Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 臨床醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30132
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蕭自佑
dc.contributor.authorKang-Hsuan Chiuen
dc.contributor.author邱康瑄zh_TW
dc.date.accessioned2021-06-13T01:38:26Z-
dc.date.available2007-08-08
dc.date.copyright2007-08-08
dc.date.issued2007
dc.date.submitted2007-07-13
dc.identifier.citation1. Baken RJ, Electroglottography. Journal of Voice. 1992 ; 6 : 98-110.
2. Baken RJ, Orlinkoff RF. Clinical measurement of speech and voice. 2nd ed. Thomson Learning: Singular Publishing; 2000.
3. Berke GS. Intraoperative measurement of the elastic modulus of the vocal fold. Part 1. Device development. Laryngoscope. 1992 ; 102 : 760-69.
4. Berke GS, Smith ME. Intraoperative measurement of the elastic modulus of the vocal fold. Part 2. Preliminary results. Laryngoscope. 1992 ; 102 : 770-78.
5. Childers DG, Smith AM, Moore GP. Relationships between electroglottograph, speech, and vocal cord contact. Folia Phoniat. 1984 ; 36 : 105-18.
6. Coleman RF, Wendahl RW. On the validity of laryngeal photosensor monitoring. J Acoust Soc Am. 1968 ; 44 : 1733-35.
7. Fabre P. Un procédé électrique percutané d’inscription de l’accolement glottique au cours de la phonation: glottographie de haute fréquence. Premiers resultants. Bulletin de l'Académie Nationale de Médecine. 1957 ; 141 : 66-9.
8. Fariborz AH, Titze IR, Elastic models of vocal fold tissues. J Acoust Soc Am. 1991 ; 90 : 1326-31.
9. Friedman EM. Role of ultrasound in the assessment of vocal cord function in infants and children. Ann Otol Rhinol Laryngol. 1997 ; 106 : 199-209.
10. Garel C, Legrand I, Elmaleh M, Contencin P & Hassan M. Laryngeal ultrasonography in infants and children: anatomical correlation with fetal preparations. Pedia Radiol. 1990 ; 20 : 241-44.
11. Hamlet S L. Ultrasonic measurement of larynx height and vocal fold vibratory pattern. J Acoust Soc Am. 1980 ; 68 : 121-26.
12. Hanson DG, Jiang J, D’Agostino M, Herzon G. Clinical measurement of mucosal wave velocity using simultaneous photoglottography and laryngostroboscopy. Ann Otol Rhinol Laryngol. 1995 ; 104 : 340-49.
13. Harden RJ. Comparison of glottal area changes as measured from ultrahigh-speed photographs and photoelectric glottographs. J Speech Hear Res. 1975 ; 18 : 728-38.
14. Harries M, Hawkins S, Hacking J, Hughes I. Changes in the male voice at puberty: vocal fold length and its relationship to the fundamental frequency of the voice. Journal of Laryngology and Otology. 1998 ; 112 : 451-54.
15. Hertz CH, Lindstr K, Sones son B. Ultrasonic recording of the vibrating vocal folds. Acta Otolaryng. 1970 ; 69 : 223-30.
16. Hirano M. Morphological structure of the vocal cord as a vibrator and its variations. Folia Phoniat. 1974 ; 26 : 89-94.
17. Hirano M. Phonosurgery: basic and clinical investigations. Otologia (Fukuoka). 1975 ; 21(Suppl l) : 239-62.
18. Hirano M. Clinical Examination of voice. New York: Springer-Verlag. 1981.
19. Hiroto I. The mechanism of phonation: its pathophysiological aspects. Pract Otol(Kyoto). 1966 ; 39 : 229-91. [In Japanese].
20. Holmer N-G, Kitzing P, Lindstr K. Echo glottography. Acta Otolaryng. 1973 ; 75 : 454-63.
21. Hsiao TY, Wang CL, Chen CN, Hsieh FJ, Shau YW. Noninvasive assessment of laryngeal phonation function using color Doppler ultrasound imaging. Ultrasound in Medicine and Biology. 2001 ; 27(8) : 1035-40.
22. Hsiao TY, Wang CL, Chen CN, Hsieh FJ, Shau YW. Elasticity of hyman vocal folds measured in vivo using color Doppler imaging. Ultrasound in Medicine and Biology. 2002 ; 28(9) : 1145-52.
23. Ishizaka K, Matsudaira M. Synthesis of voiced sound from a two-mass model of the vocal cords. Bell Syst Tech J. 1972 ; 51 : 1233-68.
24. Isshiki N, Ohkawa M, Goto M. Stiffness of the vocal cord in dysphonia? Its
assessment and treatment. Acta Otolaryngol (Stockh). 1985 ; 419 : 167-74.
25. Jadcherla SR, Gupta A, Stoner E, Coley BD, Wiet GJ, Shaker R. Correlation of glottal closure using concurrent ultrasonography and nasolaryngoscopy in children: a novel approach to evaluate glottal status. Dysphagia. 2006 : 75-81.
26. Kahane J. A morphological study of the human prepubertal and pubertal larynx. Am J Anat. 1978 ; 151 : 11-20.
27. Kizing P, Löfqvist A. Evaluation of voice therapy by means of photoglottography. Folia Phoniat. 1979 ; 31 : 103-9.
28. Miles KA. Ultrasound demonstration of vocal cord movements. British J Rad. 1989 ; 62 : 871-72.
29. Mulutinović Z, Polić D, Milenković S, Sretenović V. Spatial arrangement of the structural elements of vocal fold layers: an adjustment to the vibration process. J Voice. 1988 ; 12(1) : 17-20.
30. Nasri S, Sercarz JA, Berke GS. Noninvasive measurement of traveling wave velocity in the canine larynx. Ann Otol Rhinol Laryngol. 1994 ; 103 : 758-66.
31. Ooi PL, Chan HS, Soo KC. Color doppler imaging for vocal cord palsy. Head & Neck. 1995 ; 17 : 20-23.
32. Perlman AL, Titze IR, Cooper DS. Elasticity of canine vocal fold tissue. Journal of Speech and Hearing Research. 1984 ; 27 : 212-19.
33. Perlman AL, Titze IR. Development of an in vitro technique for measuring elastic
properties of vocal fold tissue. Journal of Speech and Hearing Research. 1988 ; 31 : 288-98.
34. Raghavendra BN, Horii SC, Reede DL, Rumancik WM, Persky M, Bergeron RT.
Sonographic anatomy of the larynx, with particular reference to the vocal cords. J
Ultrasound Med. 1987 ; 6 : 225-30.
35. Rubin JS, Lee S, McGuinness J, Hore I, Hill D, Berger L. The potential role of ultrasound in differentiating solid and cystic swellings of the true vocal fold. J Voice. 2004 ; 18(2) : 231-35.
36. Sasaki CT & Weaver EM. Physiology of the larynx. Am J Med. 1997 ; l03 : 9s-18s.
37. Sawashima M, Cooper F. S. ed. Dynamic aspects of speech production. Tokyo,
Japan : Univ Tokyo Press, 31-46 ; 1977.
38. Schindler O, Gonella ML, Pisani R. Doppler ultrasound examination of the vibration speed of vocal folds. Folia Phoniatr. 1990 ; 42 : 265-72.
39. Shau YW, Wang CL, Hsieh FJ, Hsiao TY. Noninvasive assessment of vocal fold mucosal wave velocity using color Doppler imaging. Ultrasond in Medicine and Biology. 2001 ; 27(11) : 1451-60.
40. Sidhu S, Stanton R, Shahidi S, Chu J, Chew S, Campbell P. Initial experience of vocal cord evaluation using grey-scale, real-time, B-mode ultrasound. ANZ J Surg. 2001 ; 71 : 737-39.
41. Sloan SH, Berke GS, Garratt BR, Kreiman J, Ye M. Determination of vocal fold
mucosal wave velocity in an in vivo canine model. Laryngoscope. 1993 ; l03 : 947-53.
42. Story BH, Titze JR. Voice simulation with a body-cover model of the vocal folds. J Acoust SocAm. 1995 ; 97 : 1249-60.
43. SuIter AM, Albers FWJ. The effects of frequency and intensity level on glottal closure in normal subjects. Clin Otolaryngol. 1996 ; 21 : 324-27.
44. Sung MW, Kim KH, Koh TY, Kwon TY, Mo JH, Choi SH, et al. Videostrobokymography: A new method for the quantitative analysis of vocal fold vibration. Laryngoscope. 1999 ; 109 : 1859-63.
45. Tanaka S & Hirano M. Fiberscopic estimation of vocal fold stiffness in vivo using the sucking method. Arch Otolaryngol Head Neck Surg. 1990 ; 116 : 721-24.
46. Tetze IR. Comments on the myoelastic-aerodynamic theory of phonation. J Speech Hear Res. 1979 ; 23 : 495-510.
47. Titze IR. The physics of small-amplitude oscillation of the vocal folds. J Acoust Soc Am. 1988 ; 83 : 1536-52.
48. Titze IR. On the relation between subglottal pressure and fundamental frequency in phonation. J Acoust Soc Am. 1989 ; 85 : 901-6.
49. Titze IR. Physiological and acoustic differences between male and female voices. J Acoust Soc Am. 1989 ; 85 : 1699-1707.
50. Titze IR. Phonation threshold pressure: A missing link in glottal aerodynamics. J
Acoust Soc Am. 1992 ; 91 : 2926-35.
51. Titze IR, Jiang JJ. Hsiao TY. Measurement of mucosal wave propagation and vertical phase difference in vocal fold vibration. Ann Otol Rhinol Laryngol. 1993 ; 102 : 58-63.
52. Tucker HM. The larynx. Gerog Theieme Verlag, Thieme Medical Publishers ; 1987.
53. Ueda D, Yano K, Okuno A. Ultrasonic imaging of the tongue, mouth, and vocal cords in normal children : Establishment of basic scanning positions. J Clin Ultrasound. 1993 ; 21 : 431-39.
54. Vats A, Worley R, de Bruyn H, Porter DM, Bailey CM. Laryngealultrasound to assess vocal fold paralysis in children. J Laryngol Otol. 2004 ; 118 : 429-31.
55. van den Berg J. Myoelastic aerodynamic theory of voice production. J Speech Hear Res. 1958 ; 1 : 227-43.
56. von Leden H, Moore P, Timcke R. Laryngeal vibrations: Measurements of the glottic wave. Part III: The pathologic larynx. Archives of Otolaryngology. 1960 ; 71 : 16-35.
57. Yumoto E, Yoshimi K, Toshihiro M. Vocal fold vibration viewed from the tracheal side in living human beings. Otolaryngol Head Neck Surg. 1996 ; 115 : 329-34.
58. 蕭自佑,1994,喉部發生機轉之研究,國立台灣大學醫學院生理學研究所博士論文。
59. 蕭自佑,1999,音聲醫學概論,藝軒圖書出版社。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30132-
dc.description.abstract音聲醫學(phoniatrics)是從解剖、生理、病理等醫學的角度,來探討人類發聲的學問。到目前為止,文獻中對於人體聲帶的功能障礙仍然沒有準確的評估方法。
要研究聲帶發聲之生物力學需要深入軟組織去看,以目前非侵襲性的影像檢查儀器 ( 例如:電腦斷層掃描儀、核磁共振儀、超音波儀 ) 都是很好的選擇。但是要檢查振動中的聲帶組織,對於上列儀器都是相當大的挑戰。超音波擁有高解析度且為非侵襲性的檢查優點,已廣泛地應用臨床醫學上,透視活體組織在低頻率的運動 (f < 10Hz) 。但是超音波在耳鼻喉科臨床及聲帶研究方面實在很少。因為喉部周圍組織有空氣界面與軟骨,超音波傳遞受到阻礙,且聲帶的振動是一個高頻的運動,超音波影像在時間上及空間上解析度都不足,無法觀察高頻率的運動。所以到目前為止,超音波在聲帶方面的研究,大部份都侷限於型態學上。
本研究擬開發超音波影像應用於人體聲帶的臨床診斷。鑒於聲帶的顯微構造以及其病變尤其是Renike’s space的狀態與音聲障礙息息相關,我們利用更精密、解析度高的超音波儀器,由聲帶的分層構造著手,配合組織學檢查確定,確立聲帶各分層構造在超音波影像上之正常圖像及特徵,期待以此為基礎開拓超音波影像在音聲障礙診斷的新視野。
在本研究中我們經由將聲帶分層構造一層一層剝離,並加上組織學在光學顯微鏡下的確認,我們得以完成聲帶各分層構造在超音波影像上之圖像特徵與確認。由上面的結果我們可以得到下面幾項重要的結論:
(1)證明聲帶的分層構造的確可以在超音波影像上清楚的表示出來。
(2)各分層在超音波影像上之特徵如下:Reinke’s space在B-mode超音波下是組織-空氣介面下一層低超音波回音的區域。聲帶韌帶為Reinke’s space之上較薄一層稍微不均勻稍為高一點回音的區域。而聲帶肌則為甲狀軟骨下一層緊密且較高回音的區域。
有了本研究的結果,對於將來能夠正確的評估cover層的狀態將有極大的幫助。並期望超音波影像這項具有非侵入性、安全、方便、即時(real time)、檢查時不影響正常發聲等優點的好工具能夠真正成為臨床上常規檢查音聲障礙的利器。
zh_TW
dc.description.abstractAlthough clinical ultrasound imaging has been widely used in various fields of practice, its application on the laryngeal examination has been limited due to the spatial resolution and the dynamic response to tiny high frequency movements. Among the basic functions of human larynx, phonation is one of the most complex and the least understood activity. The 3D vibratory movements of the vocal folds(VF), the stiffness of the mucosa and the aerodynamic forces acting on the VF play important roles in the formation of voice. Therefore, sophisticated noninvasive technologies that combine photoglottography (PGG), electroglottography (EGG) or video laryngostroboscopy with aerodynamic methods need to be developed to investigate the laryngeal function and the neurophysiology of phonation.

To visualize the laryngeal activity in vivo under normal articular movements, fiberoptics were inserted into the lower pharynx via the nasal cavity. The ultrasonography of the larynx would provide further details of the VF cartilaginous and endolaryngeal structures. The true vocal folds and the vocal muscles appeared as hypoechoic structures that could not be adequately visualized in US scanning (Raghavendra et al. 1987). Morphologically, the use of B-mode US is not superior to other imaging techniques, such as CT or MRI in visualizing laryngeal structures, especially the true VF. Therefore, the studies of phonation have been limited.

The vibration of VF periodically interrupts the glottal airflow and forms the acoustic signal that is perceived as the voice. Due to its unique multilayered structures, the VF can be divided into the “cover” and the “body”. The cover includes mucosa and the superficial layer of lamina propria, called the Reinke’s space. The body consists of vocal ligament and vocal muscle. Functionally, the vibration of VF is confined mainly to the cover and the mucosal wave is propagated vertically from the lower to the upper margin of the VF. The vertical mucosal traveling wave is the summation of sequential horizontal tissue displacement waves from the infraglottic to supraglottic extent of the VF structure.
The status of the VF cover, especially the stiffness of Reinke’s space, plays the key important role in the pathogenesis of dysphonia. In this study, we use the new generation ultrasonography scanner with higher resolution (HDI-5000, ATL, Bothell, WA) and higher frame rate (33 Hz) in B-mode to study the multilayered structures of vocal folds from fresh excised human larynx after laryngectgomy. We studied the echogenic features of each layer. The multilayered structure of the vocal fold was stripped off layer by layer and was confirmed by histopathology. And the multilayered structures of vocal folds in ultrasound imaging were verified. The cover of the vocal folds was an almost nonechogenic band.
The medical ultrasound imaging is easy to perform and analyze, safe, non-invasive, well tolerated, generally available, real-time and with a minimum disturbance to the voice production. It seems to be one of the best choices to meet the requirements for routine laryngeal examination. This is the first time the multilayered structures of vocal folds, especially the cover were verified by medical ultrasound imaging. By doing so, we hoped that medical ultrasound imaging can someday become a promising tool in diagnosing the causes of dysphonia in routine laryngeal examination.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T01:38:26Z (GMT). No. of bitstreams: 1
ntu-96-P90421014-1.pdf: 3021644 bytes, checksum: 0db6076a8115fa873709fd23f3b0ef3f (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents目錄
致謝.............................................................Ⅰ
目錄.............................................................Ⅱ
圖目錄...........................................................Ⅲ
一、中文摘要 .....................................................1
二、緒論(Introduction)..........................................2
2-1 前言.......................................................2
2-2 研究的問題及其重要性.......................................2
2-3 研究假說與特定目的.........................................2
2-4 背景.......................................................2
2-4-1 聲帶的解剖結構.........................................3
2-4-2 聲帶的顯微構造.........................................3
2-4-3 聲帶的肌肉控制.........................................4
2-4-4 聲帶振動所需之最低聲門下壓力...........................4
2-4-5 喉部的發聲機轉.........................................5
2-4-6 音聲功能的測量.........................................6
2-5 文獻回顧...................................................7
三、研究方法與材料...............................................14
3-1 材料......................................................14
3-2 儀器......................................................14
3-3 步驟......................................................14
四、結果.........................................................15
4-1 Specimen 來源以及基本資料.................................15
4-2 外觀......................................................15
4-3 利用超音波影像即時觀看的特性確認喉部各個構造..............15
4-4 聲帶各層超音波圖像........................................15
4-4-1 完整聲帶超音波影像....................................15
4-4-2 除去黏膜以及Reinke’s space(cover)層的超音波圖像.....16
4-4-3 除去聲帶韌帶後的超音波圖像............................16
4-4-4 除去肌肉層的超音波圖像................................16
4-5 結論......................................................17
五、討論.........................................................18
六、展望.........................................................23
七、論文英文簡述(summary)......................................25
八、參考文獻.....................................................27
九、圖表.........................................................31

圖目錄
圖2-1 喉部的結構..................................................31
圖2-2 喉部的骨架..................................................31
圖2-3 聲帶的顯微構造..............................................32
圖2-4 喉內肌之作用示意圖..........................................33
圖2-5 軀體-包膜理論和雙實體理論...................................34
圖2-6 聲帶黏膜波動之立體形式......................................35
圖3-1 探頭位置....................................................36
圖3-2 Thyroid lamina上開windwow.................................. 36
圖4-1 檢視標本外觀................................................37
圖4-2 超音波即時檢視喉部各構造(1)聲帶黏膜.......................38
圖4-3 超音波即時檢視喉部各構造(2)喉室...........................38
圖4-4 完整聲帶超音波影像..........................................39
圖4-5 完整聲帶超音波影像示意圖....................................39
圖4-6 除去黏膜以及Reinke’s space(cover)層的超音波圖像.............40
圖4-7 除去cover層的超音波圖像示意圖...............................40
圖4-8 除去cover後實體圖............ ..............................41
圖4-9 cover層組織病理圖...........................................41
圖4-10 除去聲帶韌帶後的超音波圖像.................................42
圖4-11 除去聲帶韌帶後的超音波圖像示意圖...........................42
圖4-12 除去聲帶韌帶後的實體圖.....................................43
圖4-13 聲帶韌帶組織病理圖.........................................43
圖4-14 除去肌肉層的超音波圖像.....................................44
圖4-15 除去肌肉層的超音波圖像示意圖...............................44
圖4-16 除去肌肉層的實體圖.........................................45
圖4-17 肌肉層的組織病理圖.........................................45
圖4-18 聲帶分層構造超音圖像並列圖.................................46
圖5-1 軸切面與冠狀切面比較圖......................................47
dc.language.isozh-TW
dc.subject聲帶zh_TW
dc.subject分層構造zh_TW
dc.subject超音波影像zh_TW
dc.subjectultrasound imagingen
dc.subjectvocal foldsen
dc.subjectmultilayered structureen
dc.title探討聲帶分層構造在超音波影像之呈現zh_TW
dc.titleVerifying the Multilayered Structures of Vocal Folds in Ultrasound Imagingen
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.oralexamcommittee賴明陽,劉嘉銘
dc.subject.keyword超音波影像,聲帶,分層構造,zh_TW
dc.subject.keywordultrasound imaging,vocal folds,multilayered structure,en
dc.relation.page47
dc.rights.note有償授權
dc.date.accepted2007-07-13
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept臨床醫學研究所zh_TW
顯示於系所單位:臨床醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  未授權公開取用
2.95 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved