Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 毒理學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30170
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉興華
dc.contributor.authorYu-Jr Tsaien
dc.contributor.author蔡雨芝zh_TW
dc.date.accessioned2021-06-13T01:41:01Z-
dc.date.available2009-08-08
dc.date.copyright2007-08-08
dc.date.issued2007
dc.date.submitted2007-07-11
dc.identifier.citationAhlgren U and Jonsson (1996) The morphogenesis of the pancreatic mesenchyme is uncoupled from that of the pancreatic epithelium in IPF1/PDX1-deficient mice. Development 122:1409-1416.
Aikawa R, Komuro I, Yamazaki T, Zou Y, Kudoh S, Tanaka M, Shiojima I, Hiroi Y and Yazaki Y (1997) Oxidative stress activates extracellular signal-regulated kinases through Src and Ras in cultured cardiac myocytes of neonatal rats. The Journal of clinical investigation 100:1813-1821.
Anderson R (1992) A peroxidase-independent method for the quantitation of extracellular hydrogen peroxide generated by activated phagocytes in vitro. J Immunol Methods 155:49-55.
Archer SL, Wu XC, Thebaud B, Moudgil R, Hashimoto K and Michelakis ED (2004) O2 sensing in the human ductus arteriosus: redox-sensitive K+ channels are regulated by mitochondria-derived hydrogen peroxide. Biological chemistry 385:205-216.
Benes C, Poitout V, Marie JC, Martin-Perez J, Roisin MP and Fagard R (1999) Mode of regulation of the extracellular signal-regulated kinases in the pancreatic beta-cell line MIN6 and their implication in the regulation of insulin gene transcription. The Biochemical journal 340:219-225.
Benes C, Roisin MP, Van Tan H, Creuzet C, Miyazaki J and Fagard R (1998) Rapid activation and nuclear translocation of mitogen-activated protein kinases in response to physiological concentration of glucose in the MIN6 pancreatic beta cell line. The Journal of biological chemistry 273:15507-15513.
Bernal-Mizrachi E, Fatrai S, Johnson JD, Ohsugi M, Otani K, Han Z, Polonsky KS and Permutt MA (2004) Defective insulin secretion and increased susceptibility to experimental diabetes are induced by reduced Akt activity in pancreatic islet beta cells. The Journal of clinical investigation 114:928-936.
Bindokas VP, Kuznetsov A, Sreenan S, Polonsky KS, Roe MW and Philipson LH (2003) Visualizing superoxide production in normal and diabetic rat islets of Langerhans. The Journal of biological chemistry 278:9796-9801.
Brubaker PL and Drucker DJ (2004) Minireview: Glucagon-like peptides regulate cell proliferation and apoptosis in the pancreas, gut, and central nervous system. Endocrinology 145:2653-2659.
Cho H, Thorvaldsen JL, Chu Q, Feng F and Birnbaum MJ (2001) Akt1/PKBalpha is required for normal growth but dispensable for maintenance of glucose homeostasis in mice. The Journal of biological chemistry 276:38349-38352.
Choi SE, Min SH, Shin HC, Kim HE, Jung MW and Kang Y (2006) Involvement of calcium-mediated apoptotic signals in H2O2-induced MIN6N8a cell death. European journal of pharmacology 547:1-9.
Dickson LM and Rhodes CJ (2004) Pancreatic beta-cell growth and survival in the onset of type 2 diabetes: a role for protein kinase B in the Akt? Am J Physiol Endocrinol Metab 287:E192-198.
Elghazi L, Balcazar N and Bernal-Mizrachi E (2006) Emerging role of protein kinase B/Akt signaling in pancreatic beta-cell mass and function. The international journal of biochemistry & cell biology 38:157-163.
Eliasson L, Renstrom E, Ammala C, Berggren PO, Bertorello AM, Bokvist K, Chibalin A, Deeney JT, Flatt PR, Gabel J, Gromada J, Larsson O, Lindstrom P, Rhodes CJ and Rorsman P (1996) PKC-dependent stimulation of exocytosis by sulfonylureas in pancreatic beta cells. Science (New York, NY 271:813-815.
Evans JL, Goldfine ID, Maddux BA and Grodsky GM (2003) Are oxidative stress-activated signaling pathways mediators of insulin resistance and beta-cell dysfunction? Diabetes 52:1-8.
Fehsel K, Jalowy A, Qi S, Burkart V, Hartmann B and Kolb H (1993) Islet cell DNA is a target of inflammatory attack by nitric oxide. Diabetes 42:496-500.
Finkbeiner S and Greenberg ME (1996) Ca(2+)-dependent routes to Ras: mechanisms for neuronal survival, differentiation, and plasticity? Neuron 16:233-236.
Fleury C, Mignotte B and Vayssiere JL (2002) Mitochondrial reactive oxygen species in cell death signaling. Biochimie 84:131-141.
Frodin M, Sekine N, Roche E, Filloux C, Prentki M, Wollheim CB and Van Obberghen E (1995) Glucose, other secretagogues, and nerve growth factor stimulate mitogen-activated protein kinase in the insulin-secreting beta-cell line, INS-1. The Journal of biological chemistry 270:7882-7889.
Goldstein BJ, Mahadev K and Wu X (2005) Redox paradox: insulin action is facilitated by insulin-stimulated reactive oxygen species with multiple potential signaling targets. Diabetes 54:311-321.
Grankvist K, Marklund SL and Taljedal IB (1981) CuZn-superoxide dismutase, Mn-superoxide dismutase, catalase and glutathione peroxidase in pancreatic islets and other tissues in the mouse. The Biochemical journal 199:393-398.
Gray E, Muller D, Squires PE, Asare-Anane H, Huang GC, Amiel S, Persaud SJ and Jones PM (2006) Activation of the extracellular calcium-sensing receptor initiates insulin secretion from human islets of Langerhans: involvement of protein kinases. The Journal of endocrinology 190:703-710.
Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS and Tannenbaum SR (1982) Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Analytical biochemistry 126:131-138.
Iancu TC, Ward RJ and Peters TJ (1990) Ultrastructural changes in the pancreas of carbonyl iron-fed rats. J Pediatr Gastroenterol Nutr 10:95-101.
Ignarro LJ, Fukuto JM, Griscavage JM, Rogers NE and Byrns RE (1993) Oxidation of nitric oxide in aqueous solution to nitrite but not nitrate: comparison with enzymatically formed nitric oxide from L-arginine. Proceedings of the National Academy of Sciences of the United States of America 90:8103-8107.
Inanami O, Ohta T, Ito S and Kuwabara M (1999) Elevation of intracellular calcium ions is essential for the H2O2-induced activation of SAPK/JNK but not for that of p38 and ERK in Chinese hamster V79 cells. Antioxidants & redox signaling 1:501-508.
Khoo S and Cobb MH (1997) Activation of mitogen-activating protein kinase by glucose is not required for insulin secretion. Proceedings of the National Academy of Sciences of the United States of America 94:5599-5604.
Kocak G, Aktan F, Canbolat O, Ozogul C, Elbeg S, Yildizoglu-Ari N and Karasu C (2000) Alpha-lipoic acid treatment ameliorates metabolic parameters, blood pressure, vascular reactivity and morphology of vessels already damaged by streptozotocin-diabetes. Diabetes, nutrition & metabolism 13:308-318.
Kowaluk EA, Seth P and Fung HL (1992) Metabolic activation of sodium nitroprusside to nitric oxide in vascular smooth muscle. J Pharmacol Exp Ther 262:916-922.
Kraft R, Grimm C, Grosse K, Hoffmann A, Sauerbruch S, Kettenmann H, Schultz G and Harteneck C (2004) Hydrogen peroxide and ADP-ribose induce TRPM2-mediated calcium influx and cation currents in microglia. Am J Physiol Cell Physiol 286:C129-137.
Krippeit-Drews P, Haberland C, Fingerle J, Drews G and Lang F (1995) Effects of H2O2 on membrane potential and [Ca2+]i of cultured rat arterial smooth muscle cells. Biochem Biophys Res Commun 209:139-145.
Kulkarni RN (2004) The islet beta-cell. The international journal of biochemistry & cell biology 36:365-371.
Lenzen S, Drinkgern J and Tiedge M (1996) Low antioxidant enzyme gene expression in pancreatic islets compared with various other mouse tissues. Free radical biology & medicine 20:463-466.
MacDonald MJ, Cook JD, Epstein ML and Flowers CH (1994) Large amount of (apo)ferritin in the pancreatic insulin cell and its stimulation by glucose. Faseb J 8:777-781.
Maechler P, Jornot L and Wollheim CB (1999) Hydrogen peroxide alters mitochondrial activation and insulin secretion in pancreatic beta cells. The Journal of biological chemistry 274:27905-27913.
Mandrup-Poulsen T (1996) The role of interleukin-1 in the pathogenesis of IDDM. Diabetologia 39:1005-1029.
Matsuzawa A and Ichijo H (2005) Stress-responsive protein kinases in redox-regulated apoptosis signaling. Antioxidants & redox signaling 7:472-481.
Medina MC, Souza LC, Caperuto LC, Anhe GF, Amanso AM, Teixeira VP, Bordin S, Carpinelli AR, Britto LR, Barbieri RL, Borella MI and Carvalho CR (2006) Dehydroepiandrosterone increases beta-cell mass and improves the glucose-induced insulin secretion by pancreatic islets from aged rats. FEBS letters 580:285-290.
Nakamura U, Iwase M, Uchizono Y, Sonoki K, Sasaki N, Imoto H, Goto D and Iida M (2006) Rapid intracellular acidification and cell death by H2O2 and alloxan in pancreatic beta cells. Free radical biology & medicine 40:2047-2055.
Nemoto S, Takeda K, Yu ZX, Ferrans VJ and Finkel T (2000) Role for mitochondrial oxidants as regulators of cellular metabolism. Molecular and cellular biology 20:7311-7318.
Olcott AP, Tocco G, Tian J, Zekzer D, Fukuto J, Ignarro L and Kaufman DL (2004) A salen-manganese catalytic free radical scavenger inhibits type 1 diabetes and islet allograft rejection. Diabetes 53:2574-2580.
Pi J, Bai Y, Zhang Q, Wong V, Floering LM, Daniel K, Reece JM, Deeney JT, Andersen ME, Corkey BE and Collins S (2007) Reactive Oxygen Species as a Signal in Glucose-Stimulated Insulin Secretion. Diabetes.
Piganelli JD, Flores SC, Cruz C, Koepp J, Batinic-Haberle I, Crapo J, Day B, Kachadourian R, Young R, Bradley B and Haskins K (2002) A metalloporphyrin-based superoxide dismutase mimic inhibits adoptive transfer of autoimmune diabetes by a diabetogenic T-cell clone. Diabetes 51:347-355.
Rabinovitch A, Suarez-Pinzon WL, Strynadka K, Lakey JR and Rajotte RV (1996) Human pancreatic islet beta-cell destruction by cytokines involves oxygen free radicals and aldehyde production. The Journal of clinical endocrinology and metabolism 81:3197-3202.
Rabinovitch A, Suarez WL, Thomas PD, Strynadka K and Simpson I (1992) Cytotoxic effects of cytokines on rat islets: evidence for involvement of free radicals and lipid peroxidation. Diabetologia 35:409-413.
Rhee SG (2006) Cell signaling. H2O2, a necessary evil for cell signaling. Science (New York, NY 312:1882-1883.
Rhee SG, Yang KS, Kang SW, Woo HA and Chang TS (2005) Controlled elimination of intracellular H2O2: regulation of peroxiredoxin, catalase, and glutathione peroxidase via post-translational modification. Antioxidants & redox signaling 7:619-626.
Robertson RP (2004) Chronic oxidative stress as a central mechanism for glucose toxicity in pancreatic islet beta cells in diabetes. The Journal of biological chemistry 279:42351-42354.
Robertson RP, Harmon J, Tran PO, Tanaka Y and Takahashi H (2003) Glucose toxicity in beta-cells: type 2 diabetes, good radicals gone bad, and the glutathione connection. Diabetes 52:581-587.
Srinivasan S, Bernal-Mizrachi E, Ohsugi M and Permutt MA (2002) Glucose promotes pancreatic islet beta-cell survival through a PI 3-kinase/Akt-signaling pathway. American journal of physiology 283:E784-793.
Steer SA, Scarim AL, Chambers KT and Corbett JA (2006) Interleukin-1 stimulates beta-cell necrosis and release of the immunological adjuvant HMGB1. PLoS medicine 3:e17.
Tanaka Y, Tran PO, Harmon J and Robertson RP (2002) A role for glutathione peroxidase in protecting pancreatic beta cells against oxidative stress in a model of glucose toxicity. Proceedings of the National Academy of Sciences of the United States of America 99:12363-12368.
Tiedge M, Lortz S, Munday R and Lenzen S (1999) Protection against the co-operative toxicity of nitric oxide and oxygen free radicals by overexpression of antioxidant enzymes in bioengineered insulin-producing RINm5F cells. Diabetologia 42:849-855.
Uchida T, Iwashita N, Ohara-Imaizumi M, Ogihara T, Nagai S, Choi JB, Tamura Y, Tada N, Kawamori R, Nakayama KI, Nagamatsu S and Watada H (2007) Protein kinase Cdelta plays a non-redundant role in insulin secretion in pancreatic beta cells. The Journal of biological chemistry 282:2707-2716.
Wan QF, Dong Y, Yang H, Lou X, Ding J and Xu T (2004) Protein kinase activation increases insulin secretion by sensitizing the secretory machinery to Ca2+. The Journal of general physiology 124:653-662.
Welsh N, Eizirik DL, Bendtzen K and Sandler S (1991) Interleukin-1 beta-induced nitric oxide production in isolated rat pancreatic islets requires gene transcription and may lead to inhibition of the Krebs cycle enzyme aconitase. Endocrinology 129:3167-3173.
White MF (2002) IRS proteins and the common path to diabetes. American journal of physiology 283:E413-422.
Wilson GL, Patton NJ and LeDoux SP (1997) Mitochondrial DNA in beta-cells is a sensitive target for damage by nitric oxide. Diabetes 46:1291-1295.
Wink DA, Nims RW, Saavedra JE, Utermahlen WE, Jr. and Ford PC (1994) The Fenton oxidation mechanism: reactivities of biologically relevant substrates with two oxidizing intermediates differ from those predicted for the hydroxyl radical. Proceedings of the National Academy of Sciences of the United States of America 91:6604-6608.
Woodgett JR (2005) Recent advances in the protein kinase B signaling pathway. Curr Opin Cell Biol 17:150-157.
Xiong FL, Sun XH, Gan L, Yang XL and Xu HB (2006) Puerarin protects rat pancreatic islets from damage by hydrogen peroxide. European journal of pharmacology 529:1-7.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30170-
dc.description.abstractReactive oxygen species (ROS) 包括了 superoxide(O2•-)、hydroxyl radical(•OH)、nitric oxide (NO•)、peroxynitrite(ONOO-)。ROS 是因為 O2 在體內正常代謝而產生並且在細胞訊息傳遞中扮演很重要的角色。但是在現今,越來越多的環境荷爾蒙、污染物,甚至藥物及生活中的壓力等等,都會造成體內的 ROS 量增加;而先前亦有很多文獻指出 ROS 的增加與很多疾病的產生有關,糖尿病就是其中之ㄧ。
很多證據顯示,胰臟中的β-cell長期處在高糖的情況下,會造成過氧化物的增加、胰島素分泌減少;並在用H2O2500μM處理大鼠(Wistar Rat) 的胰島細胞2小時之後,也的確看到了胰島素分泌減少的現象。但是ROS 在體內又與免疫系統及氧化還原反應息息相關,並由於ROS主要代謝生成是在粒線體,而粒線體被證明與胰島素分泌有關,且胰臟所含的抗氧化酵素(例如:catalase、glutathione peroxidase)遠遠低於體內其他器官。這種種的因素,顯示 ROS 與胰島素分泌的相關性極高,更讓人好奇的是在這中間是否存在著除了抑制之外的反應。而在本篇實驗,我們分為兩個不同的方向,目的是要去探討高或低劑量 ROS 對胰島細胞的胰島素分泌或者胰島細胞的死亡上所扮演的角色。
在我們的實驗中,發現以 H2O2處理人類及雄性鼷鼠的初代培養胰島細胞 (primary islet cells),在不致引起細胞毒性的低劑量下 ( 5、10、20μM 處理四小時) ,的確存在著會刺激胰島素分泌的現象。而在處理Sodium nitroprusside (SNP:提供NO)的組別,也同樣看到在0.01、0.05、0.1 mM(處理四小時)劑量下促進胰島素分泌的反應。另外合併給予 N-acetylcysteine (NAC:抗氧化劑) 時,不論處理H2O2 或SNP 均可見到胰島素分泌促進被回復的現象。與此同時,我們也看到了細胞內的鈣離子增加、ERK、AKT及PKC 等蛋白磷酸化的現象;另外在細胞死亡的部份,則如預期的看到了高劑量 ROS 的確造成了胰島細胞死亡 (H2O2 50、100、200μM or SNP 0.1、0.25、0.5 mM),而預處理NAC則可以預防細胞因為 ROS 所導致的死亡。我們進一步的根據藥物處理組的粒線體細胞膜電位損傷、Caspase3 活性增加及 JNK蛋白磷酸化來證明H2O2所導致的細胞死亡屬於apoptosis。不過在SNP所導致的細胞死亡則不同於H2O2 ,所以需要更進一步的實驗去做證明,故不在此討論。
我們希望能藉這些實驗以釐清 ROS 在胰臟所扮演的調控角色,是除了細胞死亡外,對於胰島素分泌的正向反應,並期望能更進一步去探討內生性 ROS 在保護胰臟β-cell 及促進胰島素分泌相關訊息傳遞上所扮演的角色。
zh_TW
dc.description.abstractReactive oxygen species (ROS) are well-known to induce many biological reactions, but the role of the oxidative stress on the function of pancreatic β-cell remains unclear. In this study, we attempted to elucidate the effects of ROS on β-cell damage and insulin secretion and its molecular mechanism.We treated islets isolated from human or male ICR mice and NIT-1 cell (mice prancreatic beta-cell line) with H2O2 (5, 10, 20, 50, 100 and 200μM) and SNP (0.01, 0.05, 0.1, 0.25 and 0.5 mM) to investigate what influence by which. First, we determined NIT-1 cell viability which treated with H2O2 and SNP. Then, low dose of H2O2 (5, 10 and 20μM) and SNP (0.01, 0.05 and 0.1 mM) have been investigated what effect on the insulin secretion. After treatment of 5, 10 and 20μM H2O2 or 0.01, 0.05 and 0.1 mM SNP, insulin secretion of primary islets has both been promoted. Both H2O2- and SNP-increased insulin secretions were reversed in the presence of N-acetylcysteine (NAC:an antioxidant).
We also investigate the effects of high dose of H2O2 and SNP on pancreatic β-cell death. We found that Sub-G1 cells were increased by treatment of H2O2 and SNP. In addition, H2O2 increased intracellular Ca2+ level, caspase3 activity and mitochondrial membrane potential depletion. However, SNP didn’t increase intracellular Ca2+ level and caspase3 activity. These results show that H2O2 and SNP may through different pathways to induceβ-cell death.
The present study demonstrated that low dose of ROS promoted insulin secretion of β-cells. On the other hand, high dose of ROS caused β-cell death. These data help us to better understanding of the role of oxidative stress on the physiological and toxicological regulation of pancreatic β-cells.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T01:41:01Z (GMT). No. of bitstreams: 1
ntu-96-R94447010-1.pdf: 1387612 bytes, checksum: 5de332c30dd051ea75a0abc9583c148f (MD5)
Previous issue date: 2007
en
dc.description.tableofcontentsAbbreviations………………………………………………………..……………….6
中文摘要……………………………………………………………….……………..7
Abstracts………………………………………………………………….…………..9
CHAPTER I Introduction…………………………………………..……….….10-16
1. Reactive oxygen species…………………………………………………….........10
1.1 Hydrogen peroxide………………………………...……………………..……..11
1.2 Nitric oxide………………………………………….…………..……………....12
2. Mitogen-activated protein kinases………….………………..…………………...13
3. Phosphoinositide 3-kinase………………………..………………………………14
4. Purpose…………………….…………………………………..…………………16
CHAPTER II Materials and Methods…………………………..………..…....17-21
1. Materials and animals……………………………..……………………………...17
2. Isolation of rat pancreatic islets…………………………………………..............17
3. NIT-1 cell culture……………………………………….......................................18
4. Insulin secretion studies……………………………………….............................18
5. Cell viability.………………………………..........................................................18
6. Detection of intracellular ROS……………………...............................................19
7. Measurement of intracellular Ca2+………………………….................................19
8. Measurement of caspase-3 activity. ……………………………………..............20
9. Determination of mitochondrial membrane potential. ……………………..……20
10. Nitrite/nitrate assay……………………………………………………..………20
11. Western blotting…………………………………………………………….…..21
12. Statistics…………………………………………………………………..…….21
CHAPTER III Result…………………………………………………………...22-28
Part I :Low dose of ROS……………………………………………………..22-25
1.1 Effects of H2O2, SNP, NAC and SNAP on the viability of β-cell line, NIT-1.
1.2 Effects of H2O2 and SNP on ROS generation of NIT-1 cell and primary islets.
1.3 H2O2 and SNP enhanced insulin secretion of primary mouse and human islets via increasing intracellular ROS generation.
1.4 H2O2- and SNP-enhanced intracellular calcium content was through the intracellular ROS generation of primary islets.
1.5 Effect of H2O2 and SNP on primary islets: Involvement of Extracellular Signal-Regulated Protein Kinase 1/2, Protein Kinase C, and AKT signaling.
Part II :High dose of ROS……………………………………………………..26-28
2.1 Effects of H2O2 and SNP on the viability of NIT-1 and primary human islets.
2.2 Effects of H2O2 and SNP on ROS generation of NIT-1 cells.
2.3 H2O2 activated c-JUN N-terminal kinase on NIT-1 cells.
2.4 Effects of H2O2 and SNP on intracellular calcium content of NIT-1 cells.
2.5 H2O2 and SNP induced mitochondrial membrane depolarization of NIT-1 cells.
2.6 H2O2 increased caspase-3 content of NIT-1 cells.
Chapter IV Discussion………………………………………………………..…29-32
Part I :Low dose of ROS……………………………………………………..29-30
Part II :High dose of ROS……………………………………………………31-32
Chapter V Conclusion………………………………………………………………33
Chapter VI Figures and Figure legends……………………………………..…34-65
Fig.1 Effects of H2O2 and NAC on cell viability in mouse pancreatic β-cell line, NIT-1…………………………………………………………………………34
Fig.2 Effects of SNP and SNAP on cell viability in mouse pancreatic β-cell line,
NIT-1…………………………………………………………………………………35
Fig.3 Effects of H2O2 and SNP on cell viability in mouse pancreatic β-cell line, NIT-1…………………………………………………………………………36
Fig.4 Effects of H2O2 and SNP on ROS generation in NIT-1 cell…………………………37
Fig.5 Effect of H2O2 on the intracellular ROS levels in mouse islets…………………38
Fig.6 Effect of SNP on the intracellular ROS levels in mouse islets……………………39
Fig.7 Effect of H2O2 on the intracellular ROS levels in human islets…………………40
Fig.8 Effect of SNP on the intracellular ROS levels in human islets…………………41
Fig.9 Effect of NAC on the H2O2-induced intracellular ROS levels increase in human islets………………………………………………………………………42
Fig.10 Effects of H2O2 and SNP on insulin secretion in mouse islets………………43
Fig.11 Effects of NAC on the H2O2 and SNP-regulated insulin secretion increase in
Mouse islets…………………………………………………………………44
Fig.12 Effects of H2O2 and SNP on insulin secretion in human islets…………………45
Fig.13 Compared with the levels of NO produced from SNAP and SNP………………46
Fig.14 Effects of SNAP on insulin secretion in mouse islets……………………….47
Fig.15 Effect of H2O2 on the intracellular calcium levels in mouse islets………….48
Fig.16 Effect of SNP on the intracellular calcium levels in mouse islets…………..49
Fig.17 Effect of H2O2 on the intracellular calcium levels in human islets………….50
Fig.18 Effect of SNP on the intracellular calcium levels in human islets…………..51
Fig.19 Effect of H2O2 on the intracellular calcium levels in human islets………….52
Fig.20 Effect of NAC on the H2O2-induced intracellular calcium increase in human islets…………………………………………………………………………53
Fig. 21 Analysis of phosphorylation of ERK、PKC and AKT protein in H2O2-treated mouse islets…………………………………………………………………54
Fig. 22 Analysis of ERK and PKC phosphorylation in H2O2 or SNP- treated human Islets………………………………………………………………………...55
Fig. 23 Analysis of ERK and PKC phosphorylation in H2O2 or SNP- treated human islets…………………………………………………………………………56
Fig.24 Effects of H2O2 and SNP on cell viability in mouse pancreas β-cell line, NIT-1………………………………………………………………………57
Fig.25 Effects of H2O2 on the cell viability staining with PI、FDA and DTZ…………58
Fig.26 Effects of SNP on the cell viability staining with PI、FDA and DTZ………59
Fig.27 Flow cytometric analysis showing effects of H2O2 and SNP–induced sub-G1 DNA content in NIT-1 cells………………………………………………….60
Fig.28 Effects of H2O2 and SNP on ROS generation in NIT-1 cell………...………61
Fig.29 Analysis of JNK phosphorylation in H2O2- treated NIT-1 cells.....................62
Fig.30 Effects of H2O2 and SNP on the intracellular calcium content of NIT-1 cells.................................................................................................................63
Fig.31 Analysis of mitochondrial membrane potential in H2O2 and SNP-treated NIT-1 cells......................................................................................................64
Fig.32 Analysis of caspase-3 activity in H2O2-treated NIT-1 cells............................65
Reference…………………………………………………………………………66-71
dc.language.isoen
dc.subject氧化氮zh_TW
dc.subject胰島素分泌zh_TW
dc.subject氧化性壓力zh_TW
dc.subject細胞死亡zh_TW
dc.subject過氧化氫zh_TW
dc.subjecthydrogen peroxideen
dc.subjectreactive oxygen speciesen
dc.subjectcell deathen
dc.subjectsodium nitroprussideen
dc.subjectinsulin secretionen
dc.title氧化性壓力在促進胰島素分泌及誘導細胞死亡訊息上的雙向影響zh_TW
dc.titleEffects of hydrogen peroxide and sodium nitroprusside on the promotion of insulin secretion and the induction of cell death signals.en
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蕭水銀,楊榮森
dc.subject.keyword過氧化氫,氧化氮,氧化性壓力,胰島素分泌,細胞死亡,zh_TW
dc.subject.keywordreactive oxygen species,hydrogen peroxide,sodium nitroprusside,insulin secretion,cell death,en
dc.relation.page71
dc.rights.note有償授權
dc.date.accepted2007-07-12
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept毒理學研究所zh_TW
顯示於系所單位:毒理學研究所

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  未授權公開取用
1.36 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved