請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29941完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林敏聰(Minn-Tsong Lin) | |
| dc.contributor.author | Yu-Ting Liu | en |
| dc.contributor.author | 劉玉婷 | zh_TW |
| dc.date.accessioned | 2021-06-13T01:26:17Z | - |
| dc.date.available | 2007-07-24 | |
| dc.date.copyright | 2007-07-24 | |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2007-07-18 | |
| dc.identifier.citation | [1] A. Goldman, Modren Ferrite Technology (Van Nostrand Reinhold, New York , 1990).
[2] Robert C., O’handley, Modern Magnetic Materials (Wiley, New York,1999). [3] Ronlkld F. Soohoo, J. Magn. Magn. Mater, Mag-4, 118 (1968). [4] Martha Pardavi-Horvath, IEEE Trans. Magn., 215-216, 171 (2000). [5] W. Eerenstein, T. T. M. Palstra, T. Hibma, and S. Celotto, Phys. Rev.B 66, 201101(R) (2002). [6] Ulrike Lüders, Manuel Bibes, Jean-FranÇois Bobo, Matteo Cantoni,Riccardo Bertacco, and Josep Fontcuberta, Phys. Rev. B 71, 134419 (2005). [7] G. Hu, J. H. Choi, C. B. Eom, V. G. Harris, and Y. Suzuki, Phys. Rev.B 62, 2 (2000). [8] N. Ponpandian, A. Narayanasamy, C. N. Chinnasamy, and N. Sivakumar, Appl. Phys. Lett. 86, 192510 (2005). [9] Nutan Gupta, A. Verma, Subhash C. Kashyap, D.C. Dube, J. Magn.Magn. Mater 308, 137 (2007). [10] J. Dash, Shiva Prasad, N. Venkataramani, R. Krishnan, Pran Kishan,Nitendar Kumar, S. D. Kulkarni and S. K. Date, J. Appl. Phys. 86,3303 (1999). [11] super.gsnu.ac.kr/lecture/inorganic/spinel.html. [12] B. D. Cullity, Introduction to Magnetic Materials (Addison-Wesley). [13] M.A. Ahmed, M.M. EL-Sayed, J. Magn. Magn. Mater 308, 40 (2007). [14] Hua Su , Huaiwu Zhang, Xiaoli Tang, Yulan Jing, Yingli Liu, J. Magn.Magn. Mater 310, 17 (2007). [15] P. C. Dorsey, B. J. Rappoli, K. S. Grabowski, P. Lubitz, D. B. Chrisey,and J. S. Horwitz, J. Appl. Phys. 81, 6884 (1997). [16] Zhenghong Qian, Geng Wang, John M. Sivertsen, Jack H. Judy, IEEE Trans. Magn., 33, 3748 (1997). [17] Naoki Wakiya, Kazuo Shinozaki, and Nobuyasu Mizutani, Appl. Phys.Lett. 85, 1199 (2004) [18] Hodgman and Charles D., Handbook of chemistry and physics (Chemical Rubber Co., Cleveland, 1955). [19] http://www.dms-magnetics.com/pdf/vsmmost.pdf [20] http://helios.augustana.edu/~dr/202/week/10.html [21] J. H. Yin, J. Ding, B. H. Liu, J. B. Yi, X. S. Miao, and J. S. Chen, J.Appl. Phys. 101, 09K509 (2007). [22] Murtaza Bohra, Shiva Prasad, Naresh Kumar, D. S. Misra, S. C. Sahoo, N. Venkataramani, and R. Krishnan, Appl. Phys. Lett. 88, 262506(2006). [23] W. Huang, J. Zhu, H. Z. Zeng, X. H.Wei, Y. Zhang, and Y. R. Li, Appl.Phys. Lett. 89, 262506 (2006). [24] Xu Zuo, Aria Yang, Soack-Dae Yoon, Joseph A. Christodoulides, Vincent G. Harris, and Carmine Vittoria, Appl. Phys. Lett. 87, 152505 (2005). [25] Amarendra K. Singh, T. C. Goel, R. G. Mendiratta, O. P. Thakur,Chandra Prakash, J. Appl. Phys. 92, 3872 (2002). [26] S.L. Pereira, H.-D. Pfannes, A.A. Mendes Filho, L.C.B. de Miranda Pinto, and M.A. Chíncaro, Mater. Res. 2, 231 (1999). [27] H.P. Klug and L.E. Alexander, X-ray Di¤raction Procedure second ed.,(Wiley, New York, 1974). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29941 | - |
| dc.description.abstract | 我們使用磁控濺鍍技術成長鎳鋅銅亞鐵磁薄膜於鈦酸鍶、氧化鎂與玻璃基板上。在此實驗中我們將研究成長條件對亞鐵磁薄膜的結構與磁性之影響以及結構和磁性之間的關係。
隨著成長溫度的上升,鎳鋅銅亞鐵磁薄膜的晶性會變好,但此現象僅有使用鈦酸鍶做為基板較為明顯。當我們將成長於鈦酸鍶基板上的薄膜厚度減小或是適度氧化後,它的飽和磁化量會明顯上升。因為鎳鋅銅亞鐵磁體的晶格常數較鈦酸鍶基板小,因此我們推測若鎳鋅銅亞鐵磁薄膜在成長過程中受到壓縮力,它的晶性和磁性都較好。 此外,我們發現在任何成長條件下,鎳鋅銅亞鐵磁薄膜的矯頑力(coercivity)和殘磁(remenance)皆較塊材大。當薄膜的成長溫度為650℃且厚度減小至10nm時,它的飽和磁化量是塊材的75%。 | zh_TW |
| dc.description.abstract | The structure of ferrite influences its magnetic and electric properties
significantly, and the growth process is crucial to the structural behaviors of ferrites. Compared to bulk ferrites, there are more effects that could modify physical properties in ferrite thin films. In this work, we fabricate NiZnCu ferrite (NiZnCuFe2O4) thin films onto SrTiO3 (STO), MgO, and glass substrates by the magnetron RF sputtering technique in an ultrahigh vacuum system. The influences of growth conditions on magnetic properties and structures of NiZnCu ferrite thin films are studied. And the relations between the magnetism and the structure are also investigated. With the increase of substrate temperature, the spinel structure of NiZnCu ferrite films is formed and the magnetic moment is enhanced. But this effect is obvious only for films on STO. It reveals that compressive stress is conducive to the formation of spinel ferrites. The addition of oxygen could reduce oxygen vacancies in NiZnCu ferrite films under deposition. And we found a linear relation between the saturation magnetization and the inverse of the film thickness. According to the linear relation, we can predict that the NiZnCu thin film exceeds the bulk in the saturation magnetization as the thickness of the film is reduced to 6 nm. The coercivity and the remenance of films are greater than those of bulk ferrites under any growth conditions. The saturation magnetization of films with thickness of 10 nm and substrate temperature of 650 ℃ achieves 75 % of the bulk value. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T01:26:17Z (GMT). No. of bitstreams: 1 ntu-96-R94222039-1.pdf: 2711921 bytes, checksum: e00bc19da267a7550ef36da7b8bb85c7 (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | 1 Introduction 7
2 Basic Concepts 9 2.1 Spinel Structure of Ferrite . . . . .9 2.2 Lattice mismatch . . . . .12 2.3 Hysteresis Loops . . . . .12 3 Experimetal apparatus 15 3.1 UHV Sputtering System . . . . .15 3.1.1 Multi-functional chamber. . . . .15 3.1.2 Sputtering System . . . . .18 3.1.3 Pumping System . . . . .19 3.1.4 Vacuum Gauge . . . . .20 3.2 Specimen Measurement . . . . .23 3.2.1 Vibrating Sample Magnetometer . . . . .23 3.2.2 X-ray Diffraction . . . . .25 4 NiZnCu Ferrite thin …lms on STO, MgO, and Glass sub- strates with di¤erent growth conditions 27 4.1 Sample Preparation . . . . .27 4.2 NiZnCu ferrites in bulk form . . . . .28 4.3 Temperature and Substrate Effects . . . . .30 4.4 Postannealing. . . . .37 4.5 Oxidation . . . . .39 4.5.1 After Deposition . . . . .39 4.5.2 Under Growth . . . . .43 4.6 Thickness Dependence . . . . .45 4.7 Disscussion . . . . .50 5 Conclusion 53 | |
| dc.subject | 鎳鋅銅亞鐵磁 | zh_TW |
| dc.subject | 濺鍍 | zh_TW |
| dc.subject | 薄膜 | zh_TW |
| dc.subject | thin film | en |
| dc.subject | NiZnCu ferrite | en |
| dc.subject | sputter | en |
| dc.title | 鎳鋅銅亞鐵磁薄膜於鈦酸鍶、氧化鎂與玻璃基板上之成長、結構與磁性 | zh_TW |
| dc.title | Growth, Structure and Magnetism of NiZnCu Ferrite Thin Films on SrTiO3, MgO and Glass Substrates | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 唐敏注,陳銘堯 | |
| dc.subject.keyword | 鎳鋅銅亞鐵磁,薄膜,濺鍍, | zh_TW |
| dc.subject.keyword | NiZnCu ferrite,thin film,sputter, | en |
| dc.relation.page | 57 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2007-07-18 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 物理研究所 | zh_TW |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-96-1.pdf 未授權公開取用 | 2.65 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
