa1-xPO4:Tbx (x = 0.05∼0.40)之激發光譜.........146 圖3.53 KBa1-xPO4:Tbx (x = 0.05∼0.40)之發射光譜.........146 圖3.54 KBa1-xPO4:Smx (x = 0.005∼0.1)之激發光譜.........147 圖3.55 KBa1-xPO4:Smx (x = 0.005∼0.1)之發射光譜.........147 圖3.56 KBa1-xPO4:Lnx (Ln = Eu, Tb, Sm)之色度座標圖......148 圖3.57 KBa0.995PO4:Eu0.005樣品之熱螢光光譜圖............150 圖3.58 KBa0.7PO4:Tb0.3樣品之熱螢光光譜圖................150 圖3.59 KBa0.993PO4:Sm0.007樣品之熱螢光光譜圖............151 圖3.60 KBa1-xPO4:Lnx (Ln = Eu, Tb, Sm)樣品之活化能示意圖151 圖3.61各活化中心之能階示意圖............................152 圖3.62 ABPO4:Eu之推測放光機制圖.........................154 圖3.63 ABPO4:Eu之發射光譜圖.............................155 圖3.64 ABPO4:Tb之發射光譜圖.............................156 圖3.65 ABPO4:Sm之發射光譜圖.............................156 圖3.66 KSrPO4:Ln (Ln = Eu, Tb, Sm)之粉體調光原理示意圖..157 表目錄 表1-1 不同環境下之相關色溫度.............................12 表1-2 平均演色評價指數(Ra之數值) ........................13 表1-3 白光LED、日光燈與白熾燈泡之比較....................17 表1-4 各國發展白光LED之技術動向..........................23 表1-5 螢光體主體之陽離子示意圖...........................32 表1-6 螢光體主體之陰離子示意圖...........................33 表1-7 活化劑之陽離子示意圖...............................33 表1-8 抑制劑之陽離子示意圖...............................34 表2-1本研究所使用之藥品清單..............................65 表2-2 一般X光所使用金屬靶之波長..........................71 表3-1 LiSr0.9PO4:Eu0.1之各項原子結構參數.................90 表3-2 LiSr0.9PO4:Tb0.1之各項原子結構參數.................91 表3-3 LiSr0.9PO4:Sm0.1之各項原子結構參數.................92 表3-4 LiSr1-xPO4:Lnx (Ln = Eu, Tb, Sm)之色度座標位置....104 表3-5 ABPO4:Eu (A = Li, K;B = Sr, Ba)之光學性質........155 | |
dc.language.iso | zh-TW | |
dc.title | 發光二極體激發之磷酸鹽類螢光粉合成及其特性研究 | zh_TW |
dc.title | Synthesis and Investigation of Phosphate Phosphors
for Light Emitting Diodes | en |
dc.type | Thesis | |
dc.date.schoolyear | 95-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 黃良平,陶雨台,翁炳志 | |
dc.subject.keyword | 螢光粉,磷酸鹽類,白光發光二極體, | zh_TW |
dc.subject.keyword | phosphor,phosphate,white light emitting diodes, | en |
dc.relation.page | 163 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2007-07-10 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 化學研究所 | zh_TW |
顯示於系所單位: | 化學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-96-1.pdf 目前未授權公開取用 | 7.34 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。