請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30129完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 鄧麗珍 | |
| dc.contributor.author | Shang-Jie You | en |
| dc.contributor.author | 游尚捷 | zh_TW |
| dc.date.accessioned | 2021-06-13T01:38:14Z | - |
| dc.date.available | 2021-12-31 | |
| dc.date.copyright | 2011-10-07 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-08-02 | |
| dc.identifier.citation | 1. Besier S LA, Brade V, Wichelhaus TA. (2003) Molecular analysis of fusidic acid resistance in Staphylococcus aureus. Mol Microbiol. 47(2): 463-469.
2. Bodley JW ZF, Lin L, Zieve ST. (1969) Formation of the ribosome-G factor-GDP complex in the presence of fusidic acid. Biochem Biophys Res Commun. 37: 437-443. 3. Brown EM & Thomas P (2002) Fusidic acid resistance in Staphylococcus aureus isolates. The Lancet 359: 803. 4. Castanheira M, Watters AA, Bell JM, Turnidge JD & Jones RN (2010) Fusidic acid resistance rates and prevalence of resistance mechanisms among Staphylococcus spp. isolated in North America and Australia, 2007-2008. Antimicrobial Agents and Chemotherapy 54: 3614-3617. 5. Castanheira M, Watters AA, Mendes RE, Farrell DJ & Jones RN (2010) Occurrence and molecular characterization of fusidic acid resistance mechanisms among Staphylococcus spp. from European countries (2008). The Journal of Antimicrobial Chemotherapy 65: 1353-1358. 6. Chen HJ, Hung WC, Tseng SP, Tsai JC, Hsueh PR & Teng LJ (2010) Fusidic acid resistance determinants in Staphylococcus aureus clinical isolates. Antimicrobial Agents and Chemotherapy 54: 4985-4991. 7. Chen Y KR, Sanyal S, Selmer M. (2010) Staphylococcus aureus elongation factor G--structure and analysis of a target for fusidic acid. FEBS J. 277(18):: 3789-3803. 8. Cuong Vuong MO (2002) Staphylococcus epidermidis infections. Microbes and Infection 4: 481–489. 9. Dobie D (2004) Fusidic acid resistance in Staphylococcus aureus. Archives of Disease in Childhood 89: 74-77. 10. Fantin B LR, Duval J, Carbon C. (1993) Fusidic acid alone or in combination with vancomycin for therapy of experimental endocarditis due to methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 37(11): 2466-2469. 11. Grayson BPHaML (2006) Dumb and dumber--the potential waste of a useful antistaphylococcal agent: emerging fusidic acid resistance in Staphylococcus aureus. Clin Infect Dis. 42: 394–400. 12. Holden MT, Feil EJ, Lindsay JA, et al. (2004) Complete genomes of two clinical Staphylococcus aureus strains: evidence for the rapid evolution of virulence and drug resistance. Proceedings of the National Academy of Sciences of the United States of America 101: 9786-9791. 13. Johanson U HD (1994) Fusidic acid-resistant mutants define three regions in elongation factor G of Salmonella typhimurium. Gene. 143(1): 55-59. 14. Lannergard J, Norstrom T & Hughes D (2009) Genetic determinants of resistance to fusidic acid among clinical bacteremia isolates of Staphylococcus aureus. Antimicrobial Agents and Chemotherapy 53: 2059-2065. 15. Liu D, Swiatlo E, Austin FW & Lawrence ML (2006) Use of a putative transcriptional regulator gene as target for specific identification of Staphylococcus epidermidis. Letters in Applied Microbiology 43: 325-330. 16. Martemyanov KA, Liljas A, Yarunin AS & Gudkov AT (2001) Mutations in the G-domain of elongation factor G from Thermus thermophilus affect both its interaction with GTP and fusidic acid. The Journal of Biological Chemistry 276: 28774-28778. 17. Martin Laurberg OK, Kirill Martemyanov,Anatoly T. Gudkov, Ivan Nagaev, Diarmaid Hughes and Anders Liljas (2000) Structure of a mutant EF-G reveals domain III and possibly the fusidic acid binding site. J Mol Biol. 303: 593-603. 18. Massey RC HM, Lina G, Höök M, Recker M. (2006) The evolution and maintenance of virulence in Staphylococcus aureus: a role for host-to-host transmission? Nat Rev Microbiol. 4(12): 953-958. 19. McCann MT, Gilmore BF & Gorman SP (2008) Staphylococcus epidermidis device-related infections: pathogenesis and clinical management. The Journal of Pharmacy and Pharmacology 60: 1551-1571. 20. McLaws F, Chopra I & O'Neill AJ (2008) High prevalence of resistance to fusidic acid in clinical isolates of Staphylococcus epidermidis. The Journal of Antimicrobial Chemotherapy 61: 1040-1043. 21. Nagaev I BJ, Andersson DI, Hughes D. (2001) Biological cost and compensatory evolution in fusidic acid-resistant Staphylococcus aureus. Mol Microbiol 40(2): 433-439. 22. Noren T, Akerlund T, Wullt M, Burman LG & Unemo M (2007) Mutations in fusA associated with posttherapy fusidic acid resistance in Clostridium difficile. Antimicrobial Agents and Chemotherapy 51: 1840-1843. 23. Norstrom T, Lannergard J & Hughes D (2007) Genetic and phenotypic identification of fusidic acid-resistant mutants with the small-colony-variant phenotype in Staphylococcus aureus. Antimicrobial Agents and Chemotherapy 51: 4438-4446. 24. O'Brien FG (2002) Genetic characterization of the fusidic acid and cadmium resistance determinants of Staphylococcus aureus plasmid pUB101. Journal of Antimicrobial Chemotherapy 50: 313-321. 25. O'Gara JP HH (2001) Staphylococcus epidermidis biofilms: importance and implications. J Med Microbiol. 50(7): 582-587. 26. O'Neill AJ & Chopra I (2006) Molecular basis of fusB-mediated resistance to fusidic acid in Staphylococcus aureus. Molecular Microbiology 59: 664-676. 27. O'Neill AJ, Larsen AR, Henriksen AS & Chopra I (2004) A fusidic acid-resistant epidemic strain of Staphylococcus aureus carries the fusB determinant, whereas fusA mutations are prevalent in other resistant isolates. Antimicrobial Agents and Chemotherapy 48: 3594-3597. 28. O'Neill AJ, Larsen AR, Skov R, Henriksen AS & Chopra I (2007) Characterization of the epidemic European fusidic acid-resistant impetigo clone of Staphylococcus aureus. Journal of Clinical Microbiology 45: 1505-1510. 29. O'Neill AJ, McLaws F, Kahlmeter G, Henriksen AS & Chopra I (2007) Genetic basis of resistance to fusidic acid in staphylococci. Antimicrobial Agents and Chemotherapy 51: 1737-1740. 30. Otto M (2009) Staphylococcus epidermidis--the 'accidental' pathogen. Nature reviews. Microbiology 7: 555-567. 31. Yazdankhah SP, Asli AW, Sorum H, Oppegaard H & Sunde M (2006) Fusidic acid resistance, mediated by fusB, in bovine coagulase-negative staphylococci. The Journal of Antimicrobial Chemotherapy 58: 1254-1256. 32. Yu XH, Song XJ, Cai Y, Liang BB, Lin DF & Wang R (2010) In vitro activity of two old antibiotics against clinical isolates of methicillin-resistant Staphylococcus aureus. The Journal of Antibiotics 63: 657-659. 33. A., K., Fusidate sodium., in The Use of Antibiotics. 5th ed.1997. 34. Moellering RC, Jr., Corey GR & Grayson ML (2011) Introduction: fusidic acid enters the United States. Clinical Infectious Diseases 52 Suppl 7: S467-468. 35. Nam JR KM, Lee CH, Whang DH. (2008) Linezolid Treatment for Osteomyelitis due to Staphylococcus epidermidis with Reduced Vancomycin Susceptibility. J Korean Neurosurg Soc. 43: 307-310. 36. Raad I AA, Rolston K. (1998) Staphylococcus epidermidis: emerging resistance and need for alternative agents. Clin Infect Dis. 26: 1182–1187. 37. Zinn CS WH, Rosdahl VT; Sarisa Study Group. (2004 ) An international multicenter study of antimicrobial resistance and typing of hospital Staphylococcus aureus isolates from 21 laboratories in 19 countries or states. Microb Drug Resist. 10: 160-168. 38. Hacker J KJ (2000) Pathogenicity islands and the evolution of microbes. Annu Rev Microbiol. 54: 641-679. 39. Kuroda M, Ohta T, Uchiyama I, et al. (2001) Whole genome sequencing of meticillin-resistant Staphylococcus aureus. The Lancet 357: 1225-1240. 40. Lindsay JA RA, Ross HF, Kurepina N, Novick RP. (1998) The gene for toxic shock toxin is carried by a family of mobile pathogenicity islands in Staphylococcus aureus. Mol Microbiol. 29: 527-543. 41. Subedi A, Ubeda C, Adhikari RP, Penades JR & Novick RP (2007) Sequence analysis reveals genetic exchanges and intraspecific spread of SaPI2, a pathogenicity island involved in menstrual toxic shock. Microbiology 153: 3235-3245. 42. Ubeda C, Barry P, Penades JR & Novick RP (2007) A pathogenicity island replicon in Staphylococcus aureus replicates as an unstable plasmid. Proceedings of the National Academy of Sciences of the United States of America 104: 14182-14188. 43. Ubeda C, Maiques E, Knecht E, Lasa I, Novick RP & Penades JR (2005) Antibiotic-induced SOS response promotes horizontal dissemination of pathogenicity island-encoded virulence factors in staphylococci. Molecular Microbiology 56: 836-844. 44. Ubeda C, Maiques E, Tormo MA, et al. (2007) SaPI operon I is required for SaPI packaging and is controlled by LexA. Molecular microbiology 65: 41-50. 45. Ubeda C, Maiques E, Barry P, et al. (2008) SaPI mutations affecting replication and transfer and enabling autonomous replication in the absence of helper phage. Molecular Microbiology 67: 493-503. 46. Ubeda C, Tormo MA, Cucarella C, Trotonda P, Foster TJ, Lasa I & Penades JR (2003) Sip, an integrase protein with excision, circularization and integration activities, defines a new family of mobile Staphylococcus aureus pathogenicity islands. Molecular Microbiology 49: 193-210. 47. 陳小然,2011,金黃葡萄球菌及表皮葡萄球菌對於夫西地酸抗藥基因分析,國立台灣大學博士論文. 48. Chih-Ming Chen MH, Huei-Fen Chen , Se-Chin Ke , Chia-Ru Li , Jen-Hsien Wang, and Lii-Tzu Wu (2011) Fusidic acid resistance among clinical isolates of methicillin-resistant Staphylococcus aureus in a Taiwanese hospital. BMC Microbiology 11:98. 49. Schofer H & Simonsen L (2010) Fusidic acid in dermatology: an updated review. European Journal of Dermatology : EJD 20: 6-15. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30129 | - |
| dc.description.abstract | 夫西地酸 (fusidic acid;FA)為類固醇類的抗生素,臨床上主要用於治療葡萄球菌屬所引起的皮膚感染或者較為嚴重的全身性症狀。細菌在合成蛋白質的過程當中,elongation factor G (EF-G)會與ribosome結合,並協助水解GTP產生能量,將peptidyl-tRNA從A site移至P site,接著EF-G-GDP離開ribosome,繼續蛋白質合成。而夫西地酸會與EF-G-GTP/GDP-ribosome結合,使EF-G-GDP無法離開ribosome而抑制細菌蛋白質的合成,達到藥物作用的效果。
細菌可經由藥物作用標的基因改變 (fusA和fusE 點突變)、獲得外來抗藥基因 (fusB、fusC、fusD)或是其他未知機制而對夫西地酸產生抗藥。fusB最早被發現位於質體pUB101 (transposon-like element)或是染色體核酸 (chromosome DNA;staphylococcal related pathogenicity island)上。有學者證明FusB會與EF-G直接結合,並在夫西地酸存在下使得細菌蛋白質可以順利轉譯達到抗藥的效果。fusC及fusD與fusB相似,同樣會使細菌對於夫西地酸產生抗藥性。 本實驗針對2008年台大醫院145株表皮葡萄球菌臨床菌株,針對其中53株對於夫西地酸抗藥的菌株 (36.6%),分析抗藥基因的分布情形:其中主要以fusB (52 / 53 =98.1%)為主、fusC (1 / 53 = 1.9%)次之,沒有fusD (0%)。並且利用aj1-LP-fusB結構對fusB進行分型,主要以type II (34.0%)、type III (37.7%)為主,以及少部分的type I (7.5%),且發現大部分是插入在染色體核酸groEL的下游 (28/52 = 53.8%);而fusC的結構與MSSA476應該是相似的。為了解分離自不同病患但卻皆帶有fusB基因的表皮葡萄球菌是否為單一菌株傳播或是不同菌株感染,進行脈衝式電泳,其為不同菌株感染,結果顯示帶有fusB的基因片段可能會在臨床菌株中傳播而造成細菌的抗藥性。 | zh_TW |
| dc.description.abstract | Fusidic acid (FA) is a steroid antibiotic that is an effective anti-staphylococcal treatment used for skin or more severe systemic infection by staphylococci. In the process of bacteria protein synthesis, elongation factor G (EF-G) binds to the ribosome, and assists in hydrolysis of GTP to produce energy when the peptidyl-tRNA from the A site to the P site, followed by EF-G-GDP to leave the ribosome, to continue Protein synthesis. Fusidic acid inhibits bacteria protein synthesis by binding to a complex of elongation factor G (EF-G-GTP/GDP-ribosome), and then inhibiting the release of EF-G-GDP complex even after transloacation.
Resistance to fusidic acid can arise from the drug target gene alteration (fusA and fusE point mutation), horizontal acquirement of resistance determinants ( fusB, fusC and fusD) or other unknown mechanisms. fusB was first found in the plasmid pUB101 (transposon-like element), or in the chromosomal DNA (staphylococcal related pathogenicity island) ,and then demonstrated directly binding to EF-G to protect staphylococcal translation in vitro. fusC and fusD were homologues of fusB conferred resistance to fusidic acid. In this study, we selected 53 fusidic acid resistant Staphylococcus epidermidis clinical strains (53 / 145 = 36.6%) isolated from the 2008 National Taiwan University Hospital (NTUH). First, we analyzed the distribution of resistance genes: mainly fusB (52 / 53 = 98.1%) , fusC (1 / 53 = 1.9%) and no fusD (0%). And we classified fusB by aj1-LP-fusB structure: type I (7.5%), mainly type II (34.0%) and type III (37.7%). And we found that most strains were inserted in the chromosomal DNA downstream of groEL (28/52 = 53.8%); and fusC structure might be similar with the MSSA476. The pulsed field gel electrophoresis patterns of S. epidermidis NTUH clinical strains showed the heterogeneity and the fusB element maybe transferable among clinical isolates. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T01:38:14Z (GMT). No. of bitstreams: 1 ntu-100-R98424024-1.pdf: 3116437 bytes, checksum: b2f034aeaf7057d11f796fdfe22b10fc (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 中文摘要…………………………………………………………………………i
英文摘要…………………………………………………………………………ii 目錄……………………………………………………………………iii 圖目錄……………………………………………………………………iV 表目錄……………………………………………………………………V 第一章 緒論……………………………………………………………1 第二章 實驗設計及目的………………………………………………6 第三章 材料與方法……………………………………………………8 3.1實驗菌株………………………………………………………………8 3.1實驗方法………………………………………………………………8 第四章 實驗結果……………………………………………………27 第五章 實驗討論………………………………………………………34 實驗圖表…………………………………………………………………39 參考文獻…………………………………………………………………61 | |
| dc.language.iso | zh-TW | |
| dc.subject | 表皮葡萄球菌 | zh_TW |
| dc.subject | 夫西地酸 | zh_TW |
| dc.subject | fusidic acid | en |
| dc.subject | fusB | en |
| dc.subject | Staphylococcus epidermidis | en |
| dc.title | 表皮葡萄球菌對夫西地酸之抗藥基因及亞型分析 | zh_TW |
| dc.title | High prevalence of fusB in Staphylococcus epidermidis and subtype analysis | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 廖淑貞,陳進庭,俞松良 | |
| dc.subject.keyword | 夫西地酸,表皮葡萄球菌, | zh_TW |
| dc.subject.keyword | fusidic acid,Staphylococcus epidermidis,fusB, | en |
| dc.relation.page | 65 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-08-02 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 醫學檢驗暨生物技術學研究所 | zh_TW |
| 顯示於系所單位: | 醫學檢驗暨生物技術學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 3.04 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
