請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29931完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 管傑雄 | |
| dc.contributor.author | Ching-Hung Lai | en |
| dc.contributor.author | 賴景鴻 | zh_TW |
| dc.date.accessioned | 2021-06-13T01:25:37Z | - |
| dc.date.available | 2007-07-20 | |
| dc.date.copyright | 2007-07-20 | |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2007-07-18 | |
| dc.identifier.citation | 1. B. F. Levine, K. K. Choi, C. G. Bethea, J. Walker and R. J. Malik, Appl. Phys. Lett. 50, 1092(1987)
2. E. Dupont, “Optimization of lamellar gratings for quantum-well infrared photodetectors,” J. Appl. Phys. 88, 5(2000). 3. C. H . Kuan, W. H. Hsieh, S. Y. Lin, C. C. Chen, and J. M. Chen, “Proceedings of SPIE ”The International Society for optical Engineering,” v4288, p151-162(2001) 4. H. C. Chen. “Multicolor Intersubband Infrared Photodetectors applied for Temperature Sensing”, “Spectral Metering and Thermal Imaging,” 5. Y. Fu, M. Willander, W. Lu, and Wenlan Xu, “Optical coupling in quantum well infrared photodetector by diffraction grating,” J. Appl. Phys. 84 , 10(1998). 6. Eustance L. Dereniak and Devon G, Crowe, Optical Radiation Detectors, John Wiley & Sons, Inc. , New York,(1984). 7. Richard D. Hudson, Jr. & Jacqueline Wordsworth Hudson, Infrared Detectors, Dowden, Hutchinson & Ross ; New York : distributed by Halsted Press,(1975) 8. K. K. Choi , The Physics of Quantum Well Infrared Photodetectors,(1997). 9. H. C. Liu, B. F. Levine, and J. Y. Anderson, Quantum Well Intersubband Transition Physics and Devices, Luwer Academic Publiisher, Dordercht,(1994) 10. Sarath D. Gunapala, Jin S. Park, Gabby Sarusi, True-Lon Lin, John K. Liu, Paul D. Maker, Richard E. Muller, Craig A. Shott, and Ted Hoelter, “15-μm 128*128 GaAs /AlxGa1-xAs Quantum Well Infrared Photodetector Focal Plane Array Camera,”IEEE Transactions on Electron Devices, Vol. 44, No. 1,(1997) 11. Semiconductor Integrated Circuit Processing Technology, by Addison Wesley 12. Gallium Arsenide Processing Techniques, by Ralph E. Williams 13. K. K. Choi “The Physics of Quantum Well Infrared Photodetectors”, Published by World Scientific. 14. Ralph E. Williams, “Gallium Arsenide Processing Techniques,” published by the Artech House Microwave Library, copyright(1984). 15. Solid State Physics, by Ashcroft and Mermin 16. Optical Radiation Detector, by Eustace L. Dereniak and Devon G. Crowe 17. “Gallium Arsenide Materials, Devices, and Circuits,” by M. J. Howes and D. V. Morgan(1985) 18. “Intersubband Transitions in Quantum Wells,” edited by H. C. Lin(2000) 19. Meimei Z Tidrow, “Materials Science and Engineering,” B47, pp. 45-51(2000) 20. J. Y. Andersson, J. Appl. Phys. 78(10), 15, pp. 6298(1995) 21. “The Physics of Quantum Well Infrared Photodetectors,” edited by K. K. Choi(1997) 22. H. C. Liu, Z. R. Wasilewski, and M. Buchanan, “Segregation of Si doping in GaAs-AlGaAs quantum wells and the cause of the asymmetry in the current–voltage characteristics of intersubband infrared detectors,” Appl. Phys. Lett. vol. 63, pp. 761–763(1993) 23. Takashi Asano, Susumu Noda, and Katsuhiro Tomoda, Appl. Phys. Lett. 74, 10, pp. 1418. 24. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B. 58, 6779(1998) 25. Hans Lochbihler, “Surface polaritions on gold-wire gratins,” Phys. Rev. B. 50, 7(1994) | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29931 | - |
| dc.description.abstract | 入射電磁波在金屬光柵附近及通過之後,會有特殊且複雜的現象,目前的研究大多是穿透率實驗,討論穿透光譜特性,而偵測器距離光柵遠大於波長範圍。我們想要瞭解電磁場在距離光柵短於波長的範圍之特性,所以在QWIP上製作光柵。QWIP的作用區大約在光柵下1μm處,而我們觀察的波長範圍大約在10μm附近,小將近一個數量級。我們成功以這種設計研究金屬光柵的特性,也能對應穿透率實驗的結果。
我們利用一系列的實驗證明,來自金屬光柵的波鋒產生之位置與穿透率實驗的位置相近,和基板的介電係數與光柵週期有關,但是穿透實驗的光柵波鋒來自TE模態,而QWIP實驗的光柵波鋒來自TM模態的入射光,這是由於量測距離不同所造成。我們改變光柵週期,將光柵波鋒調整到結構波鋒處,將QWIP的響應最佳化。同時我們發現邊緣耦合提供了很大部分的響應,來自TM模態Brewster角入射的結果,正面入射空框也有響應,來自尺寸效應的結果。 我們發現增加光柵厚度可以TM模態響應減少較快,增加TM除以TE模態響應的比例,但整體來說也會減少響應。最後我們發現將金屬光柵埋入元件,也就是讓光柵靠近QWIP的作用區,可以提高響應;但另一方面,由於光柵厚度變大,穿過的電磁波衰減與也使得響應減少,而在這兩者之間可以找到平衡點。 | zh_TW |
| dc.description.abstract | Electromagnetic wave exited around metallic grating and transmitted through grating is complicated and interesting. Recent studies about subwavelength metallic structure were mainly experiments measuring transmission spectrums which photodectors were set vary far from the sample. We wanted to understand the characteristics of grating near the sample. We fabricated grating structure on QWIP and the active region of QWIP is under the surface about 1 μm. By observing spectral response of QWIP with grating, we successively found fundamental characteristics about grating and there was a good correspondence to transmission spectrums.
The experiments showed that the grating peak appeared at similar position in response of QWIP and transmission spectrum of sample, dominated by period of grating and refractive index of substrate. The grating peak of QWIP experiment was excited by TM incident light, but TE incident contributed peak in transmission spectrum, due to the distance of the measurement. We tuned the grating peak to structure peak to enhance the responsivity. In the mean time, we discovered that the edge coupling provided a large part of response, which came from TM incident light in Brewster’s angle. Normal incidence of hollow frame also provided response because of finite size effect. We discovered that the grating thickness could raise the ratio of TM over TE mode, because the TE mode decayed faster than TM mode. But it is a trade off that the total responsivity was decreased. At last, we could embed grating in to QWIP, the grating was much closer to the active region of QWIP. More quantity of exited wave absorbed to enhance responsivity. On the other hand, as the thickness increase, the transmitted electromagnetic wave decays, less wave went through grating to decrease responsivity. We could find some balance between these two factors. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T01:25:37Z (GMT). No. of bitstreams: 1 ntu-96-R94943162-1.pdf: 2082236 bytes, checksum: e300fcc92e63dfc99cc4ec938b3ed0d2 (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | 口試委員會審定書 II
中文摘要 VI 英文摘要 VII 目錄 IX 圖目錄 XI 表目錄 XIV 第1章 導論 - 1 - 1. 1 金屬光柵的穿透光譜 - 2 - 1. 1. 1 金的肌膚深度 - 2 - 1. 1. 2 金屬光柵週期 - 3 - 1. 1. 3 TE和TM模態與色散關係 - 5 - 第2章 紅外線光偵測器 - 7 - 2. 1 紅外線光偵測器的基本原理 - 7 - 2. 1. 1 黑體輻射 - 7 - 2. 1. 2 紅外線光偵測器 - 8 - 2. 1. 3 轉移矩陣方法 - 9 - 2. 2 GAAS/ALXGA1−XAS之多層量子井與超晶格結構 - 10 - 2. 2. 1 內能帶躍遷 - 10 - 2. 2. 2 光致電導之量子井紅外線偵測器 - 11 - 2. 2. 3 光致電壓之超晶格紅外線偵測器 - 12 - 2. 3 儀器設置及特性量測 - 13 - 2. 3. 1 FTIR的介紹 - 13 - 2. 3. 2 相對光譜響應 - 15 - 2. 3. 3 絕對響應 - 16 - 2. 3. 4 暗電流與光電流的量測 - 17 - 第3章 元件與光罩的製作 - 20 - 3. 1 製程步驟 - 20 - 3. 1. 1 樣品清潔 - 20 - 3. 1. 2 光學微影 - 21 - 3. 1. 3 濕蝕刻 - 21 - 3. 1. 4 金屬蒸鍍及金屬離浮 - 22 - 3. 1. 5 熱退火 - 22 - 3. 1. 6 斜面拋光與鎊線 - 23 - 3. 2 光罩製作 - 23 - 3. 2. 1 電子束微影系統 - 23 - 3. 2. 2 與電子束直寫 - 24 - 3. 2. 3 微影步驟 - 24 - 3. 2. 4 蝕刻清洗 - 25 - 3. 3 元件製作 - 25 - 3. 3. 1 元件設計的定義 - 25 - 3. 3. 2 光罩設計 - 27 - 3. 3. 3 製作流程 - 29 - 第4章 金屬光柵在QWIP上的特性 - 31 - 4. 1 樣本特性 - 31 - 4. 1. 1 QWIP結構設計 - 31 - 4. 1. 2 45度斜面入射的響應 - 33 - 4. 1. 3 正面入射 - 36 - 4. 2 來自金屬光柵的波峰位置 - 37 - 4. 2. 1 金屬光柵週期 - 37 - 4. 2. 2 金屬光柵厚度小於肌膚深度 - 40 - 4. 3 金屬光柵週期最佳化 - 41 - 4. 3. 1 結構波鋒與光柵波鋒重疊 - 41 - 4. 3. 2 TE模態和TM模態的觀察 - 42 - 4. 4 TE模態與TM模態的響應 - 46 - 4. 4. 1 邊緣耦合 - 46 - 4. 4. 2 偏振光與未偏振光 - 49 - 4. 4. 3 TE模態 - 50 - 4. 5 金屬光柵的厚度 - 54 - 4. 6 金屬光柵的深度 - 57 - 第5章 結論與未來展望 - 61 - 參考資料 - 62 - | |
| dc.language.iso | zh-TW | |
| dc.subject | 尺寸效應 | zh_TW |
| dc.subject | 金屬光柵 | zh_TW |
| dc.subject | QWIP(量子井紅外線光偵測器) | zh_TW |
| dc.subject | TE和TM模態 | zh_TW |
| dc.subject | Brewster角 | zh_TW |
| dc.subject | metallic grating | en |
| dc.subject | finite size effect | en |
| dc.subject | TE and TM mode | en |
| dc.subject | QWIP | en |
| dc.title | 金屬光柵在量子井紅外線光偵測器上的特性 | zh_TW |
| dc.title | Characteristics of Metallic Grating on Quantum Well Infrared Photodetector | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 孫允武,林致廷,郭宇軒,謝正雄 | |
| dc.subject.keyword | 金屬光柵,QWIP(量子井紅外線光偵測器),TE和TM模態,Brewster角,尺寸效應, | zh_TW |
| dc.subject.keyword | metallic grating,QWIP,TE and TM mode,finite size effect, | en |
| dc.relation.page | 63 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2007-07-18 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電子工程學研究所 | zh_TW |
| 顯示於系所單位: | 電子工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-96-1.pdf 未授權公開取用 | 2.03 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
