Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30077
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor朱樺(Huah Chu)
dc.contributor.authorYi-Ting Changen
dc.contributor.author張憶婷zh_TW
dc.date.accessioned2021-06-13T01:34:41Z-
dc.date.available2007-07-26
dc.date.copyright2007-07-26
dc.date.issued2007
dc.date.submitted2007-07-12
dc.identifier.citation[1] E.R. Berlekamp, J.C. Conway, and R.K. Guy, Winning Ways, Academic Press, London, (1985), 575-606.
[2] ‥ O. Beyer, The problem of Frobenius in three variables (in Norwegian), Thesis, University of Bergen, Dept. of Mathematics, (1976).
[3] H. Bresinsky, Monomial Gorenstein curves in A4 as set theoretical complete intersection, Manuscripta Math. 27 (1979), 353-358.
[4] A.L. Dulmage and N.S. Mendelsohn, Gaps in the exponent set of primitive matrices, Illinois J. Math. 8 (1964), 642-656.
[5] J. Herzog, Generators and relations of abelian semigroups and semigroup rings, Manuscripta Math. 3 (1970), 175-193.
[6] J. Herzog and E. Kunz, DieWerthalbgruppe eines lokalen Rings der dimension 1, Sitzungsberichte der Heidelberger Akademie der Wissenschaften 2 (1971), 27-67.
[7] E. Kunz, The value-semigroup of a one-dimensional Gorenstein ring, Proc. Am. Math. Soc. 25 (1970), 748-751.
[8] T.H. O’Beirne, Puzzles and Paradoxes, Oxford University Press, New York and London, (1965).
[9] J.L. Ram′ırez Alfons′ın, The Diophantine Frobenius Problem, Oxford University Press, New York, (2005).
[10] ‥ O.J. R‥odseth, On a linear diophantine problem of Frobenius, J. Reine Angewandte Math. 301 (1978), 171-178.
[11] E.S. Selmer, On the linear diophantine Problem of Frobenius, J. Reine Angewandte Math. 293/294(1) (1977), 1-17.
[12] E.S. Selmer and ‥ O. Beyer, On the linear diophantine problem of Frobenius in three variables, J. Reine Angewandte Math. 301 (1978), 161-170.
[13] J.J. Sylvester, Problem 7382, Educational Times 37 (1884), 26; reprinted in: Mathematical questions with their solution, Educational Times (with additional papers and solutions) 41 (1884), 21.
[14] Y. Vitek, Bounds for a linear diophantine problem of Frobenius II, Can. J. Math. 28(6) (1976), 1280-1288.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30077-
dc.description.abstract令 $a,b,c,d$ 為一組獨立的正整數。若一個非負整數可表為 $c_1a+c_2b+c_3c+c_4d$ 的形式,其中 $c_i$ 均為非負整數,則稱它可被 $a,b,c,d$ 表示。
我們將給出在特殊情形中,不能由 $a,b,c,d$ 表出的非負整數個數 $n(a,b,c,d)$,及最大不可表的整數 $g(a,b,c,d)$。最後並討論由 $a,b,c,d$ 生成的半群對稱性。
zh_TW
dc.description.abstractLet $a,b,c,d$ be independent positive integers.
A nonnegative integer is said to be represented by $a,b,c,d$ if it can be represented as the form $c_1a+c_2b+c_3c+c_4d$, where the $c_i$'s are nonnegative integers.
We will find the number $n(a,b,c,d)$ of nonnegative integers cannot be represented by $a,b,c,d$, and the number $g(a,b,c,d)$ which is the largest integer cannot be represented by $a,b,c,d$ in some special cases. Finally we discuss the symmetry property of the semigroup generated by $a,b,c,d$.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T01:34:41Z (GMT). No. of bitstreams: 1
ntu-96-R94221025-1.pdf: 491505 bytes, checksum: ea499fac48653fa328480ce7602eddd9 (MD5)
Previous issue date: 2007
en
dc.description.tableofcontentsAcknowledgements i
Abstract in Chinese ii
Abstract iii
Contents iv
List of Figures vi
1 Introduction 1
2 Results on Three Elements 5
2.1 R‥odseth’s Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Another Viewpoint on Three Elements Case . . . . . . . . . . . . . . 7
3 Results on Four Elements 15
3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 n(a, b, c, d) for m = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3 g(a, b, c, d) for m = 1 and n = 1, 2 . . . . . . . . . . . . . . . . . . . . 21
3.4 Symmetry for m = 1 and n = 1 . . . . . . . . . . . . . . . . . . . . . 33
3.5 Almost Arithmetic Sequences . . . . . . . . . . . . . . . . . . . . . . 40
References 45
dc.language.isoen
dc.subject對稱性zh_TW
dc.subjectFrobenius問題zh_TW
dc.subject半群zh_TW
dc.subjectsemigroupen
dc.subjectFrobenius problemen
dc.subjectsymmetryen
dc.title四個元素的 Frobenius 問題與半群的對稱性zh_TW
dc.titleFrobenius Problem on Four Elements and Symmetry of Semigroupsen
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.oralexamcommittee胡守仁(Shou-jen Hu),康明昌(Ming-Chang Kang),陳榮凱(Jung-Kai Chen),陳永秋(Eng-Tjioe Tan)
dc.subject.keywordFrobenius問題,半群,對稱性,zh_TW
dc.subject.keywordFrobenius problem,semigroup,symmetry,en
dc.relation.page46
dc.rights.note有償授權
dc.date.accepted2007-07-16
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  未授權公開取用
479.99 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved