Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生物化學暨分子生物學科研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30189
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林仁混
dc.contributor.authorYea-Tzy Dengen
dc.contributor.author鄧雅姿zh_TW
dc.date.accessioned2021-06-13T01:42:20Z-
dc.date.available2017-07-09
dc.date.copyright2007-08-08
dc.date.issued2007
dc.date.submitted2007-07-11
dc.identifier.citation1 Parkin,D.M. and Muir,C.S. Cancer Incidence in Five Continents. Comparability and quality of data, IARC Sci. Publ., 45-173, 1992.
2 Reed,J.C. Dysregulation of apoptosis in cancer, J. Clin. Oncol., 17: 2941-2953, 1999.
3 Tamm,I., Schriever,F. and Dorken,B. Apoptosis: implications of basic research for clinical oncology, Lancet Oncol., 2: 33-42, 2001.
4 Debatin,K. Activation of apoptosis pathways by anticancer treatment, Toxicol. Lett., 112-113: 41-48, 2000.
5 Shao,Z.M., Li,J., Wu,J., Han,Q.X., Shen,Z.Z., Fontana,J.A. and Barsky,S.H. Neo-adjuvant chemotherapy for operable breast cancer induces apoptosis, Breast Cancer Res. Treat., 53: 263-269, 1999.
6 Hong,W.K. and Sporn,M.B. Recent advances in chemoprevention of cancer, Science, 278: 1073-1077, 1997.
7 Kelloff,G.J., Boone,C.W., Crowell,J.A., Steele,V.E., Lubet,R. and Sigman,C.C. Chemopreventive drug development: perspectives and progress, Cancer Epidemiol. Biomarkers Prev., 3: 85-98, 1994.
8 Sporn,M.B. and Suh,N. Chemoprevention of cancer, Carcinogenesis, 21: 525-530, 2000.
9 Kelloff,G.J., Crowell,J.A., Steele,V.E., Lubet,R.A., Malone,W.A., Boone,C.W., Kopelovich,L., Hawk,E.T., Lieberman,R., Lawrence,J.A., Ali,I., Viner,J.L. and Sigman,C.C. Progress in cancer chemoprevention: development of diet-derived chemopreventive agents, J. Nutr., 130: 467S-471S, 2000.
10 Radad,K., Rausch,W.D. and Gille,G. Rotenone induces cell death in primary dopaminergic culture by increasing ROS production and inhibiting mitochondrial respiration, Neurochem. Int., 49: 379-386, 2006.
11 Lindahl,P.E. and Oberg,K.E. The effect of rotenone on respiration and its point of attack, Exp. Cell Res., 23: 228-237, 1961.
12 Cunningham,M.L., Soliman,M.S., Badr,M.Z. and Matthews,H.B. Rotenone, an anticarcinogen, inhibits cellular proliferation but not peroxisome proliferation in mouse liver, Cancer Lett., 95: 93-97, 1995.
13 Hansen,W.H., Davis,K.J. and Fitzhugh,O.G. Chronic toxicity of cube, Toxicol. Appl. Pharmacol., 7: 535-542, 1965.
14 Yoshitani,S.I., Tanaka,T., Kohno,H. and Takashima,S. Chemoprevention of azoxymethane-induced rat colon carcinogenesis by dietary capsaicin and rotenone, Int. J. Oncol., 19: 929-939, 2001.
15 Abdo,K.M., Eustis,S.L., Haseman,J., Huff,J.E., Peters,A. and Persing,R. Toxicity and carcinogenicity of rotenone given in the feed to F344/N rats and B6C3F1 mice for up to two years, Drug Chem. Toxicol., 11: 225-235, 1988.
16 Tada-Oikawa,S., Hiraku,Y., Kawanishi,M. and Kawanishi,S. Mechanism for generation of hydrogen peroxide and change of mitochondrial membrane potential during rotenone-induced apoptosis, Life Sci., 73: 3277-3288, 2003.
17 Higuchi,M., Proske,R.J. and Yeh,E.T. Inhibition of mitochondrial respiratory chain complex I by TNF results in cytochrome c release, membrane permeability transition, and apoptosis, Oncogene, 17: 2515-2524, 1998.
18 Wolvetang,E.J., Johnson,K.L., Krauer,K., Ralph,S.J. and Linnane,A.W. Mitochondrial respiratory chain inhibitors induce apoptosis, FEBS Lett., 339: 40-44, 1994.
19 Armstrong,J.S., Hornung,B., Lecane,P., Jones,D.P. and Knox,S.J. Rotenone-induced G2/M cell cycle arrest and apoptosis in a human B lymphoma cell line PW, Biochem. Biophys. Res. Commun., 289: 973-978, 2001.
20 Isenberg,J.S. and Klaunig,J.E. Role of the mitochondrial membrane permeability transition (MPT) in rotenone-induced apoptosis in liver cells, Toxicol. Sci., 53: 340-351, 2000.
21 Isenberg,J.S., Kolaja,K.L., Ayoubi,S.A., Watkins,J.B., III and Klaunig,J.E. Inhibition of WY-14,643 induced hepatic lesion growth in mice by rotenone, Carcinogenesis, 18: 1511-1519, 1997.
22 Wyllie,A.H. Apoptosis: an overview, Br. Med. Bull., 53: 451-465, 1997.
23 Bredesen,D.E. Apoptosis: overview and signal transduction pathways, J. Neurotrauma, 17: 801-810, 2000.
24 Robertson,J.D. and Orrenius,S. Molecular mechanisms of apoptosis induced by cytotoxic chemicals, Crit Rev. Toxicol., 30: 609-627, 2000.
25 Chan,P.C., Lai,J.F., Cheng,C.H., Tang,M.J., Chiu,C.C. and Chen,H.C. Suppression of ultraviolet irradiation-induced apoptosis by overexpression of focal adhesion kinase in Madin-Darby canine kidney cells, J. Biol. Chem., 274: 26901-26906, 1999.
26 Strand,S., Hofmann,W.J., Hug,H., Muller,M., Otto,G., Strand,D., Mariani,S.M., Stremmel,W., Krammer,P.H. and Galle,P.R. Lymphocyte apoptosis induced by CD95 (APO-1/Fas) ligand-expressing tumor cells--a mechanism of immune evasion?, Nat. Med., 2: 1361-1366, 1996.
27 Enari,M., Hase,A. and Nagata,S. Apoptosis by a cytosolic extract from Fas-activated cells, EMBO J., 14: 5201-5208, 1995.
28 Ashkenazi,A. and Dixit,V.M. Death receptors: signaling and modulation, Science, 281: 1305-1308, 1998.
29 Thornberry,N.A. and Lazebnik,Y. Caspases: enemies within, Science, 281: 1312-1316, 1998.
30 Reed,J.C. Cytochrome c: can't live with it--can't live without it, Cell, 91: 559-562, 1997.
31 Green,D.R. Apoptotic pathways: the roads to ruin, Cell, 94: 695-698, 1998.
32 Zou,H., Henzel,W.J., Liu,X., Lutschg,A. and Wang,X. Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3, Cell, 90: 405-413, 1997.
33 Lemasters,J.J., Nieminen,A.L., Qian,T., Trost,L.C. and Herman,B. The mitochondrial permeability transition in toxic, hypoxic and reperfusion injury, Mol. Cell Biochem., 174: 159-165, 1997.
34 Salvesen,G.S. and Dixit,V.M. Caspases: intracellular signaling by proteolysis, Cell, 91: 443-446, 1997.
35 Cohen,G.M. Caspases: the executioners of apoptosis, Biochem. J., 326 ( Pt 1): 1-16, 1997.
36 Thornberry,N.A. Caspases: key mediators of apoptosis, Chem. Biol., 5: R97-103, 1998.
37 Talanian,R.V., Brady,K.D. and Cryns,V.L. Caspases as targets for anti-inflammatory and anti-apoptotic drug discovery, J. Med. Chem., 43: 3351-3371, 2000.
38 Widmann,C., Gibson,S., Jarpe,M.B. and Johnson,G.L. Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human, Physiol Rev., 79: 143-180, 1999.
39 Kyriakis,J.M. and Avruch,J. Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation, Physiol Rev., 81: 807-869, 2001.
40 Johnson,G.L. and Lapadat,R. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases, Science, 298: 1911-1912, 2002.
41 Pearson,G., Robinson,F., Beers,G.T., Xu,B.E., Karandikar,M., Berman,K. and Cobb,M.H. Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions, Endocr. Rev., 22: 153-183, 2001.
42 Tamura,S., Hanada,M., Sasaki,M., Komaki,K., Yonezawa,T. and Kobayashi,T. Regulation of stress-activated protein kinase signaling pathways by protein phosphatases, Tanpakushitsu Kakusan Koso, 47: 568-575, 2002.
43 Ichijo,H., Nishida,E., Irie,K., ten,D.P., Saitoh,M., Moriguchi,T., Takagi,M., Matsumoto,K., Miyazono,K. and Gotoh,Y. Induction of apoptosis by ASK1, a mammalian MAPKKK that activates SAPK/JNK and p38 signaling pathways, Science, 275: 90-94, 1997.
44 Ito,Y., Oh-Hashi,K., Kiuchi,K. and Hirata,Y. p44/42 MAP kinase and c-Jun N-terminal kinase contribute to the up-regulation of caspase-3 in manganese-induced apoptosis in PC12 cells, Brain Res., 1099: 1-7, 2006.
45 Arany,I., Megyesi,J.K., Kaneto,H., Price,P.M. and Safirstein,R.L. Cisplatin-induced cell death is EGFR/src/ERK signaling dependent in mouse proximal tubule cells, Am. J. Physiol Renal Physiol, 287: F543-F549, 2004.
46 Caughlan,A., Newhouse,K., Namgung,U. and Xia,Z. Chlorpyrifos induces apoptosis in rat cortical neurons that is regulated by a balance between p38 and ERK/JNK MAP kinases, Toxicol. Sci., 78: 125-134, 2004.
47 Gomez-Santos,C., Ferrer,I., Reiriz,J., Vinals,F., Barrachina,M. and Ambrosio,S. MPP+ increases alpha-synuclein expression and ERK/MAP-kinase phosphorylation in human neuroblastoma SH-SY5Y cells, Brain Res., 935: 32-39, 2002.
48 Tikoo,K., Lau,S.S. and Monks,T.J. Histone H3 phosphorylation is coupled to poly-(ADP-ribosylation) during reactive oxygen species-induced cell death in renal proximal tubular epithelial cells, Mol. Pharmacol., 60: 394-402, 2001.
49 Ramachandiran,S., Huang,Q., Dong,J., Lau,S.S. and Monks,T.J. Mitogen-activated protein kinases contribute to reactive oxygen species-induced cell death in renal proximal tubule epithelial cells, Chem. Res. Toxicol., 15: 1635-1642, 2002.
50 Dong,J., Ramachandiran,S., Tikoo,K., Jia,Z., Lau,S.S. and Monks,T.J. EGFR-independent activation of p38 MAPK and EGFR-dependent activation of ERK1/2 are required for ROS-induced renal cell death, Am. J. Physiol Renal Physiol, 287: F1049-F1058, 2004.
51 Chen,M., Bao,W., Aizman,R., Huang,P., Aspevall,O., Gustafsson,L.E., Ceccatelli,S. and Celsi,G. Activation of extracellular signal-regulated kinase mediates apoptosis induced by uropathogenic Escherichia coli toxins via nitric oxide synthase: protective role of heme oxygenase-1, J. Infect. Dis., 190: 127-135, 2004.
52 Sinha,D., Bannergee,S., Schwartz,J.H., Lieberthal,W. and Levine,J.S. Inhibition of ligand-independent ERK1/2 activity in kidney proximal tubular cells deprived of soluble survival factors up-regulates Akt and prevents apoptosis, J. Biol. Chem., 279: 10962-10972, 2004.
53 Namura,S., Iihara,K., Takami,S., Nagata,I., Kikuchi,H., Matsushita,K., Moskowitz,M.A., Bonventre,J.V. and Alessandrini,A. Intravenous administration of MEK inhibitor U0126 affords brain protection against forebrain ischemia and focal cerebral ischemia, Proc. Natl. Acad. Sci. U.S.A, 98: 11569-11574, 2001.
54 Mori,T., Wang,X., Jung,J.C., Sumii,T., Singhal,A.B., Fini,M.E., Dixon,C.E., Alessandrini,A. and Lo,E.H. Mitogen-activated protein kinase inhibition in traumatic brain injury: in vitro and in vivo effects, J. Cereb. Blood Flow Metab, 22: 444-452, 2002.
55 Clausen,F., Lundqvist,H., Ekmark,S., Lewen,A., Ebendal,T. and Hillered,L. Oxygen free radical-dependent activation of extracellular signal-regulated kinase mediates apoptosis-like cell death after traumatic brain injury, J. Neurotrauma, 21: 1168-1182, 2004.
56 Jo,S.K., Cho,W.Y., Sung,S.A., Kim,H.K. and Won,N.H. MEK inhibitor, U0126, attenuates cisplatin-induced renal injury by decreasing inflammation and apoptosis, Kidney Int., 67: 458-466, 2005.
57 Watabe,M., Kakeya,H. and Osada,H. Requirement of protein kinase (Krs/MST) activation for MT-21-induced apoptosis, Oncogene, 18: 5211-5220, 1999.
58 Armstrong,J.S., Steinauer,K.K., Hornung,B., Irish,J.M., Lecane,P., Birrell,G.W., Peehl,D.M. and Knox,S.J. Role of glutathione depletion and reactive oxygen species generation in apoptotic signaling in a human B lymphoma cell line, Cell Death. Differ., 9: 252-263, 2002.
59 Telford,W.G., King,L.E. and Fraker,P.J. Comparative evaluation of several DNA binding dyes in the detection of apoptosis-associated chromatin degradation by flow cytometry, Cytometry, 13: 137-143, 1992.
60 Earnshaw,W.C., Martins,L.M. and Kaufmann,S.H. Mammalian caspases: structure, activation, substrates, and functions during apoptosis, Annu. Rev. Biochem., 68: 383-424, 1999.
61 Stroh,C. and Schulze-Osthoff,K. Death by a thousand cuts: an ever increasing list of caspase substrates, Cell Death. Differ., 5: 997-1000, 1998.
62 Patel,T., Gores,G.J. and Kaufmann,S.H. The role of proteases during apoptosis, FASEB J., 10: 587-597, 1996.
63 Janicke,R.U., Sprengart,M.L., Wati,M.R. and Porter,A.G. Caspase-3 is required for DNA fragmentation and morphological changes associated with apoptosis, J. Biol. Chem., 273: 9357-9360, 1998.
64 Janicke,R.U., Ng,P., Sprengart,M.L. and Porter,A.G. Caspase-3 is required for alpha-fodrin cleavage but dispensable for cleavage of other death substrates in apoptosis, J. Biol. Chem., 273: 15540-15545, 1998.
65 Enari,M., Talanian,R.V., Wong,W.W. and Nagata,S. Sequential activation of ICE-like and CPP32-like proteases during Fas-mediated apoptosis, Nature, 380: 723-726, 1996.
66 Wesierska-Gadek,J., Gueorguieva,M. and Horky,M. Dual action of cyclin-dependent kinase inhibitors: induction of cell cycle arrest and apoptosis. A comparison of the effects exerted by roscovitine and cisplatin, Pol. J. Pharmacol., 55: 895-902, 2003.
67 Ubezio,P. and Civoli,F. Flow cytometric detection of hydrogen peroxide production induced by doxorubicin in cancer cells, Free Radic. Biol. Med., 16: 509-516, 1994.
68 Reed,J.C. Regulation of apoptosis by bcl-2 family proteins and its role in cancer and chemoresistance, Curr. Opin.Oncol., 7: 541-546, 1995.
69 Adams,J.M. and Cory,S. Life-or-death decisions by the Bcl-2 protein family, Trends Biochem. Sci., 26: 61-66, 2001.
70 Chao,D.T. and Korsmeyer,S.J. BCL-2 family: regulators of cell death, Annu. Rev. Immunol., 16: 395-419, 1998.
71 Hockenbery,D., Nunez,G., Milliman,C., Schreiber,R.D. and Korsmeyer,S.J. Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death, Nature, 348: 334-336, 1990.
72 Davis,R.J. Signal transduction by the JNK group of MAP kinases, Cell, 103: 239-252, 2000.
73 Ellis,R.E., Yuan,J.Y. and Horvitz,H.R. Mechanisms and functions of cell death, Annu. Rev. Cell Biol., 7: 663-698, 1991.
74 Raff,M.C. Social controls on cell survival and cell death, Nature, 356: 397-400, 1992.
75 Steller,H. Mechanisms and genes of cellular suicide, Science, 267: 1445-1449, 1995.
76 Wyllie,A.H., Kerr,J.F. and Currie,A.R. Cell death: the significance of apoptosis, Int. Rev. Cytol., 68: 251-306, 1980.
77 Hickman,J.A. Apoptosis induced by anticancer drugs, Cancer Metastasis Rev., 11: 121-139, 1992.
78 Molinari,M. Cell cycle checkpoints and their inactivation in human cancer, Cell Prolif., 33: 261-274, 2000.
79 Bursch,W., Lauer,B., Timmermann-Trosiener,I., Barthel,G., Schuppler,J. and Schulte-Hermann,R. Controlled death (apoptosis) of normal and putative preneoplastic cells in rat liver following withdrawal of tumor promoters, Carcinogenesis, 5: 453-458, 1984.
80 Roberts,R.A. Non-genotoxic hepatocarcinogenesis: suppression of apoptosis by peroxisome proliferators, Ann. N. Y. Acad. Sci., 804: 588-611, 1996.
81 Bayly,A.C., Roberts,R.A. and Dive,C. Suppression of liver cell apoptosis in vitro by the non-genotoxic hepatocarcinogen and peroxisome proliferator nafenopin, J. Cell Biol., 125: 197-203, 1994.
82 James,N.H. and Roberts,R.A. Species differences in response to peroxisome proliferators correlate in vitro with induction of DNA synthesis rather than suppression of apoptosis, Carcinogenesis, 17: 1623-1632, 1996.
83 Columbano,A. Cell death: current difficulties in discriminating apoptosis from necrosis in the context of pathological processes in vivo, J. Cell Biochem., 58: 181-190, 1995.
84 Adams,J.M. and Cory,S. The Bcl-2 protein family: arbiters of cell survival, Science, 281: 1322-1326, 1998.
85 Tsujimoto,Y. Role of Bcl-2 family proteins in apoptosis: apoptosomes or mitochondria?, Genes Cells, 3: 697-707, 1998.
86 Zamzami,N., Brenner,C., Marzo,I., Susin,S.A. and Kroemer,G. Subcellular and submitochondrial mode of action of Bcl-2-like oncoproteins, Oncogene, 16: 2265-2282, 1998.
87 Kowaltowski,A.J., Cosso,R.G., Campos,C.B. and Fiskum,G. Effect of Bcl-2 overexpression on mitochondrial structure and function, J. Biol. Chem., 277: 42802-42807, 2002.
88 Marchetti,P., Castedo,M., Susin,S.A., Zamzami,N., Hirsch,T., Macho,A., Haeffner,A., Hirsch,F., Geuskens,M. and Kroemer,G. Mitochondrial permeability transition is a central coordinating event of apoptosis, J. Exp. Med., 184: 1155-1160, 1996.
89 Gross,A., McDonnell,J.M. and Korsmeyer,S.J. BCL-2 family members and the mitochondria in apoptosis, Genes Dev., 13: 1899-1911, 1999.
90 Wolf,B.B. and Green,D.R. Suicidal tendencies: apoptotic cell death by caspase family proteinases, J. Biol. Chem., 274: 20049-20052, 1999.
91 Kluck,R.M., Bossy-Wetzel,E., Green,D.R. and Newmeyer,D.D. The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis, Science, 275: 1132-1136, 1997.
92 Namgung,U. and Xia,Z. Arsenite-induced apoptosis in cortical neurons is mediated by c-Jun N-terminal protein kinase 3 and p38 mitogen-activated protein kinase, J. Neurosci., 20: 6442-6451, 2000.
93 Xia,Z., Dickens,M., Raingeaud,J., Davis,R.J. and Greenberg,M.E. Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis, Science, 270: 1326-1331, 1995.
94 Caughlan,A., Newhouse,K., Namgung,U. and Xia,Z. Chlorpyrifos induces apoptosis in rat cortical neurons that is regulated by a balance between p38 and ERK/JNK MAP kinases, Toxicol. Sci., 78: 125-134, 2004.
95 Mao,Z., Bonni,A., Xia,F., Nadal-Vicens,M. and Greenberg,M.E. Neuronal activity-dependent cell survival mediated by transcription factor MEF2, Science, 286: 785-790, 1999.
96 Davis,R.J. Signal transduction by the JNK group of MAP kinases, Cell, 103: 239-252, 2000.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30189-
dc.description.abstractRotenone天然存在於豆科植物Derris根部,rotenone可以抑制粒線體內膜上電子傳遞鏈複合物Ι (electron transfer chain complex Ι),而引起細胞凋亡(apoptosis)現象。Rotenone所引起的細胞凋亡早被認知,然而rotenone所引起的細胞凋亡現象究竟是經由什麼機制並不是很清楚。在本篇研究中,我們發現rotenone可以促使人類乳癌細胞MCF7細胞生長率下降、細胞死亡率上升,此種結果隨著rotenone劑量和時間的增加而更明顯。以流式細胞儀分析細胞內DNA含量和對細胞核內之染色質進行染色,可得知rotenone確實可以使MCF7細胞發生細胞凋亡現象。用流式細胞儀進一步分析,發現rotenone會使細胞內粒線體內膜的跨膜電位消失且會促使活性氧(ROS)產生。再用西方點墨法分析和引起細胞凋亡現象有關的蛋白質procaspase-9、 PARP、 Bcl-2、及Bax,我們發現rotenone可以促使procaspase-9、 PARP被活化,抗細胞凋亡現象的蛋白質Bcl-2 表現下降,及促進細胞凋亡現象發生的蛋白質Bax表現上升。由這些結果可以得知,rotenone所引起的細胞凋亡現象是和caspase及粒線體有關的。我們進一步研究rotenone所引起細胞凋亡所經過的訊息傳遞途徑,發現rotenone所引起的細胞凋亡現象是需要extracellular signal-regulated kinases (ERK1/2), N-terminal protein kinase (JNK)和p38 mitogen activated protein (MAP) kinase活化的。本篇研究結果發現rotenone可抑制乳癌細胞之生長,而rotenone是否能作為治療乳癌的有效物質,仍需進一步的動物試驗證明。zh_TW
dc.description.abstractRotenone, an inhibitor of NADH dehydrogenase complex, is a naturally occurring insecticide, and it is capable of inducing apoptosis. However, little is known about the mechanism for the induction of apoptosis by rotenone. Here we report that in vitro treatment of human breast cancer MCF7 cells with rotenone decreased cell viability and induced cell death in a dose- and time-dependent manner. DNA flow cytometric analysis and staining of nuclear chromatin indicated that rotenone actively induced apoptosis in MCF7 cells. Loss of mitochondrial transmembrane potential and reactive oxygen species (ROS) generation were also detected by flow cytometry. We used Western blot analysis to evaluate the apoptosis-related proteins in MCF7 cells. The levels of procaspase-9, poly (ADP-ribose) polymerase (PARP), and Bcl-2 were decreased in a time-dependent manner, while the level of Bax was increased. These findings suggest that rotenone-induced apoptosis may be a caspase- and mitochondrial-dependent pathway. Furthermore, rotenone treatment induces phosphorylation of extracellular signal-regulated kinases (ERK1/2), N-terminal protein kinase (JNK), and the p38 mitogen activated protein (MAP) kinase, indicated that ERK1/2, JNK and p38 MAP kinases are activated. Taken together, this study demonstrated rotenone as an inhibitory agent against human breast cancer MCF7 cells in vitro. Further in vivo studies are required to determine whether rotenone could be an effective chemotherapeutic agent for the management of breast cancers.en
dc.description.provenanceMade available in DSpace on 2021-06-13T01:42:20Z (GMT). No. of bitstreams: 1
ntu-96-R94442010-1.pdf: 2098917 bytes, checksum: d923493acf0b1feeb4046a5f75750d2a (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents中文摘要 2
Abstract 3
Introduction 5
Materials and Methods 12
Results 18
Discussion 27
References 32
Figures 48
Appendix 61
dc.language.isoen
dc.subject魚藤酮zh_TW
dc.subject細胞凋亡zh_TW
dc.subjectrotenoneen
dc.subjectapoptosisen
dc.title魚藤酮對MCF7乳癌細胞株引起的細胞凋亡現象之機制探討zh_TW
dc.titleMechanisms of Rotenone-induced Apoptosis in MCF7 Human Breast Cancer Cellsen
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張明富,何元順,陳彥州,蕭水銀
dc.subject.keyword魚藤酮,細胞凋亡,zh_TW
dc.subject.keywordrotenone,apoptosis,en
dc.relation.page72
dc.rights.note有償授權
dc.date.accepted2007-07-11
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept生物化學暨分子生物學研究所zh_TW
顯示於系所單位:生物化學暨分子生物學科研究所

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  未授權公開取用
2.05 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved