Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 免疫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30210
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor繆希椿(Shi-Chuen Miaw)
dc.contributor.authorPei-Yun Tsaien
dc.contributor.author蔡佩芸zh_TW
dc.date.accessioned2021-06-13T01:43:49Z-
dc.date.available2012-07-20
dc.date.copyright2007-07-20
dc.date.issued2007
dc.date.submitted2007-07-11
dc.identifier.citationAgarwal, S., Avni, O., and Rao, A. (2000). Cell-type-restricted binding of the transcription factor NFAT to a distal IL-4 enhancer in vivo. Immunity 12, 643-652.
Aragon,L. (2005). Sumoylation: A new wrestler in the DNA repair ring. PNAS 102, 4661-4662.
Binetruy,B., Smeal,T., and Karin,M. (1991). Ha-Ras augments c-Jun activity and stimulates phosphorylation of its activation domain. Nature 351, 122-127
Blank,V., and Andrews,N.C. (1997). The Maf transcription factors: regulators of differentiation. Trends Biochem. Sci. 22, 437-441
Bradding, P. (2003). The role of the mast cell in asthma: a reassessment. Curr Opin Allergy Clin Immunol 3, 45-50.
Cao,S., Liu,J., Chesi,M., Bergsagel,P.L., Ho,I.C., Donnelly,R.P., and Ma,X. (2002). Differential regulation of IL-12 and IL-10 gene expression in macrophages by the basic leucine zipper transcription factor c-Maf fibrosarcoma. J. Immunol. 169, 5715-5725.
Cao S, Liu J, Song L, Ma X. (2005). The protooncogene c-Maf is an essential transcription factor for IL-10 gene expression in macrophages. J. Immunol. 15, 3484-3492.
Chow,C., Rincon,M., Cavanagh,J., Dickens,M., and Davis,R.J. (1997). Nuclear accumulation of NFAT4 opposed by the JNK signal transduction pathway. Science 278, 1638-1641.
Desterro,J.M., Rodriguez,M.S., and Har,R.T. (1998). SUMO-1 modification of IkappaBalpha inhibits NF-kappaB activation. Mol. Cell 2, 233-239
Elser, B., Lohoff, M., Kock, S., Giaisi, M., Kirchhoff, S., Krammer, P. H., and Li-Weber, M. (2002). IFN-gamma represses IL-4 expression via IRF-1 and IRF-2. Immunity 17, 703-712.
Friedman,J.S., Khanna,H., Swain,P.K., DeNicola,R., Cheng,H., Mitton,K.P., Weber,C.H., Hicks,D., and Swaroop,A. (2004). The Minimal transactivation domain of the basic motif-leucine zipper transcription factor NRL interacts with TATA-binding protein. J. Biol. Chem. 279, 47233-47241.
Fujiwara,K.T., Kataoka,K., and Nishizawa,M. (1993). Two new members of the maf oncogene family, mafK and mafF, encode nuclear b-Zip proteins lacking putative trans-activator domain. Oncogene 8, 2371-2380
Grégoire, S., and Yang, X.J., (2005). Association with class IIa histone deacetylases upregulates the sumoylation of MEF2 transcription factors, Mol. Cell. Biol. 25 2273–2282.
Guo D, Li M, Zhang Y, Yang P, Eckenrode S, Hopkins D, Zheng W, Purohit S, Podolsky RH, Muir A, Wang J, Dong Z, Brusko T, Atkinson M, Pozzilli P, Zeidler A, Raffel LJ, Jacob CO, Park Y, Serrano-Rios M, Larrad MT, Zhang Z, Garchon HJ, Bach JF, Rotter JI, She JX, Wang CY. (2004). A functional variant of SUMO4, a new I kappa B alpha modifier, is associated with type 1 diabetes. Nat. Genet. 36, 837-841.
Ho, I. C., and Glimcher, L. H. (2002). Transcription: tantalizing times for T cells. Cell 109 Suppl, S109-120.
Ho, I. C., Hodge, M. R., Rooney, J. W., and Glimcher, L. H. (1996). The proto-oncogene c-maf is responsible for tissue-specific expression of interleukin-4. Cell 85, 973-983.
Ho, I. C., Lo, D., and Glimcher, L. H. (1998). c-maf promotes T helper cell type 2 (Th2) and attenuates Th1 differentiation by both interleukin 4-dependent and -independent mechanisms. J Exp Med 188, 1859-1866.
Ho, I. C., Vorhees, P., Marin, N., Oakley, B. K., Tsai, S. F., Orkin, S. H., and Leiden, J. M. (1991). Human GATA-3: a lineage-restricted transcription factor that regulates the expression of the T cell receptor alpha gene. Embo J 10, 1187-1192.
Hong, Y., Rogers, R., Matunis, M.J., Mayhew, C.N., Goodson, M.L., Park-Sarge, O.K. and Sarge, K.D. (2001). Regulation of heat shock transcription factor 1 by stress-induced SUMO-1 modification, J. Biol. Chem.276, 40263–40267.
Huang TT, Wuerzberger-Davis SM, Wu ZH, Miyamoto S. (2003). Sequential modification of NEMO/IKKgamma by SUMO-1 and ubiquitin mediates NF-kappaB activation by genotoxic stress. Cell 115, 565-576.
Hwang, E. S., Szabo, S. J., Schwartzberg, P. L., and Glimcher, L. H. (2005). T helper cell fate specified by kinase-mediated interaction of T-bet with GATA-3. Science 307, 430-433.
Hwang, E. S., White, I. A., and Ho, I. C. (2002). An IL-4-independent and CD25-mediated function of c-maf in promoting the production of Th2 cytokines. Proc Natl Acad Sci U S A 99, 13026-13030.
Igarashi,K., Itoh,K., Motohashi,H., Hayashi,N., Matuzaki,U., Nakauchi,H., Nishizawa,M., and Yamamoto,M. (1995). Activity and expression of murine small Maf family protein MafK. J. Biol. Chem. 270, 7615-7624.
Johnson,E.S. and Blobel,G. (1999). Cell cycle-regulated attachment of the ubiquitin-related protein SUMO to the yeast septins. J. Cell Biol. 147, 981-994.
Jurgen Dohmen,R. (2004). SUMO protein modification. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 1695, 113-131.
Kaplan, M. H., Sun, Y. L., Hoey, T., and Grusby, M. J. (1996). Impaired IL-12 responses and enhanced development of Th2 cells in Stat4-deficient mice. Nature 382, 174-177.
Kataoka, K., Fujiwara, K. T., Noda, M., and Nishizawa, M. (1994a). MafB, a new Maf family transcription activator that can associate with Maf and Fos but not with Jun. Mol Cell Biol 14, 7581-7591.
Kataoka, K., Nishizawa, M., and Kawai, S. (1993). Structure-function analysis of the maf oncogene product, a member of the b-Zip protein family. J Virol 67, 2133-2141.
Kataoka, K., Noda, M., and Nishizawa, M. (1994b). Maf nuclear oncoprotein recognizes sequences related to an AP-1 site and forms heterodimers with both Fos and Jun. Mol Cell Biol 14, 700-712.
Kerppola,T.K., and Curran,T. (1994). A conserved region adjacent to the basic domain is required for recognition of an extended DNA binding site by Maf/Nrl family proteins. Oncogene 9, 3149-3158.
Kim,J.I., Ho,I.C., Grusby,M.J., and Glimcher,L.H. (1999a). The Transcription factor c-Maf controls the production of interleukin-4 but not other Th2 cytokines. Immunity 10, 745-751.
Kim,J.I., Li,T., Ho,I.C., Grusby,M.J., and Glimcher,L.H. (1999b). Requirement for the c-Maf transcription factor in crystallin gene regulation and lens development. PNAS 96, 3781-3785.
Kuehl WM, Bergsagel PL. (2002). Multiple myeloma: evolving genetic events and host interactions. Nat. Rev. Cancer 2, 175–187.
Lee, H. J., Takemoto, N., Kurata, H., Kamogawa, Y., Miyatake, S., O'Garra, A., and Arai, N. (2000). GATA-3 induces T helper cell type 2 (Th2) cytokine expression and chromatin remodeling in committed Th1 cells. J Exp Med 192, 105-115.
Lenormand,J.L., Benayoun, B., Guillier,M., Vandromme,M., Leibovitch, M.P., and Leibovitch, S.A. (1997). Mos activates myogenic differentiation by promoting heterodimerization of MyoD and E12 proteins. Mol. Cell. Biol. 17, 584-593
Lighvani AA, Frucht DM, Jankovic D, Yamane H, Aliberti J, Hissong BD, Nguyen BV, Gadina M, Sher A, Paul WE, O'Shea JJ. (2001). T-bet is rapidly induced by interferon-gamma in lymphoid and myeloid cells. PNAS 26, 15137-42.
Li-Weber,M. and Krammer,P.H. (2003). Regulation of IL4 gene expression by T cells and therapeutic perspectives. Nat. Rev. Immunol. 3, 534-543.
Loots, G. G., Locksley, R. M., Blankespoor, C. M., Wang, Z. E., Miller, W., Rubin, E. M., and Frazer, K. A. (2000). Identification of a coordinate regulator of interleukins 4, 13, and 5 by cross-species sequence comparisons. Science 288, 136-140.
Ma, X., Chow, J. M., Gri, G., Carra, G., Gerosa, F., Wolf, S. F., Dzialo, R., and Trinchieri, G. (1996). The interleukin 12 p40 gene promoter is primed by interferon gamma in monocytic cells. J Exp Med 183, 147-157.
Magram, J., Connaughton, S. E., Warrier, R. R., Carvajal, D. M., Wu, C. Y., Ferrante, J., Stewart, C., Sarmiento, U., Faherty, D. A., and Gately, M. K. (1996). IL-12-deficient mice are defective in IFN gamma production and type 1 cytokine responses. Immunity 4, 471-481.
Mahajan,R., Delphin,C., Guan,T., Gerace,L., and Melchior,F. (1997). A Small Ubiquitin-related polypeptide involved in targeting RanGAP1 to nuclear pore complex protein RanBP2. Cell 88, 97-107.
Mohrs, M., Blankespoor, C. M., Wang, Z. E., Loots, G. G., Afzal, V., Hadeiba, H., Shinkai, K., Rubin, E. M., and Locksley, R. M. (2001). Deletion of a coordinate regulator of type 2 cytokine expression in mice. Nat Immunol 2, 842-847.
Morito N, Yoh K, Fujioka Y, Nakano T, Shimohata H, Hashimoto Y, Yamada A, Maeda A, Matsuno F, Hata H, Suzuki A, Imagawa S, Mitsuya H, Esumi H, Koyama A, Yamamoto M, Mori N, Takahashi S. (2006). Overexpression of c-Maf contributes to T-cell lymphoma in both mice and human. Cancer Res. 15, 812-819.
Mosmann, T. R., and Coffman, R. L. (1989). TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu Rev Immunol 7, 145-173.
Motohashi,H., Katsuoka,F., Miyoshi,C., Uchimura,Y., Saitoh,H., Francastel,C., Engel,J.D., and Yamamoto,M. (2006). MafG Sumoylation Is Required for Active Transcriptional Repression. Mol. Cell. Biol. 26, 4652-4663.
Mullen, A. C., High, F. A., Hutchins, A. S., Lee, H. W., Villarino, A. V., Livingston, D. M., Kung, A. L., Cereb, N., Yao, T. P., Yang, S. Y., and Reiner, S. L. (2001). Role of T-bet in commitment of TH1 cells before IL-12-dependent selection. Science 292, 1907-1910.
Muller,S., Ledl,A., and Schmidt,D. (2004). SUMO: a regulator of gene expression and genome integrity. Oncogene 23, 1998-2008.
Muller,S., Matunis,M.J., and Dejean,A. (1998). Conjugation with the ubiquitin-related modifier SUMO-1 regulates the partitioning of PML within the nucleus. EMBO J. 17, 61-70.
Murphy KM, Reiner SL. 2002. The lineage decisions of helperTcells. Nat. Rev. Immunol. 2, 933–944
Musti,A.M., Treier,M., and Bohmann,D. (1997). Reduced ubiquitin-dependent degradation of c-Jun after phosphorylation by MAP kinases. Science 275, 400-402
Nishizawa,M., Kataoka,K., Goto,N., Fujiwara,K.T., and Kawai,S. (1989). v-maf, a viral oncogene that encodes a 'Leucine Zipper' motif. PNAS 86, 7711-7715.
Ogino,H., and Yasuda,K. (1998). Induction of lens differentiation by activation of a bZIP transcription factor, L-Maf. Science 280, 115-118.
Osada,H., Furukawa-Nakanighi,K., Miyamoto,D., Kobayahi,Y., and Osawa,T. (1989). Partial purification of a macrophage-activating factor for glucose consumption (MAF-G) produced by a human T-cell hybridoma and its relation to a growth-promoting factor. Lymphokine Res 8, 393-405
Ouyang, W., Lohning, M., Gao, Z., Assenmacher, M., Ranganath, S., Radbruch, A., and Murphy, K. M. (2000). Stat6-independent GATA-3 autoactivation directs IL-4-independent Th2 development and commitment. Immunity 12, 27-37.
Pascual G, Fong AL, Ogawa S, Gamliel A, Li AC, Perissi V, Rose DW, Willson TM, Rosenfeld MG, Glass CK. (2005). A SUMOylation-dependent pathway mediates transrepression of inflammatory response genes by PPAR-gamma. Nature 7059, 759-763.
Paul, W. E., and Seder, R. A. (1994). Lymphocyte responses and cytokines. Cell 76, 241-251.
Ring, B. Z., Cordes, S. P., Overbeek, P. A., and Barsh, G. S. (2000). Regulation of mouse lens fiber cell development and differentiation by the Maf gene. Development 127, 307-317.
Sii-Felice K, Pouponnot C, Gillet S, Lecoin L, Girault JA, Eychene A, Felder-Schmittbuhl MP. (2005). MafA transcription factor is phosphorylated by p38 MAP kinase. FEBS Lett. 4, 3547-3554.
Skapenko A, Leipe J, Niesner U, Devriendt K, Beetz R. (2004). GATA-3 in human T cell helper type 2 development. J. Exp. Med. 199, 423–428
Sobko,A., Ma,H., and Firtel,R.A. (2002). Regulated SUMOylation and Ubiquitination of DdMEK1 are required for proper chemotaxis. Developmental Cell 2, 745-756.
Stelter,P. and Ulrich,H.D. (2003). Control of spontaneous and damage-induced mutagenesis by SUMO and ubiquitin conjugation. Nature 425, 188-191.
Szabo, S. J., Kim, S. T., Costa, G. L., Zhang, X., Fathman, C. G., and Glimcher, L. H. (2000). A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell 100, 655-669.
Szabo, S. J., Sullivan, B. M., Stemmann, C., Satoskar, A. R., Sleckman, B. P., and Glimcher, L. H. (2002). Distinct effects of T-bet in TH1 lineage commitment and IFN-gamma production in CD4 and CD8 T cells. Science 295, 338-342.
Takemoto, N., Kamogawa, Y., Jun Lee, H., Kurata, H., Arai, K. I., O'Garra, A., Arai, N., and Miyatake, S. (2000). Cutting edge: chromatin remodeling at the IL-4/IL-13 intergenic regulatory region for Th2-specific cytokine gene cluster. J Immunol 165, 6687-6691.
Tanaka, Y., So, T., Lebedeva, S., Croft, M., and Altman, A. (2005). Impaired IL-4 and c-Maf expression and enhanced Th1 cell development in Vav1-deficient mice. Blood.
Terui Y, Saad N, Jia S, McKeon F, Yuan J. (2004). Dual role of sumoylation in the nuclear localization and transcriptional activation of NFAT1. J Biol Chem. 279, 28257-28265.
Thierfelder, W. E., van Deursen, J. M., Yamamoto, K., Tripp, R. A., Sarawar, S. R., Carson, R. T., Sangster, M. Y., Vignali, D. A., Doherty, P. C., Grosveld, G. C., and Ihle, J. N. (1996). Requirement for Stat4 in interleukin-12-mediated responses of natural killer and T cells. Nature 382, 171-174.
Tillmanns S, Otto C, Jaffray E, Duroure C, Bakri Y, Vanhille L, Sarrazin S, Hay RT, Sieweke MH.(2007). SUMO-modification regulates MafB driven macrophage differentiation by enabling Myb dependent transcriptional repression. Mol Cell Biol. Epub ahead of print
Usui, T., Nishikomori, R., Kitani, A., and Strober, W. (2003). GATA-3 suppresses Th1 development by downregulation of Stat4 and not through effects on IL-12Rbeta2 chain or T-bet. Immunity 18, 415-428.
Voehringer, D., Shinkai, K., and Locksley, R. M. (2004). Type 2 immunity reflects orchestrated recruitment of cells committed to IL-4 production. Immunity 20, 267-277.
Watts,F.Z. (2006). Sumoylation of PCNA: Wrestling with recombination at stalled replication forks. DNA Repair 5, 399-403.
Wenner, C. A., Szabo, S. J., and Murphy, K. M. (1997). Identification of IL-4 promoter elements conferring Th2-restricted expression during T helper cell subset development. J Immunol 158, 765-773.
Wood LD, Irvin BJ, Nucifora G, Luce KS, Hiebert SW. (2003). Small ubiquitin-like modifier conjugation regulates nuclear export of TEL, a putative tumor suppressor. PNAS, 18, 257-262
Yamashita, D., Yamaguchi, T., Shimizu, M., Nakata, N., Hirose, F., and Osumi, T. (2004). The transactivating function of peroxisome proliferator-activated receptor gamma is negatively regulated by SUMO conjugation in the amino-terminal domain, Genes Cells 9, 1017–1029.
Yang,S.H., Shore,P., Willingham,N., Lakey,J.H., and Sharrocks,A.D. (1999). The mechanism of phosphorylation-inducible activation of the ETS-domain transcription factor Elk-1. EMBO. J. 18, 5666-5674
Yang, Y., Ochando, J., Yopp, A., Bromberg, J. S., and Ding, Y. (2005). IL-6 plays a unique role in initiating c-Maf expression during early stage of CD4 T cell activation. J Immunol 174, 2720-2729.
Zhang DH, Yang L, Cohn L, Parkyn L, Homer R. (1999). Inhibition of allergic inflammation in a murine model of asthma by expression of a dominant-negative mutantof GATA-3. Immunity 11, 473–482
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30210-
dc.description.abstract原生型輔助性T細胞可被朝向第一型輔助型T細胞或第二型輔助型T細胞的方向分化。c-Maf 是間白素-4(IL-4)專一的轉錄因子,主要表現在第二型輔助型T細胞中。c-Maf藉由促進間白素-4(IL-4)的產生,能造成更多未分化的輔助性T細胞分化為第二型輔助型T細胞。然而,在吞噬細胞(Macrophage)中,c-Maf可直接造成間白素-10(IL-10)活化並間接抑制間白素-12(IL-12)的p35及p40次單元表現。此外,c-Maf也被報導參與在癌化以及眼球晶體的發育過程中。這些現象暗示了也許有不同的因子與c-Maf交互作用進而調控其功能。
之前,我們實驗室利用酵母菌雙雜交系統(yeast two-hybrid system)在輔助型T細胞中篩選出可能和c-Maf有交互作用的蛋白質。共篩選約300個,分類定序後確定為UBC-9 及PIAS1。這兩個蛋白質的主要功能是參與細胞內small ubiquitin-like modifiers (SUMO)轉譯後修飾作用。因此我們假設,c-Maf可被SUMO修飾,進而影響它活化IL-4的能力。
我們發現,c-Maf在HEK293T和DO11.10細胞中都可被SUMO修飾。此外,在HEK293T和DO11.10細胞,利用生物冷光素(Luciferase)為報告基因的偵測系統中,我們證明SUMO修飾對於c-Maf 調控IL-4基因表現上扮演負向調控的角色。此外,部分被SUMO修飾後的c-Maf可出現在細胞質。而在電泳遷移率改變分析(EMSA)的實驗中可看出,不能夠被SUMO修飾的c-Maf似乎有較高的與IL-4 promoter結合的能力。以上兩個現象,也許是造成被SUMO修飾後的c-Maf ,在調控IL-4基因表現的能力下降的原因。
zh_TW
dc.description.abstractNaïve CD4+ T helper (Th) cells can be polarized towards either the Th1 or the Th2 subset. Interleukin-4 (IL-4) is crucial for the differentiation toward Th2 effector cells that promote humoral immunity and provide protection against intestinal helminthes. Many transcription factors are involved in the regulation of the gene encoding IL-4. Notably, c-Maf, a basic-leucine zipper protein belongs to the MAF family, has been proved to be the IL-4 gene-specific transactivator. On the other hand, c-Maf also acts as a potent activator of IL-10 gene and an inhibitor of IL-12 p40 and p35 gene expression in monocytes and macrophages. Besides, c-Maf was reported to be involved in lens development and oncogenesis. These phenomena implied that some cell-type specific factors would interact with c-Maf and thus to regulate its function.
Our lab has identified two c-Maf interacting factors, UBC9, and PIAS1, by the yeast two-hybrid system using c-Maf as the bait. The two proteins are involved in the sumoylation. Therefore, we assume that the sumoylation might play some important roles in the function of c-Maf and further regulate IL-4 production in Th2 cells. To study this issue, we want to investigate whether the sumoylation would occur in vivo and dissect how the post translational modifications affect c-Maf function.
In this study, we found that c-Maf could undergo sumoylation in HEK293T and DO11.10 T cells. The functional analysis of sumoylated c-Maf was also performed by luciferase assay in HEK293T and DO11.10 cells indicating that sumoylation acts as a negative regulator to c-Maf in IL-4 transactivation. Sumoylated c-Maf could be revealed in cytosol. In addition, enhanced DNA binding ability could be observed when c-Maf without sumoylation. The two phenomena might contribute to reduced IL-4 gene transactivation by sumoyalted c-Maf.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T01:43:49Z (GMT). No. of bitstreams: 1
ntu-96-R93449013-1.pdf: 1987490 bytes, checksum: d6f13fde7c0f25af8ea98f2d29e46637 (MD5)
Previous issue date: 2007
en
dc.description.tableofcontentsAcknowledgement……………………………………………………………………...i
Abstract (Chinese)……………………………………………………………………iii
Abstract………………………………………………………...……………………..iv
Chapter I. Introduction……………......……………………………………………..1
I. T helper cells differentiation……………………………………………..………...1
1.1 An overview of type I and type II T helper cells……………………….…….1
1.2 Th1 cell differentiation……………………………………………………….1
1.3 Th2 cell differentiation……………………………………………………….2
II. The role of c-Maf in T helper II cells differentiation...…………………………....4
2.1 Introduction of c-Maf………………………………………………………...4
2.2 The function of c-Maf in Th2 cells…………………………………………...5
2.3 The various function of c-Maf………………………………………………..6
2.4 Regulation of c-Maf………………………………………………………….7
III. The rationale to study the relationship of sumoylation and c-Maf……………8
IV. An overview of sumoylation………………………………………………………..9
4.1 The SUMO conjugation pathway…………………………...………………….9
4.2 The effect of sumoylation……………………………………...……………10
Chapter II. Material and Method…….………………………………………………11
Part I. Experimental Materials……………………………………….....…………11
Part II. Experimental Procedures……………………………………………………15
DO11.10 cell transfection and activation……………..………………………….15
Cytosolic and nuclear extract separation……………………..…………………..15
SDS-PAGE and Western blotting………………………………………………...16
Co-immunoprecipitation…………………………………………….…………...16
Biotinylated oligo affinity pulldown……………………………..………………17 EMSA.....................................................................................................................17
Luciferase reporter assay……………………………………………………........18
Statistical analysis……………………………..…………………………………18
Chapter III. Result…………………………………………….………………………19
Part I. Determination whether c-Maf could be modified by SUMO……………19
1.1 c-Maf could be modified by SUMO-1……………………………………...19
1.2 c-Maf is modified by SUMO at lysine residue 33…………………………..20
1.3 c-Maf undergoes sumoylation in T cells……………………………………21
Part II. Function analysis of sumoylated c-Maf by luciferase assay………….…….22
2.1 The sumoylation acts negatively on the IL-4 transactivation by c-Maf…….22
Part III. The possible mechanisms contributed to reduced IL-4 transactivity by sumoylated c-Maf………………..…………………………………………..…………24
3.1 The sumoylated c-Maf could translocate to cytosol………………………...24
3.2 Sumoylated c-Maf could bind to IL-4 promoter……………………………24
3.3 Enhanced DNA binding by c-Maf without sumoylation………………...……25
Chapter IV. Discussion…………………………………………….………………..26
Part I. Determination whether c-Maf could be modified by SUMO……………….26
Part II. Function analysis of sumoylated c-Maf by luciferase assay...……………...28
Part III. The possible mechanisms contributed to reduced IL-4 transactivity by sumoylated c-Maf………………………………………………………………………29
Reference…………………………………………………………………………….34
Figures……………………………………………………………………………….40
Figure 1. c-Maf is modified by SUMO…………………………..…………………..40
Figure 2. K33 is required for c-Maf sumoylation…………………………………....41
Figure 3. c-Maf undergoes sumoylation in DO11.10 cells…………...........................42
Figure 4. The SUMO-deficient c-Maf K33R had higher IL-4 transactivity……………44
Figure 5. SUMO modification decreased IL-4 transactivation ability by c-Maf…….45
Figure 6. The SUMO-deficient c-Maf K33R had higher IL-4 transactivation ability in DO11.10 cells………………………………………..………………………….……46
Figure 7. Sumoylated c-Maf can locate in cytoplasmic fraction……………………..47
Figure 8. Sumoylated c-Maf interacts with IL-4 promoter………………………..…48
Figure 9. Enhanced IL-4 promoter binding by c-Maf without sumoylation…………49
Figure 10. Proposed model of SUMO-mediated c-Maf transcriptional regulation…..50
dc.language.isoen
dc.subject細胞激素zh_TW
dc.subjectc-Mafen
dc.titleSumoylation 對於c-Maf調控細胞激素之研究zh_TW
dc.titleThe Role of Sumoylation on c-Maf in Cytokine Regulationen
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.oralexamcommittee伍安怡,羅?升,顧家綺
dc.subject.keyword細胞激素,zh_TW
dc.subject.keywordc-Maf,en
dc.relation.page50
dc.rights.note有償授權
dc.date.accepted2007-07-11
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept免疫學研究所zh_TW
顯示於系所單位:免疫學研究所

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  未授權公開取用
1.94 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved