請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29974
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 舒貽忠 | |
dc.contributor.author | Kuan-Ting Chen | en |
dc.contributor.author | 陳冠廷 | zh_TW |
dc.date.accessioned | 2021-06-13T01:28:18Z | - |
dc.date.available | 2013-08-08 | |
dc.date.copyright | 2011-08-08 | |
dc.date.issued | 2011 | |
dc.date.submitted | 2011-08-02 | |
dc.identifier.citation | [1] ANSI/IEEE Standard 176-1987 IEEE Standard on Piezoelectricity.
[2] Singiresu S.Rao. Mechanical Vibrations. [3] Ikeda, T. 1990. Fundamentals of Piezoelectricity, Oxford University Press,Oxford. [4] Anton,S.R. and Sodano,H.A. 2007. A Review of Power Harvesting Using Piezoelectric Materials(2003-2006). Smart Materials and Structures,16:R1-R21. [5] N. E. duToit, B. L. Wardle and S. G. Kim. Design Considerations For MEMS-scale Piezoelectric Mechanical Vibration Energy Harvesters. Integrated Ferroelectr., Vol. 71, p 121-160, 2005. [6] H. P. Hu, J. G. Cao and Z. J. Cui. Performance of A Piezoelectric Bimorph Harvester With Variable Width. Journal of Mechanical, Vol. 23, p 197-202, 2007. [7] S. Jiang, X. Li, S. Guo, Y. Hu, J. Yang and Q. Jiang. Performance of A Piezoelectric Bimorph For Scavenging Vibration Energy. Smart Materials and Structures, Vol. 14, p 769-774, 2005. [8] T. H. Ng and W. H. Liao. Feasibility Study of A Self-Powered Piezoelectric Sensor. Proc. Smart Structures and Materials Conf.; Proc. SPIE 5389 377-88, 2004. [9] T. H. Ng and W. H. Liao. Sensitivity Analysis and Energy Harvesting For A Self-Powered Piezoelectric Sensor. Journal of Intelligent Material Systems and Structures, Vol. 16, p 785-797, 2005. [10] J. Ajitsaria, S. Y. Choe, D. Shen and D. J. Kim. Modeling and Analysis of A Bimorph Piezoelectric Cantilever Beam For Voltage Generation. Smart Materials and Structures, Vol. 16, p 447-454, 2007. [11] N. S. Shenck and J. A. Paradiso. Energy Scavenging With Shoe-Mounted Piezoelectrics. IEEE Micro., Vol. 21, p 30-42, 2001. [12] H. A. Sodano, G. Park, D. J. Leo and D. J. Inman. Model of Piezoelectric Power Harvesting Beam. Proceedings of the ASME Aerospace Division-2003, Vol. 68, p 345-354, 2003. [13] N. G. Elvin, A. A. Elvin and M. Spector. A Self-Powered Mechanical Strain Energy Sensor. Smart Materials and Structures, Vol. 10, p 293-229, 2001. [14] L. Mateu and F. Moll. Optimum Piezoelectric Bending Beam Structures For Energy Harvesting Using Shoe Inserts. Journal of Intelligent Material Systems and Structures, Vol. 16, p 835-845, 2005. [15] S. Roundy and P. K. Wright. A Piezoelectric Vibration Based Generator For Wireless Electronics. Smart Materials and Structures, Vol. 13, p 1131-1142, 2004. [16] Yaowen Yang and Lihua Tang. Equivalent Circuit Modeling of Piezoelectric Energy Harvesters. Journal of Intelligent Material Systems and Structures, Vol. 20-December 2009 [17] Abdulhakim A. Almajid and Minoru Taya.2D-Elasticity Analysis of FGM Piezo-Laminates under Cylindrical Bedning. Journal of Intelligent Material Systems and Structures, Vol. 12-May 2001 [18] Alex Mathers, Kee S. Moon, and Jingang Yi, Senior Member,IEEE. A Vibration-Based PMN-PT Energy Harvester. IEEE SENSORS JOURNAL, VOL.9,NO.7,JULY 2009 [19] Chengliang Sun, Lifeng Qin, Fang Li and Qing-Ming Wan. Piezoelectric Energy Harvesting using Single Crystal Pb(Mg1/3Nb2/3)O3-xPbTiO3 (PMN-PT) Device. Journal of Intelligent Material Systems and Structures 2009 20: 559 originally published online 28 November 2008. [20] A. Erturk and D. J. Inman. A Distributed Parameter Electromechanical Model for Cantilevered Piezoelectric Energy Harvesters. Journal of Vibration and Acousyics August 2008,Vol.130/041002-1. [21] J. P. Jiang and D. X. Li. Finite Element Formulations For Thermopiezoelastic Laminated Composite Plates. Smart Materials and Structures, 17 015027, 2008. [22] Carlos De Marqui Junior, Alper Erturk, Daniel J. Inman. An Electromechanical Finite Element Model For Piezoelectric Energy Harvester Plates. Journal of Sound and Vibration 327 (2009) 9–25. [23] R. Paradies and B. Schlapfer. Finite Element Modeling of Piezoelectric Elements With Complex Electrode Configuration. Smart Materials and Structures, 18 025015, 2009. [24] B. Behjat, M. Salehi, M. Sadighi. A. Armin and M. Abbasi, Static, Dynamic, and Free Vibration Analysis of Functionally Graded Piezoelectric Panels Using Finite Element Method. Journal of Intelligent Material Systems and Structures, Vol. 20, p 1635-1646, 2009. [25] M. Zhu, E. Worthington and J. Njuguna. Analyses of Power Output of Piezoelectric Energy-Harvesting Devices Directly Connected to A Load Resistor Using a Coupled Piezoelectric-Circuit Finite Element Method. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 56, No. 7, p 1309-1318, 2009. [26] N. G. Elvin and A. A. Elvin. A Coupled Finite Element Circuit Simulation Model For Analyzing Piezoelectric Energy Generators. Journal of Intelligent Material Systems and Structures, Vol. 20, p 587-595, 2009. [27] Niell G.Elvin and Alex A. Elvin. A General Equivalent Circuit Model for Piezoelectric Generators. Journal of Intelligent Material Systems and Structures.Vol.20-January 2009. [28] Y. C. Shu and I. C. Lien. Analysis of Power Output for Piezoelectric Energy Harvesting System. Smart Materials and Structures, Vol. 15, p 1499-1512, 2006. [29] Y. C. Shu and I. C. Lien. Efficiency of Energy Conversion for A Piezoelectric Power Harvesting System. Journal of Micromechanics and Microengineering, Vol. 16, p 2429-2438, 2006. [30] 鄭世裕, 壓電材料之發電器應用( Piezoelectric Generator and Applications ). 工業材料雜誌, 263期, p 111-120, 2008. [31] A. Benjeddou. Advances in Piezoelectric Finite Modeling of Adaptive Structural Elements: A Survey. Computer & Structures 76(2000)347-363 [32] 連益慶(2011), 陣列式壓電能量擷取系統在多種介面電路下之動態特性分析. 台灣大學應用力學研究所博士論文. [33] 徐仕銘(2010), 並聯與串聯電感同步切換開關介面電路應用於壓電振動能量擷取之研究. 台灣大學應用力學研究所碩士論文. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29974 | - |
dc.description.abstract | 近年來,由於石化能源日近枯竭,使得替代能源的研究議題得到廣泛的討論,在眾多存在於大自然中的能源中,最不受外界影響且生活環境中隨手可得的非「振動能」莫屬。然而隨著微製程與技術的進步,系統所需之功率逐漸降低,因此將外在振動能量擷取轉換成可利用之電能已經得以實現,相關研究也變成一相當重要之議題。
本論文利用力平衡原理與壓電統御方程式建立數學模型及以有限元素法建立完整數值模擬,同時輔以實驗驗證,對壓電振動能量擷取系統進行完整分析。數值模擬部分主要探討壓電懸臂樑在標準介面下之頻率響應。因以有限元素法並無法直接求得標準介面下之頻率響應,在此我們提出一「等效阻抗」分析方法,將標準介面電路化簡成一等效阻抗,並建立壓電懸臂樑之等效電路模型,近似得到等效電路參數,與「等效阻抗」分析結合來求得壓電懸臂樑在標準介面下位移、輸出電壓與輸出功率之頻率響應。論文中除建立分析模式外,更探討壓電懸臂樑長度及厚度等幾何形狀參數對其輸出的影響,透過理論、數值模擬及實驗三種分析方法所得到之結果具備相當高的一致性,可作為壓電振動能量擷取系統的重要參考。 | zh_TW |
dc.description.abstract | The research of energy harvesting from environmental resources has received increasing attention due to the decreasing supply of fossil energy. With the advances of MEMS technology and the reduction of power requirement in electronic devices, harvesting energy from vibration sources becomes achievable.
This thesis studies the vibration-based piezoelectric energy harvesting based on the finite element simulation. First, the mathematical model is established using the force balance principle and the piezoelectric governing equations. Second, the finite simulation is validated by a series of experiment. The main result is the investigation of the frequency response of the piezoelectric cantilever beam endowed with the standard interface. As the current commercial finite element codes are not able to be integrated with the circuit simulators, we propose an “Equivalent Impedance” method to resolve this difficulty. The results are consistent with the theoretical predictions and agree well with experimental observations. The effect of geometry of cantilever configurations on harvested power is also studied. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T01:28:18Z (GMT). No. of bitstreams: 1 ntu-100-R98543054-1.pdf: 19625598 bytes, checksum: 12654a5eeda086a0787ed77625091664 (MD5) Previous issue date: 2011 | en |
dc.description.tableofcontents | 誌謝 i
摘要 ii Abstract iii 目錄 iv 圖目錄 vi 表目錄 x 第一章 導論 1 1.1 研究動機 1 1.2 文獻回顧 2 1.3 論文架構 3 第二章 壓電理論 4 2.1 壓電效應 ( Piezoelectric Effect ) 4 2.1.1 正壓電效應 4 2.1.2 逆壓電效應 5 2.2 線性壓電材料之本構方程式 ( Constitutive Equations ) 5 2.3 壓電材料之特性參數 8 2.3.1 力電耦合係數 ( Electro-Mechanical Coupling Factor ) 8 2.3.2 機械品質因子 ( Mechanical Quality Factor ) 8 第三章 壓電懸臂樑理論模型之建立與分析 10 3.1 壓電懸臂樑之數學模型 10 3.2 壓電懸臂樑之等效電路模型 18 3.3 壓電振動子在標準介面電路下之分析 22 3.4 壓電懸臂樑之等效阻抗理論模型 29 第四章 有限元素法之模型建立與數值分析 32 4.1 壓電懸臂樑之共振頻率分析 32 4.2 壓電懸臂樑之等效電路參數分析 33 4.3 壓電懸臂樑之等效阻抗分析 35 4.4 實例操作 37 第五章 數值分析與實驗結果比較 42 5.1 實驗架構 42 5.2 實驗材料之等效參數量測 45 5.3 壓電懸臂樑之頻率響應分析 52 5.3.1 頻率響應分析 52 5.3.2 壓電振動子在標準介面下之頻率響應 57 第六章 結論與展望 77 6.1 結論 77 6.2 展望 79 參考文獻 80 附錄 84 | |
dc.language.iso | zh-TW | |
dc.title | 以有限元素法探討壓電振動能量擷取系統之機電行為 | zh_TW |
dc.title | A Study of Electromechanical Behavior of Piezoelectric Energy-Harvesting System Using Finite Element Method | en |
dc.type | Thesis | |
dc.date.schoolyear | 99-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳瑞琳,林憲陽 | |
dc.subject.keyword | 壓電振動能量擷取系統,有限元素法,標準介面電路, | zh_TW |
dc.subject.keyword | Piezoelectric energy harvesting system,Finite element method,Standrad interface, | en |
dc.relation.page | 109 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2011-08-03 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 應用力學研究所 | zh_TW |
顯示於系所單位: | 應用力學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-100-1.pdf 目前未授權公開取用 | 19.17 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。