請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30270
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 李枝宏(Ju-Hong Lee) | |
dc.contributor.author | Hung-Chi Chen | en |
dc.contributor.author | 陳鴻基 | zh_TW |
dc.date.accessioned | 2021-06-13T01:47:57Z | - |
dc.date.available | 2007-07-23 | |
dc.date.copyright | 2007-07-23 | |
dc.date.issued | 2007 | |
dc.date.submitted | 2007-07-10 | |
dc.identifier.citation | 參考文獻
[1] J.S.Lim,Two-Dimensional Signal and Image Processing,Englewood Cliffs, NJ: Prentice-Hall,1990 [2] J.R. Boddie,”Digital Signal Processor Overview : the device,support facilitieds and applications”,Bell system Tech. J.,pp.1431-1439,1981 [3] A.I. Zverev,”Digital MTI rader filters”,IEEE Trans. Audio and Electroacoustics, pp.422-432,Sept. 1968 [4] M.D. Carte and O.Cerofolini,”Application of a digital filters to biomedical signals”, Med. Biol.Engg.,pp.374-377,1974 [5] M.G. Bellanger and J.L.Daguet,”TDM-FDM transmultiplexer : digital polyphase and FFT”,IEEE Trans. Commun.,vol. COM-22,pp.1199-1204,Sept. 1974 [6] F.S.Hiller and G.J. Lieberman,INTRODUCTION TO MATHEMATICAL PROGRAMMING, New York : McGraw-Hill,1991 [7] P.P. Vaidyanathan,Multirate Systems and Filter Banks.Englewood Cliffs,NJ : Prentice Hall,1993 [8] M.Vetterli,”Multidimensional sub-band coding: some theory and algorithms”,Signal Processing,vol.6,pp.97-112,1984 [9] D.Esteban and C. Galand,”Application of quadrature mirror filter to split-band voice coding schemes”,Proc. IEEE int. Conf. Acoust.,Speech,Signal Processing, Hartford,CT,USA,pp.191-195,May 1977. [10] Renfors,M.,and Saramaki,T.,”Recursive Nth band digital filters,Part I and II”,IEEE Trans. on Circuits and Systems, vol.CAS-34,pp.24-51,Jan.1987. [11] P.Vary and U. Heute,”A short-time spectrum analyzer with polyphase network and DFT”,Signal Processing,vol.2,1980,pp.55-65 [12] Y.C. Lim, J.H. Lee, C.K. Chen, and R.H. Yang, “A weighted least squares algorithm for quasi-equiripple FIR and IIR digital filter design”, IEEE Trans. Signal Processing, vol. AASP-40, pp. 551-558, Mar. 1992. [13] D.E. Goldberg,Genetic Algorithms in Search,Optimuzation and Machine Learning. Reading,MA:Addison-Wesley,1989 [14] A.Lee,M.Ahmadi,et al. “Digital Filter Design Using Genetic Algorithm”,Proc. Of 1998 IEEE Symp. On Advances in Digital Filtering and Signal Processing,pp. 34-38,June 1998. [15] A.Y. Wu and C.S. Wu,”A Unified View for Vector Rotational CORDIC Algorithms and Architectures Based on Angle Quantization Approach”, IEEE Trans. Circuits syst.I ,vol. 49,pp.1442-1456,Oct.2002. [16] C.S. Wu and A.Y. Wu,”A new trellis based searching scheme for EEAS-based CORDIC algorithm”,in Proc.IEEE Int. Conf.Acoust.Speech,Signal processing, vol.2,Salt Lake City,UT,2001,pp.1229-1232 [17] J. H. Lee and D. C. Tang,”Minimax design of two channel nonumiform-division FIR filter banks”, IEE Proc. –Vis. Image Signal Process., Vol.145, No. 2 pp. 88-96, April 1998. [18] 唐鼎強, “具有連續值與離散值係數的二維濾波器與一維濾波器組之最佳設計”, 台灣大學電信工程研究所碩士論文, 1998. [19] P.P. Vaidyanathan, P. Regalia and S.K. Mitra, 'Design of Doubly Complementary IIR Digital Filters Using a Single Complex All-Pass Filter, with Multirate Applications', IEEE Trans. Circuits and Syst., vol. 34, no. 4, pp. 378-389, April 1987. [20] A. H. Gray, J. D. Markel,” Digital Lattice and Ladder Filter Synthesis”, IEEE Transactions on Audio and Eledtroacoustics,Vol. AU-21, No. 6, pp. 491-500, December 1973. [21] M.R. Osborne and G.A. Watson,”An algorithm for minimax approximation in the nonlinear case”, Comput. J.,vol.12,pp.63-68,1969. [22] J.A. Nelder and R. Mead, “Combined LP and Quasi-Newton methods for minimax optimization”, Math. Programming, pp. 49-62, 1981. [23] 楊元豪,”基於L-infinite準則之無限脈衝響應全通濾波器與濾波器組之最佳化設計”,台灣大學電信工程研究所碩士論文,2002 [24] 鄭才旭,”具有離散化係數之無限脈衝響應數位濾波器與濾波器組之最小尖波設計”,台灣大學電信工程研究所碩士論文,2006 [25] J. H. Lee and Y. H. Yang , ”Minimax Design of Two-Channel Nonuniform -Division Filterbanks Using IIR Allpass Filters ”,IEEE Trans. Signal Processing ,vol.52, pp. 3227-3240,Nov. 2004 [26] Sang Yoon Park and Nam Ik Cho,”Design of Multiplierless Lattice QMF: Structure and Algorithm Development” ,IEEE Trans. On Circuits and Systems-II: Express Briefs, Dec. 2006 [27] Sang Yoon Park and Nam Ik Cho,”Design of Perfect Reconstruction QMF Lattice with Signed Powers of Two Coefficients Using CORDIC Algorithm” ,IEEE ICASSP, pp. 565-568, 2005 [28] 陳常侃, “數位濾波器及數位濾波器組之最佳設計”, 台灣大學電機研究所博士論文, 1994. [29] A.V. Oppenheim and R. W. Schafer,Discrete Time Signal Processing, Englewood Cliffs,NJ:Prentice-Hall,2nd edition,1999 [30] P. P. Vaidyanathan, Multirate Systems and Filter Banks, Englewood Cliffs,New Jersey:Prentice-Hall,1993. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30270 | - |
dc.description.abstract | 正交鏡像濾波器組被廣範的使用在複速率系統,它能將輸入訊號分解成數個相等頻寬的次頻帶訊號。但因人類的知覺,例如聽覺和視覺,敏感度並不是均勻的分布於頻帶上,因此非均勻濾波器組在杲些方面的應用要重要於正交鏡像濾波器組。在本篇論文中,我們會專注於這兩種架構濾波器組的研究。
CORDIC演算法是一套執行角度量化的方法,它能夠在角度空間中量化係數,比起係數空間來得更緊密。此外,CORDIC演算法所量化的係數,可以被表示成2的次方項係數的形式。另外,該演算法已達成高速率和低複雜度的VLSI電路實現,不須要用到乘法器,僅須移位器、多工器和加法器。基於上述的理由,我們提出CORDIC演算法用來達成理想化的設計。我們也提出了WLS演算法結合CORDIC演算法以及基於CORDIC架構下的基因演算來做設計。 上述這些演算法的設計結果,均近似於連續係數演算法所設計出的結果。一些設計參數甚至較連續係數演算法的結果要好。我們証明了此演算法值得在更進一步的設計中採用。 | zh_TW |
dc.description.abstract | Quadrature Mirror Filter banks is widely used in multirate system. It can divid input signal into several subband signals. Owing to human sense, like sense of hearing , sense of sight, is not uniformly distributed in frequency, Non-uniform Division Filter banks is even more important than QMF in some aspects. In this thesis, we focus on both structure of filter banks.
CORDIC algorithm is an approach to perform angle quantization. It can quantize coefficients in angle space which is denser than coefficient space. Besides, coefficients quantized by CORDIC algorithm can be represented in signed power of two form. In addition, the algorithm can be realized high speed and low complexity VLSI circuits, without using multiplier, need only shifter, multiplexer and adder. For these reasons, we propose CORDIC algorithm for optimal design. We also combine WLS algorithm and CORDIC algorithm or use genetic algorithm based on CORDIC algorithm. The results designed by these kinds of algorithm approximate to the results designed by continuous coefficient algorithm. Some design parameters are even better than later. We prove these algorithm which is worthy for further application. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T01:47:57Z (GMT). No. of bitstreams: 1 ntu-96-J94921027-1.pdf: 12642295 bytes, checksum: 5dd2c4aeecb7d5bb8fd444f3012bc458 (MD5) Previous issue date: 2007 | en |
dc.description.tableofcontents | 目錄
1緒論……………………………………………………………1 1.1研究動機……………………………………………………1 1.2組織架構……………………………………………………2 2最佳化問題與演算法…………………………………………3 2.1最佳化問題數學模型………………………………………3 2.2WLS演算法…………………………………………………4 2.3基因演算法…………………………………………………6 2.4CORDIC演算法………………………………………………10 3基於2的次方項係數一維FIR非均勻濾波器組設計…………14 3.1簡介…………………………………………………………14 3.2二頻帶非均勻濾波器組之架構介紹………………………14 3.3二頻帶非均勻濾波器組之理論分析………………………16 3.4基於L2準則CORDIC演算法之設計…………………………20 3.5基於L 準則WLS演算法結合CORDIC演算法之設計…………24 3.6設計實例與結果討論………………………………………25 4基於2的次方項係數IIR一維全通濾波器之正交鏡像濾波器組設計41 4.1簡介…………………………………………………………41 4.2正交鏡像濾波器組之架構介紹……………………………42 4.3正交鏡像濾波器組之理論分析……………………………43 4.4基於L 準則格狀架構之設計………………………………45 4.4.1CORDIC架構下基因演算法之設計………………………45 4.4.2WLS演算法結合CORDIC演算法之設計…………………49 4.5基於L 準則直接式架構之設計……………………………53 4.5.1CORDIC架構下基因演算法之設計………………………53 4.6設計實例與結果討論………………………………………53 5基於2的次方項係數IIR一維全通濾波器之非均勻濾波器組設計…89 5.1簡介…………………………………………………………89 5.2非均勻濾波器組之理論分析………………………………89 5.3基於L 準則格狀架構之設計………………………………92 5.3.1CORDIC架構下基因演算法之設計………………………92 5.3.2WLS演算法結合CORDIC演算法之設計…………………93 5.4基於L 準則直接式架構之設計……………………………99 5.4.1CORDIC架構下基因演算法之設計………………………99 5.5CORDIC架構下之GEEAS設計………………………………99 5.6設計實例與結果討論……………………………………100 6結論…………………………………………………………138 參考文獻………………………………………………………140 | |
dc.language.iso | zh-TW | |
dc.title | 具有2的次方項係數之FIR和IIR數位濾波器組最佳化設計 | zh_TW |
dc.title | Optimal Design of FIR and IIR Digital Filter Banks with Signed Power of Two coefficients | en |
dc.type | Thesis | |
dc.date.schoolyear | 95-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 貝蘇章(Soo-Chang Pei),馮世邁(See-May Phoong) | |
dc.subject.keyword | 非均勻濾波器組,正交鏡像濾波器組,CORDIC演算法, | zh_TW |
dc.subject.keyword | NDF,QMF,CORDIC algorithm,GA, | en |
dc.relation.page | 142 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2007-07-10 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 電機工程學研究所 | zh_TW |
顯示於系所單位: | 電機工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-96-1.pdf 目前未授權公開取用 | 12.35 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。