Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30261
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 廖運炫(Yunn-Shiuan Liao) | |
dc.contributor.author | Ming-Yi Tsai | en |
dc.contributor.author | 蔡明義 | zh_TW |
dc.date.accessioned | 2021-06-13T01:47:20Z | - |
dc.date.available | 2007-07-16 | |
dc.date.copyright | 2007-07-16 | |
dc.date.issued | 2007 | |
dc.date.submitted | 2007-07-09 | |
dc.identifier.citation | 1. P. V. Zant, Microchip Fabrication, McGraw-Hill Companies, 2000.
2. 莊達人,VLSI製程技術,高立圖書股份有限公司,1994年。 3. 羅正明與張鼎張,半導體製程技術導論,歐亞圖書股份有限公司,2001年。 4. 土肥俊郎,半導體平坦化CMP技術,全華科技圖書股份有限公司,2000年6月再版。 5. 鄭宗南,90奈米與65奈米技術節點平面化的挑戰, 電子月刊,9 月份,154-159頁,2003年。 6. C. L. Hsu, W. C. Su, and C. C. Huang, Copper Surface Roughness Management for Optimal Copper Chemical Mechanical Polishing Performance in 65nm Technology Node and beyond, CMP-MIC Conference, pp.311-314, 2005. 7. R. K. Singh, M. Dufourg, K. S. Choi and D. Singh, Novel Slurry Formulation for Low Stress Chemical Mechanical Polishing of Copper/Ultra Low K films, VMIC Conference, pp.293-298, 2004. 8. M. Tsujimura, and A. Fukunaga, General Principal of Planarization Governing CMP, ECP, ECMP and CE Low-Down-Force Planarization Technologies, VMIC Conference, pp.267-276, 2004. 9. L. G. Chen, H. H. Lu, W. C. Chiou, Y. H. Chen, S. M. Jeng, C. H. Yu and M. S. Liang, Shear Force Study of Low-k/Cu CMP for 65 nm Generation and Beyond, CMP-MIC Conference, pp.431-435, 2005. 10. J. M. Steigerwald, S. P. M.urarka and R. J. Gutmann, Chemical Mechanical Planarization of Microelectronic Materials, J. Wiley & Sons, NY, pp.84, 1997. 11. Ali, Iqbal, Roy, Sudipto, Pad Conditioning in Interlayer Dielectric CMP, Solid State Technology, Vol. 40, Issue 6, pp.39-46, 1997. 12. K. Achuthan, J. Curry, M. Lacy, D. Campbell, and S. V. Babu, Investigation of Pad Deformation and Conditioning During the CMP of Silicon Dioxide Films, Journal of Electronic Materials, Vol. 25, pp.10-16, 1996. 13. H. Liang, F. Kaufman, R. Sevilla and S. Anjur, Wear Phenomena in Chemical Mechanical Polishing, Wear, 211, pp.271-279, 1997. 14. W. Li, D. W. Shin, M. Tomozawa, S. P. Murarka, the Effect of the Polishing Pad Treatments on the Chemical Mechanical Polishing of SiO2 Films, Thin Solid Films, pp.601-606, 1995. 15. Y. Y. Zhou, E. C. Davis, Variation of Polish Pad Shape During Pad Dressing, Materials Science and Engineering, B68 pp.91-98, 1999. 16. H. Lu, Y. Obeng, K.A. Richardson, Applicability of Dynamic Mechanical Analysis for CMP Polyurethane Pad Studies, Materials Characterization, 49, pp.177-186, 2003. 17. H. Lu, B. Fookes, Y. Obeng, S. Machmski, K.A. Richardson, Quantitative Analysis of Physical and Chemical Changes in CMP Polyurethane Pad Surfaces, Materials Characterization, pp.35-44, 2002. 18. B. Mullany, G. Byrne, M. Power, the Effect of Polishing Pad Conditioning on the Planarisation Capability of the Chemical Mechanical Polishing Process, CMP-MIC Conference, February, pp.11-12, 1999. 19. D. H. Lee, D. J. Kwon, A 3D Numerical Study of the Polishing Behavior During an Oxide Chemical Mechanical Planarization Process, Key Engineering Materials, pp.433-440, 2004. 20. Y. Xie, B. Bhushan, Effect of Particle Size, Polishing Pad and Contact Pressure in Free Abrasive Polishing, Wear, pp.281-295, 1996. 21. D. Stein, D. Hetherington, M. Dugger, and T. Stout, Optical Interferometry for Surface Measurements of CMP Pads, Journal of Electronic Materials, Vol. 25, pp.1623-1627, 1996. 22. M. R. Oliver, R. E. Schmidt and M. Robinson, CMP Pad Surface Roughness and CMP Removal Rate, Proceeding of the Fourth International Symposium on Chemical Mechanical Planarisation, pp.77-83, 2000. 23. H. Kim, H. Jeong, E. Lee and Y.Shin, Pad Surface Characterization and its Effect on the Tribological State in Chemical Mechanical Polishing, Key Engineering Materials, pp.283-388, 2004. 24. J. McGrath, C. Davis, Polishing Pad Surface Characterization in Chemical Mechanical Planarisation, Journal of Materials Processing Technology, pp. 666-673, 2004. 25. 楊琦婷,化學機械研磨中鑽石修整器磨耗之研究,國立台灣大學機械工程學碩士論文,2002年。 26. 洪珮文,化學機械研磨中鑽石修整器特性之研究,國立台灣大學機械工程學研究所碩士論文,2002年。 27. J. Zimmer, A. Stubbmann, Key Factors Influencing Performance Consistency of CMP Pad Conditioners, NCCAVS CMP ’98 Symposium, pp.87-92, 1998. 28. C. C. Garretson, S. T. Mear, J. P. Rudd, G. Prabhu, T. Osterheld, D. Flynn, New Pad Conditioning Disk Design Delivers Excellent Process Performance While Increasing CMP Productivity, CMP-MIC Conference, pp.N1-N5, 2000. 29. G. Prabhu, D. Flynn, S. Kumaraswamy, S. Qamar, T. Namola, Pad Life Optimization by Characterization of a Fundamental Pad Disk Interaction Property , CMP-MIC Conference, pp.169-175, 2000. 30. 左培倫與何碩洋,化學機械拋光中修整參數對拋光墊特性影響之研究,機械月刊第二十八卷第九期,38-53頁,2002年。 31. 徐振貴,矽晶圓化學機械拋光之拋光墊修整加工特性研究,淡江大學機械工程學系碩士論文,2001年。 32. C. T. Wang, W. Yueh, Cutting Effect of Diamond Disk Conditioner in CMP, CMP-MIC Conference, February, pp.11-12, 1999. 33. J. Z. Zheng, V. Huang, F. Chen, and B. B. Zhou, Optimization of Pad Conditioning for Stable Oxide CMP Process, CMP-MIC Conference, February 13-14, pp.315-320, 1997. 34. A. S. Lawing, Pad Conditioning and Removal Rate in Oixde Chemical Mechanical Polishing, CMP-MIC Conference, February, pp. 310-317, 2002. 35. A. S. Lawing, Pad Conditioning and Textural effects in Chemical Mechanical Polishing, CMP-MIC Conference, February 23-25, pp.33-42, 2005. 36. A. R. Baker, Conditioning for Removal Rate Stability, CMP-MIC Conference, February 13, pp.1-4, 1997. 37. J. Sung, Y. L. Pai, CMP Pad Dresser:A Diamond Grid Solution, Proceedings of the Society of Grinding Engineers, pp.189-196, 2000. 38. 譚安宏、鄭穎駿、李正國、周呈祥與宋健民,鑽石修整器在化學機械拋光溶液中之腐蝕研究,防蝕工程,20卷2期,163-168頁,2006年。 39. 宋健民,鑽石修整器-化學機械平坦化的催生者, 機械工業雜誌,134-145頁,2001年。 40. 魏昕、熊偉、黃蕊慰與袁慧,化學機械拋光中拋光墊的研究,中國大陸,金剛石與磨料磨具工程, 5期,40-43頁,2004年。 41. Z. Stavreva, D. Zeidler, M. Plötner, K. Drescher, Characteristics in chemical-mechanical polishing of copper: Comparison of polishing pads, Applied Surface Science Volume 108, January, pp.39-44, 1997. 42. 顏明雄、張昌榮,聚氨基甲酸酯(PU)之組成構造對其成型薄膜及加工織物物性之影響,化工技術第13卷第3期,167-182頁,2005年。 43. T. Fujita, M. Ishikura, N. Kawai, O. Kinoshita, and Y. Morioka, Break-in Pad Surface Analysis with FTIR and Ramam Scattering Spectroscopy, CMP-MIC Conference, February 23-25, pp.452-459, 2005. 44. G. P. Muldowney, A. R. Group, Optimization of CMP Pad Groove Arrays for Improved Slurry Transport, Wafer Profile Correction and Defectivity Reduction, CMP-MIC Conference, February 23-25, pp.156-167, 2005. 45. L. M. Cook, Chemical Process in Glass Polishing, Journal of Non-Crystalline Solids 120, pp.152-171, 1990. 46. F. B. Kaufman, D. B. Thmpson, R. E. Broadie, M. A. Jaso, W. L. Guthrie, D. J. Pearson and M. B. Small, Chemical Mechanical Polishing for Fabricating Patterned with Metal Feature as Chip Interconnects, Journal of Electrochemical Society, Vol. 138, No. 11, November, 1991. 47. 蔡明蒔,拋光液之化學性質在鋁合金化學機械拋光過程中所扮演角色,毫微米元件實驗室通訊,23-28頁,1996年。 48. L. G. Wade, JR., Organic Chemistry, Pearson Education Inc., pp.490-510, 1995. 49. K. P. Menard, Dynamic Mechanical Analysis, Boca Raton London, New York, pp55-64, 1999. 50. 韓錦鈴,動態機械分析與高分子之黏彈性,化工技術第5卷第2期, 100-107頁,1997年。 51. B. Bhushan, Principles and Applications of Tribology, J. Wiley & Sons, New York, 1999. 52. J. C. Sung, H. Ishizuka, M. Y. Tsai, M. Sung, PCD Pad Conditioners for Electrolytic Chemical mechanical Planarization of Integrated Circuit with Nodes of 45nm and Smaller, 2nd International Industrial Diamond Conference, pp.161-175, 2007. 53. 宋健民,超硬材料,全華科技圖書股份有限公司,第6章,9-12頁,2001年。 54. M. C. Shaw, Metal Cutting Principles, Oxford Univ. Press New Pork, 1984. 55. E. Georage, Mechanical Metallurgy, McGraw-Hill, Inc., New York, pp. 295-299, 2000. 56. 趙弘文,化學機械研磨中單顆鑽石於研磨墊上作用之探討,國立台灣大學碩士論文,2003年。 57. R. C. Hibbeler, Mechanicals of Materials, Prentice Hall International Inc., pp.117-122, 2000. 58. S. R. Runnels and L. M. Eyman, Tribology Analysis of Chemical Polishing, Journal of Electrochemical Society, vol. 141, pp1698-1701, 1994. 59. M. Tomozawa, Oxide CMP mechanisms, Solid State Technology, July pp. 169-175, 1997. 60. T. S. Eyre, Wear Characteristics of Metals, Tribology International, 10, pp 203-212, 1976. 61. 劉柏村,低介電常數材料檢測技術之簡介,電子月刊第8卷第6期,134-144頁,2002年。 62. I.M. Ward and D.W. Hadley, An Introduction to the Mechanical Properties of Solid Polymers, New York, J. Wiley & Sons, 1996. 63. 謝國煌、陳原振、曾勝茂,動態機械分析儀之應用分析,科儀新知第十八卷四期,32-38頁,1998年2月份。 64. Rabinwicz, Friction and Wear of Materials, John Wiley & Sons, pp. 193, 1995. 65. R. V. Singh, Novel Slurry Formulation for Low Stress Chemical Mechanical Polishing of Copper/Ultra Low of Films, VMIC Conference, pp.293-296, 2004. 66. D. Lamb, C. Forrestal, K. Pierce, J. Cianciolo, T. Dunn, Characterization of a Noval Rotary Pad Technology for CMP Application, VMIC Conference, pp.328-333, 2004. 67. 宋健民,多晶鑽石刨平器:拋光墊的精密修整及硬度材料的延性切削,機械工業雜誌,122-130頁,2005年5月。 68. H. Ishizuka, J. C. Sung, M. Y. Tsai, PCD Planers for Dressing CMP Pads: the Enabling Technology for Manufacturing Future Moor’s Law Semiconductors, CMP-MIC Conference, February, pp.291-298, 2007. 69. 范光照、張郭益,精密量測,高立圖書股份有限公司,2002年。 70. J. E. Shigley and C. R. Mischke, Mechanical Engineering Design, McGraw-Hill, Inc., New York, 1995. 71. B.J. Hooper, G. Byrne and S. Galligan, Pad Conditioning in Chemical Mechanical Polishing, Journal of Materials Process Technology, 123, pp.107-113, 2002. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30261 | - |
dc.description.abstract | 化學機械拋光是半導體製程中不可或缺的關鍵技術,為了讓化學機械拋光製程穩定且持續進行及維持晶圓品質,拋光墊必須適當的以鑽石修整器來進行修整,以恢復其表面形貌與特性。本研究從最基本現象開始了解,首先以單顆鑽石於拋光墊表面進行刮削實驗,研究過程中,改變不同鑽石方位、修整參數及修整路徑,探討其對拋光墊表面形貌的影響。結果顯示鑽石方位對拋光墊表面形貌有顯著的影響,修整後材料會於溝槽兩旁堆積而形成隆起現象。面部朝下之鑽石修整後之拋光墊材料的變形模式以犁削為主。而尖點朝下之鑽石修整後之拋光墊材料的變形模式以切削為主。當改變不同修整參數及修整路徑時,亦發現尖點朝下之鑽石修整後之拋光墊表面隆起變動最為平緩。因此尖點朝下之鑽石的切削能力最佳且隆起的變動亦最小,最適合推薦用於鑽石修整器。實驗亦發現溝槽深度遠低於刺入深度,意味著在修整過程中,拋光墊存在有極大的材料回彈。
文中亦探討隆起高度隨拋光時間累積的變化及其對於晶片移除率的影響,結果顯示晶片移除率首先會隨著刺入深度增加而逐漸增加,但是當刺入深度超過某一臨界值時,晶片移除率有逐漸下降的趨勢。而尖點朝下之鑽石修整後之晶片拋光率隨著刺入深度增加的變動量最為平緩。此外過多的隆起材料不易被拋光行為所去除,導致少許的隆起材料殘留於拋光墊表面,其亦導致晶片移除率的下降。因此若希望不要於拋光墊表面殘留隆起材料及可產生較高且穩定的晶片移除率,尖點朝下之鑽石比較合乎要求。 由於尖點朝下之鑽石是適合推薦用於鑽石修整器,文中亦使用鑽石尖峰在同一高度且形狀相同之鑽石修整器(ADD)來修整拋光墊,探討於修整過程中之拋光墊表面特性,並且與傳統的鑽石修整器(DG)作一比較。結果顯示ADD修整後之拋光墊表面較平整、均勻且修整率較低,但是達到拋光墊穩定的表面粗糙度之時間並不遜於DG。另外ADD修整後之晶片拋光率較高且拋光墊消耗量較少,並且晶片拋光率隨拋光時間增加而下降之變動幅度亦較小,是未來值得推薦的鑽石修整器。 | zh_TW |
dc.description.abstract | The wafer performance is often determined by the texture of the pad surface which is controlled by a diamond pad conditioner in the CMP process. In the thesis, the fundamental characteristics of dressing action on the polyurethane pad are investigated first via dressing by single diamond of different orientations, under various dressing parameters and dressing path. Experimental results show that a groove with pile-up on both side walls forms as the diamond moves over the pad. Plowing is found to be the major mechanism responsible for this surface topology if dressing is conducted by the face of a diamond. On the contrary, cutting action dominates when the point of a diamond is responsible for dressing. The depth of the groove is smaller than the dressing depth due to the spring back of the pad. There is less variation of ridge with the dressing depth and dressing path for point dressing. These results imply that the use of point dressing is recommended.
The second part of the thesis study the effects of ridges on the polishing rates of silicon dioxide are investigated. Experimental results reveal that there exists an optimal dressing depth. Below this value, the polishing rate decreases with the reduction of the dressing depth. Above this value, the polishing rate saturates and then decreases gradually. The use of point dressing is beneficial since it results in a higher but less variation polishing rate. As a result, the point dressing is recommended to the design of diamond pad conditioner. Finally dressed by a novel advanced diamond disk (ADD) containing the same height and identically shaped tip diamond are studied. They are compared those dressed by with conventional diamond disk (DG). Experimental results demonstrate that the ADD can dress asperities of the pad more uniformly than the DG. The dressing rate of the ADD is reduced by about 30% and the pad is less worn during the polishing process, and hence the pad life is extended. As a result, reduction of the cost CMP is expected. The polishing rate of the ADD is higher than that of the DG. There is less variation of polishing rate with the polishing time for ADD as compared with that of DG. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T01:47:20Z (GMT). No. of bitstreams: 1 ntu-96-D91522004-1.pdf: 4956088 bytes, checksum: c6f43c11a83e0de9a508e4d41c64ca27 (MD5) Previous issue date: 2007 | en |
dc.description.tableofcontents | 中文摘要 I
英文摘要 II 目錄 III 圖目錄 VI 符號說明 XI 第壹章、導論 1 1.1研究動機 1 1.2文獻回顧 3 1.3研究目的與方法 8 1.4論文架構 9 第貳章、化學機械拋光相關理論 11 2.1化學機械拋光需求性 11 2.2化學機械拋光基本原理 12 2.3化學機械拋光相關耗材 13 2.3.1鑽石修整器 13 2.3.2拋光墊 17 2.3.2.1拋光墊材料 17 2.3.2.1拋光墊表面形貌 19 2.3.3拋光液 20 第參章、實驗 23 3.1實驗設備 23 3.2實驗材料 26 3.3實驗規劃與進行步驟 27 3.3.1拋光墊刮痕實驗 27 3.3.2拋光墊表面形貌與性質隨拋光時間變化實驗 29 3.3.3晶片拋光加工實驗 30 3.3.4修整加工(Break-in process)實驗 31 第肆章、拋光墊修整之材料去除機制與表面形貌 33 4.1鑽石方位的定義 33 4.2鑽石方位對拋光墊表面形貌的影響 35 4.3修整路徑對拋光墊表面形貌的影響 39 4.4修整參數對拋光墊表面形貌的影響 43 4.5.1刺入深度對拋光墊表面形貌的影響 43 4.5.2修整速度對拋光墊表面形貌的影響 46 4.6小結 52 第伍章、拋光墊表面特性與晶片拋光率之關係 54 5.1拋光墊表面隆起對晶片拋光率的影響 54 5.2拋光墊溝槽對晶片拋光率的影響 56 5.3拋光墊表面特性隨拋光時間的變化及對晶片拋光率的影響 59 5.3.1拋光墊表面隆起與拋光時間之關係 59 5.3.2拋光墊表面化學性質與拋光時間之關係 62 5.3.3晶片拋光率與拋光時間之關係 66 5.4小結 67 第陸章、次世代鑽石修整器修整拋光墊表面特性 69 6.1前言 69 6.2次世代鑽石修整器特性 70 6.3次世代鑽石修整器與傳統鑽石修整器修整拋光墊表面特性之比較 72 6.3.1拋光墊表面粗糙度之比較 72 6.3.2拋光墊表面形貌之比較 80 6.3.3拋光墊修整率之比較 81 6.3.4表面粗糙度與拋光時間之關係 82 6.3.5晶片拋光率之比較 83 6.4小結 84 第柒章、結論與建議 85 7.1結論 85 7.2未來展望 87 參考文獻 89 | |
dc.language.iso | zh-TW | |
dc.title | CMP鑽石修整器修整聚胺酯拋光墊表面特性之研究 | zh_TW |
dc.title | CMP Diamond Conditioner Dressing Characteristics of
Polyurethane Pad | en |
dc.type | Thesis | |
dc.date.schoolyear | 95-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 宋健民(J. C. Sung),白陽亮(Y. L. Pai),趙崇禮(Chao,Choung Lii),羅勝益(Shenq-yih Luo),蔡志成(Jhy-Cherng Tsai),蔡曜陽(Yao-Yang Tsai) | |
dc.subject.keyword | 化學機械拋光,拋光墊,鑽石修整器, | zh_TW |
dc.subject.keyword | Chemical mechanical polishing,Pad,Diamond pad conditioner, | en |
dc.relation.page | 96 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2007-07-10 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
Appears in Collections: | 機械工程學系 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-96-1.pdf Restricted Access | 4.84 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.