Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥學專業學院
  4. 藥學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29928
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林君榮(Chun-Jung Lin)
dc.contributor.authorHao-Jui Hsuen
dc.contributor.author許浩睿zh_TW
dc.date.accessioned2021-06-13T01:25:26Z-
dc.date.available2012-08-08
dc.date.copyright2007-08-08
dc.date.issued2007
dc.date.submitted2007-07-17
dc.identifier.citationAoki F. Y. and Sitar D. S. (1988) Clinical pharmacokinetics of amantadine hydrochloride. Clinical pharmacokinetics 14, 35-51.
Audus K. L. and Borchardt R. T. (1986) Characteristics of the large neutral amino acid transport system of bovine brain microvessel endothelial cell monolayers. Journal of neurochemistry 47, 484-488.
Bagchi S. P. (1992) Trace dosages of the neurotoxins MPTP and MPP+ may affect brain dopamine in vivo. Life sciences 51, 389-396.
Bailey E. V. and Stone T. W. (1975) The mechanism of action of amantadine in Parkinsonism: a review. Archives Internationales de Pharmacodynamie et de Therapie 216, 246-262.
Bean A. J., Elde R., Cao Y. H., Oellig C., Tamminga C., Goldstein M., Pettersson R. F. and Hokfelt T. (1991) Expression of acidic and basic fibroblast growth factors in the substantia nigra of rat, monkey, and human. Proceedings of the National Academy of Sciences of the United States of America 88, 10237-10241.
Belluardo N., Blum M., Mudo G., Andbjer B. and Fuxe K. (1998) Acute intermittent nicotine treatment produces regional increases of basic fibroblast growth factor messenger RNA and protein in the tel- and diencephalon of the rat. Neuroscience 83, 723-740.
Bezard E. and Gross C. E. (1998) Compensatory mechanisms in experimental and human parkinsonism: towards a dynamic approach. Progress in Neurobiology 55, 93-116.
Birkmayer W., Knoll J., Riederer P., Youdim M. B., Hars V. and Marton J. (1985) Increased life expectancy resulting from addition of L-deprenyl to Madopar treatment in Parkinson's disease: a longterm study. Journal of Neural Transmission 64, 113-127.

Boado R. J., Li J. Y., Nagaya M., Zhang C. and Pardridge W. M. (1999) Selective expression of the large neutral amino acid transporter at the blood-brain barrier. Proceedings of the National Academy of Sciences of the United States of America 96, 12079-12084.
Breidert T., Spitzenberger F., Grundemann D. and Schomig E. (1998) Catecholamine transport by the organic cation transporter type 1 (OCT1). British journal of pharmacology 125, 218-224.
Broer S. and Brookes N. (2001) Transfer of glutamine between astrocytes and neurons. Journal of neurochemistry 77, 705-719.
Brooks A. I., Chadwick C. A., Gelbard H. A., Cory-Slechta D. A. and Federoff H. J. (1999) Paraquat elicited neurobehavioral syndrome caused by dopaminergic neuron loss. Brain research 823, 1-10.
Brown T. P., Rumsby P. C., Capleton A. C., Rushton L. and Levy L. S. (2006) Pesticides and Parkinson's disease--is there a link? Environmental health perspectives 114, 156-164.
Busch A. E., Quester S., Ulzheimer J. C., Gorboulev V., Akhoundova A., Waldegger S., Lang F. and Koepsell H. (1996) Monoamine neurotransmitter transport mediated by the polyspecific cation transporter rOCT1. FEBS letters 395, 153-156.
Busch A. E., Karbach U., Miska D., Gorboulev V., Akhoundova A., Volk C., Arndt P., Ulzheimer J. C., Sonders M. S., Baumann C., Waldegger S., Lang F. and Koepsell H. (1998) Human neurons express the polyspecific cation transporter hOCT2, which translocates monoamine neurotransmitters, amantadine, and memantine. Molecular Pharmacology 54, 342-352.
Chanyachukul T., Yoovathaworn K., Thongsaard W., Chongthammakun S., Navasumrit P. and Satayavivad J. (2004) Attenuation of paraquat-induced motor behavior and neurochemical disturbances by L-valine in vivo. Toxicology Letters 150, 259-269.
Christensen H. N. (1990) Role of amino acid transport and countertransport in nutrition and metabolism. Physiological Reviews 70, 43-77.

Cohen G., Pasik P., Cohen B., Leist A., Mytilineou C. and Yahr M. D. (1984) Pargyline and deprenyl prevent the neurotoxicity of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in monkeys. European Journal of Pharmacology 106, 209-210.
Corasaniti M. T., Strongoli M. C., Rotiroti D., Bagetta G. and Nistico G. (1998) Paraquat: a useful tool for the in vivo study of mechanisms of neuronal cell death. Pharmacology and Toxicology 83, 1-7.
Cormier A., Morin C., Zini R., Tillement J. P. and Lagrue G. (2003) Nicotine protects rat brain mitochondria against experimental injuries. Neuropharmacology 44, 642-652.
Dauer W. and Przedborski S. (2003) Parkinson's disease: mechanisms and models. Neuron 39, 889-909.
Dawson T. M. and Dawson V. L. (2003) Molecular pathways of neurodegeneration in Parkinson's disease. Science 302, 819-822.
Dinis-Oliveira R. J., Remiao F., Carmo H., Duarte J. A., Navarro A. S., Bastos M. L. and Carvalho F. (2006) Paraquat exposure as an etiological factor of Parkinson's disease. Neurotoxicology 27, 1110-1122.
Dresser M. J., Leabman M. K. and Giacomini K. M. (2001) Transporters involved in the elimination of drugs in the kidney: organic anion transporters and organic cation transporters. Journal of pharmaceutical sciences 90, 397-421.
Duelli R., Enerson B. E., Gerhart D. Z. and Drewes L. R. (2000) Expression of large amino acid transporter LAT1 in rat brain endothelium. Journal of Cerebral Blood Flow and Metabolism 20, 1557-1562.
Fall P. A., Fredrikson M., Axelson O. and Granerus A. K. (1999) Nutritional and occupational factors influencing the risk of Parkinson's disease: a case-control study in southeastern Sweden. Movement Disorders 14, 28-37.
Fleming L., Mann J. B., Bean J., Briggle T. and Sanchez-Ramos J. R. (1994) Parkinson's disease and brain levels of organochlorine pesticides. Annals of Neurology 36, 100-103.

Friedrich A., George R. L., Bridges C. C., Prasad P. D. and Ganapathy V. (2001) Transport of choline and its relationship to the expression of the organic cation transporters in a rat brain microvessel endothelial cell line (RBE4). Biochimica et Biophysica Acta 1512, 299-307.
Fukada A., Saito H. and Inui K. (2002) Transport mechanisms of nicotine across the human intestinal epithelial cell line Caco-2. The Journal of pharmacology and experimental therapeutics 302, 532-538.
Fukasawa Y., Segawa H., Kim J. Y., Chairoungdua A., Kim D. K., Matsuo H., Cha S. H., Endou H. and Kanai Y. (2000) Identification and characterization of a Na(+)-independent neutral amino acid transporter that associates with the 4F2 heavy chain and exhibits substrate selectivity for small neutral D- and L-amino acids. The Journal of Biological Chemistry 275, 9690-9698.
Gainetdinov R. R., Fumagalli F., Jones S. R. and Caron M. G. (1997) Dopamine transporter is required for in vivo MPTP neurotoxicity: evidence from mice lacking the transporter. Journal of neurochemistry 69, 1322-1325.
Ghersi-Egea J. F., Minn A. and Siest G. (1988) A new aspect of the protective functions of the blood-brain barrier: activities of four drug-metabolizing enzymes in isolated rat brain microvessels. Life sciences 42, 2515-2523.
Goralski K. B., Lou G., Prowse M. T., Gorboulev V., Volk C., Koepsell H. and Sitar D. S. (2002) The cation transporters rOCT1 and rOCT2 interact with bicarbonate but play only a minor role for amantadine uptake into rat renal proximal tubules. The Journal of pharmacology and experimental therapeutics 303, 959-968.
Grant H., Lantos P. L. and Parkinson C. (1980) Cerebral damage in paraquat poisoning. Histopathology 4, 185-195.
Grieb P., Forster R. E., Strome D., Goodwin C. W. and Pape P. C. (1985) O2 exchange between blood and brain tissues studied with 18O2 indicator-dilution technique. Journal of Applied Physiology 58, 1929-1941.
Grundemann D., Gorboulev V., Gambaryan S., Veyhl M. and Koepsell H. (1994) Drug excretion mediated by a new prototype of polyspecific transporter. Nature 372, 549-552.
Haseloff R. F., Blasig I. E., Bauer H. C. and Bauer H. (2005) In search of the astrocytic factor(s) modulating blood-brain barrier functions in brain capillary endothelial cells in vitro. Cellular and Molecular Neurobiology 25, 25-39.
Heinonen E. H., Anttila M. I., Karnani H. L., Nyman L. M., Vuorinen J. A., Pyykko K. A. and Lammintausta R. A. (1997) Desmethylselegiline, a metabolite of selegiline, is an irreversible inhibitor of monoamine oxidase type B in humans. Journal of clinical pharmacology 37, 602-609.
Hellenbrand W., Seidler A., Boeing H., Robra B. P., Vieregge P., Nischan P., Joerg J., Oertel W. H., Schneider E. and Ulm G. (1996) Diet and Parkinson's disease. I: A possible role for the past intake of specific foods and food groups. Results from a self-administered food-frequency questionnaire in a case-control study. Neurology 47, 636-643.
Hernan M. A., Takkouche B., Caamano-Isorna F. and Gestal-Otero J. J. (2002) A meta-analysis of coffee drinking, cigarette smoking, and the risk of Parkinson's disease. Annals of Neurology 52, 276-284.
Holmstedt B. (1982) Betacarbolines and tetrahydroisoquinolines: historical and ethnopharmacological background. Progress in Clinical and Biological Research 90, 3-13.
Howard L. A., Miksys S., Hoffmann E., Mash D. and Tyndale R. F. (2003) Brain CYP2E1 is induced by nicotine and ethanol in rat and is higher in smokers and alcoholics. British Journal of Pharmacology 138, 1376-1386.
Hughes J. T. (1988) Brain damage due to paraquat poisoning: a fatal case with neuropathological examination of the brain. Neurotoxicology 9, 243-248.
Inzelberg R., Bonuccelli U., Schechtman E., Miniowich A., Strugatsky R., Ceravolo R., Logi C., Rossi C., Klein C. and Rabey J. M. (2006) Association between amantadine and the onset of dementia in Parkinson's disease. Movement Disorders 21, 1375-1379.
Irwin I., DeLanney L. E., Di Monte D. and Langston J. W. (1989) The biodisposition of MPP+ in mouse brain. Neuroscience Letters 101, 83-88.

Janson A. M., Fuxe K. and Goldstein M. (1992) Differential effects of acute and chronic nicotine treatment on MPTP-(1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) induced degeneration of nigrostriatal dopamine neurons in the black mouse. The Clinical investigator 70, 232-238.
Javitch J. A., D'Amato R. J., Strittmatter S. M. and Snyder S. H. (1985) Parkinsonism-inducing neurotoxin, N-methyl-4-phenyl-1,2,3,6 -tetrahydropyridine: uptake of the metabolite N-methyl-4-phenylpyridine by dopamine neurons explains selective toxicity. Proceedings of the National Academy of Sciences of the United States of America 82, 2173-2177.
Jonker J. W. and Schinkel A. H. (2004) Pharmacological and physiological functions of the polyspecific organic cation transporters: OCT1, 2, and 3 (SLC22A1-3). The Journal of pharmacology and experimental therapeutics 308, 2-9.
Kageyama T., Imura T., Matsuo A., Minato N. and Shimohama S. (2000a) Distribution of the 4F2 light chain, LAT1, in the mouse brain. Neuroreport 11, 3663-3666.
Kageyama T., Nakamura M., Matsuo A., Yamasaki Y., Takakura Y., Hashida M., Kanai Y., Naito M., Tsuruo T., Minato N. and Shimohama S. (2000b) The 4F2hc/LAT1 complex transports L-DOPA across the blood-brain barrier. Brain research 879, 115-121.
Kalgutkar A. S., Zhou S., Fahmi O. A. and Taylor T. J. (2003) Influence of lipophilicity on the interactions of N-alkyl-4-phenyl-1,2,3,6-tetrahydropyridines and their positively charged N-alkyl-4-phenylpyridinium metabolites with cytochrome P450 2D6. Drug metabolism and disposition: the biological fate of chemicals 31, 596-605.
Kanai Y. and Endou H. (2003) Functional properties of multispecific amino acid transporters and their implications to transporter-mediated toxicity. The Journal of Toxicological Sciences 28, 1-17.
Kanai Y., Segawa H., Miyamoto K., Uchino H., Takeda E. and Endou H. (1998) Expression cloning and characterization of a transporter for large neutral amino acids activated by the heavy chain of 4F2 antigen (CD98). The Journal of Biological Chemistry 273, 23629-23632.

Kekuda R., Prasad P. D., Wu X., Wang H., Fei Y. J., Leibach F. H. and Ganapathy V. (1998) Cloning and functional characterization of a potential-sensitive, polyspecific organic cation transporter (OCT3) most abundantly expressed in placenta. The Journal of Biological Chemistry 273, 15971-15979.
Kim D. K., Kanai Y., Chairoungdua A., Matsuo H., Cha S. H. and Endou H. (2001) Expression cloning of a Na+-independent aromatic amino acid transporter with structural similarity to H+/monocarboxylate transporters. The Journal of Biological Chemistry 276, 17221-17228.
Kimura H., Takeda M., Narikawa S., Enomoto A., Ichida K. and Endou H. (2002) Human organic anion transporters and human organic cation transporters mediate renal transport of prostaglandins. The Journal of pharmacology and experimental therapeutics 301, 293-298.
Kitani K., Kanai S., Sato Y., Ohta M., Ivy G. O. and Carrillo M. C. (1993) Chronic treatment of (-)deprenyl prolongs the life span of male Fischer 344 rats. Further evidence. Life sciences 52, 281-288.
Koepsell H. and Endou H. (2004) The SLC22 drug transporter family. Pflugers Archiv 447, 666-676.
Koepsell H., Schmitt B. M. and Gorboulev V. (2003) Organic cation transporters. Reviews of Physiology, Biochemistry and Pharmacology 150, 36-90.
Lagrange P., Livertoux M. H., Grassiot M. C. and Minn A. (1994) Superoxide anion production during monoelectronic reduction of xenobiotics by preparations of rat brain cortex, microvessels, and choroid plexus. Free radical biology & medicine 17, 355-359.
Lagrange P., Romero I. A., Minn A. and Revest P. A. (1999) Transendothelial permeability changes induced by free radicals in an in vitro model of the blood-brain barrier. Free radical biology & medicine 27, 667-672.
Lang A. E. and Lozano A. M. (1998) Parkinson's disease. First of two parts. The New England Journal of Medicine 339, 1044-1053.
Langston J. W., Ballard P., Tetrud J. W. and Irwin I. (1983) Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219, 979-980.
LeBel C. P. and Bondy S. C. (1991) Oxygen radicals: common mediators of neurotoxicity. Neurotoxicology and teratology 13, 341-346.
Liou H. H., Chen R. C., Tsai Y. F., Chen W. P., Chang Y. C. and Tsai M. C. (1996) Effects of paraquat on the substantia nigra of the wistar rats: neurochemical, histological, and behavioral studies. Toxicology and Applied Pharmacology 137, 34-41.
Liou H. H., Tsai M. C., Chen C. J., Jeng J. S., Chang Y. C., Chen S. Y. and Chen R. C. (1997) Environmental risk factors and Parkinson's disease: a case-control study in Taiwan. Neurology 48, 1583-1588.
Lockman P. R., McAfee G., Geldenhuys W. J., Van der Schyf C. J., Abbruscato T. J. and Allen D. D. (2005) Brain uptake kinetics of nicotine and cotinine after chronic nicotine exposure. The Journal of pharmacology and experimental therapeutics 314, 636-642.
Maggio R., Riva M., Vaglini F., Fornai F., Molteni R., Armogida M., Racagni G. and Corsini G. U. (1998) Nicotine prevents experimental parkinsonism in rodents and induces striatal increase of neurotrophic factors. Journal of neurochemistry 71, 2439-2446.
Makino Y., Ohta S., Tachikawa O. and Hirobe M. (1988) Presence of tetrahydroisoquinoline and 1-methyl-tetrahydro-isoquinoline in foods: compounds related to Parkinson's disease. Life sciences 43, 373-378.
Martel F., Calhau C., Soares-da-Silva P. and Azevedo I. (2001) Transport of [3H]MPP+ in an immortalized rat brain microvessel endothelial cell line (RBE 4). Naunyn-Schmiedeberg's archives of pharmacology 363, 1-10.
Mason R. P. (1990) Redox cycling of radical anion metabolites of toxic chemicals and drugs and the Marcus theory of electron transfer. Environmental health perspectives 87, 237-243.
Mastroberardino L., Spindler B., Pfeiffer R., Skelly P. J., Loffing J., Shoemaker C. B. and Verrey F. (1998) Amino-acid transport by heterodimers of 4F2hc/CD98 and members of a permease family. Nature 395, 288-291.

Matsuo H., Tsukada S., Nakata T., Chairoungdua A., Kim D. K., Cha S. H., Inatomi J., Yorifuji H., Fukuda J., Endou H. and Kanai Y. (2000) Expression of a system L neutral amino acid transporter at the blood-brain barrier. Neuroreport 11, 3507-3511.
Mayer R. A., Kindt M. V. and Heikkila R. E. (1986) Prevention of the nigrostriatal toxicity of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine by inhibitors of 3,4-dihydroxyphenylethylamine transport. Journal of neurochemistry 47, 1073-1079.
McCormack A. L. and Di Monte D. A. (2003) Effects of L-dopa and other amino acids against paraquat-induced nigrostriatal degeneration. Journal of neurochemistry 85, 82-86.
Meier C., Ristic Z., Klauser S. and Verrey F. (2002) Activation of system L heterodimeric amino acid exchangers by intracellular substrates. The EMBO Journal 21, 580-589.
Mercier C., Masseguin C., Roux F., Gabrion J. and Scherrmann J. M. (2004) Expression of P-glycoprotein (ABCB1) and Mrp1 (ABCC1) in adult rat brain: focus on astrocytes. Brain research 1021, 32-40.
Munchau A. and Bhatia K. P. (2000) Pharmacological treatment of Parkinson's disease. Postgraduate Medical Journal 76, 602-610.
Mytilineou C., Leonardi E. K., Radcliffe P., Heinonen E. H., Han S. K., Werner P., Cohen G. and Olanow C. W. (1998) Deprenyl and desmethylselegiline protect mesencephalic neurons from toxicity induced by glutathione depletion. The Journal of pharmacology and experimental therapeutics 284, 700-706.
Nagatsu T. (1997) Isoquinoline neurotoxins in the brain and Parkinson's disease. Neuroscience research 29, 99-111.
Naylor J. L., Widdowson P. S., Simpson M. G., Farnworth M., Ellis M. K. and Lock E. A. (1995) Further evidence that the blood/brain barrier impedes paraquat entry into the brain. Human & Experimental Toxicology 14, 587-594.
Niwa T., Yoshizumi H., Tatematsu A., Matsuura S. and Nagatsu T. (1989) Presence of tetrahydroisoquinoline, a parkinsonism-related compound, in foods. Journal of Chromatographic Science 493, 347-352.
Niwa T., Takeda N., Yoshizumi H., Tatematsu A., Yoshida M., Dostert P., Naoi M. and Nagatsu T. (1993) Presence of tetrahydroisoquinoline-related compounds, possible MPTP-like neurotoxins, in parkinsonian brain. Advances in Neurology 60, 234-237.
O'Kane R. L., Vina J. R., Simpson I., Zaragoza R., Mokashi A. and Hawkins R. A. (2006) Cationic amino acid transport across the blood-brain barrier is mediated exclusively by system y+. American Journal of Physiology: Endocrinology and Metabolism 291, E412-419.
Okuda M., Saito H., Urakami Y., Takano M. and Inui K. (1996) cDNA cloning and functional expression of a novel rat kidney organic cation transporter, OCT2. Biochemical and Biophysical Research Communications 224, 500-507.
Ovadia A., Zhang Z. and Gash D. M. (1995) Increased susceptibility to MPTP toxicity in middle-aged rhesus monkeys. Neurobiology of Aging 16, 931-937.
Oxender D. L. and Christensen H. N. (1963) Evidence for two types of mediation of neutral and amino-acid transport in Ehrlich cells. Nature 197, 765-767.
Pardridge W. M., Eisenberg J. and Yang J. (1985) Human blood-brain barrier insulin receptor. Journal of neurochemistry 44, 1771-1778.
Przedborski S. and Ischiropoulos H. (2005) Reactive oxygen and nitrogen species: weapons of neuronal destruction in models of Parkinson's disease. Antioxid Redox Signal 7, 685-693.
Quik M., Parameswaran N., McCallum S. E., Bordia T., Bao S., McCormack A., Kim A., Tyndale R. F., Langston J. W. and Di Monte D. A. (2006) Chronic oral nicotine treatment protects against striatal degeneration in MPTP-treated primates. Journal of neurochemistry 98, 1866-1875.
Riachi N. J., LaManna J. C. and Harik S. I. (1989) Entry of 1-methyl-4-phenyl-1,2,3,6- etrahydropyridine into the rat brain. The Journal of pharmacology and experimental therapeutics 249, 744-748.
Rommelspacher H. and Susilo R. (1985) Tetrahydroisoquinolines and beta-carbolines: putative natural substances in plants and mammals. Progress in Drug Research 29, 415-459.
Rose S., Nomoto M., Jackson E. A., Gibb W. R., Jaehnig P., Jenner P. and Marsden C. D. (1993) Age-related effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine treatment of common marmosets. European Journal of Pharmacology 230, 177-185.
Rosenberg J., Benowitz N. L., Jacob P. and Wilson K. M. (1980) Disposition kinetics and effects of intravenous nicotine. Clinical Pharmacology and Therapeutics 28, 517-522.
Sanchez-Ramos J. R., Hefti F. and Weiner W. J. (1987) Paraquat and Parkinson's disease. Neurology 37, 728.
Schulzer M., Mak E. and Calne D. B. (1992) The antiparkinson efficacy of deprenyl derives from transient improvement that is likely to be symptomatic. Annals of Neurology 32, 795-798.
Schwab R. S., England A. C., Jr., Poskanzer D. C. and Young R. R. (1969) Amantadine in the treatment of Parkinson's disease. Journal of the American Medical Association 208, 1168-1170.
Shang T., Uihlein A. V., Van Asten J., Kalyanaraman B. and Hillard C. J. (2003) 1-Methyl-4-phenylpyridinium accumulates in cerebellar granule neurons via organic cation transporter 3. Journal of neurochemistry 85, 358-367.
Shimizu K., Ohtaki K., Matsubara K., Aoyama K., Uezono T., Saito O., Suno M., Ogawa K., Hayase N., Kimura K. and Shiono H. (2001) Carrier-mediated processes in blood--brain barrier penetration and neural uptake of paraquat. Brain research 906, 135-142.
Smith L. L. (1982) Young Scientists Award lecture 1981: The identification of an accumulation system for diamines and polyamines into the lung and its relevance to paraquat toxicity. Archives of toxicology. Supplement. = Archiv fur Toxikologie 5, 1-14.
Soto-Otero R., Mendez-Alvarez E., Hermida-Ameijeiras A., Lopez-Real A. M. and Labandeira-Garcia J. L. (2002) Effects of (-)-nicotine and (-)-cotinine on 6-hydroxydopamine-induced oxidative stress and neurotoxicity: relevance for Parkinson's disease. Biochemical Pharmacology 64, 125-135.

Spector R. (1988) Transport of amantadine and rimantadine through the blood-brain barrier. The Journal of pharmacology and experimental therapeutics 244, 516-519.
Takami K., Saito H., Okuda M., Takano M. and Inui K. I. (1998) Distinct characteristics of transcellular transport between nicotine and tetraethylammonium in LLC-PK1 cells. The Journal of pharmacology and experimental therapeutics 286, 676-680.
Takeda H., Inazu M. and Matsumiya T. (2002) Astroglial dopamine transport is mediated by norepinephrine transporter. Naunyn-Schmiedeberg's archives of pharmacology 366, 620-623.
Tatton W. G. and Chalmers-Redman R. M. (1996) Modulation of gene expression rather than monoamine oxidase inhibition: (-)-deprenyl-related compounds in controlling neurodegeneration. Neurology 47, S171-183.
Tayarani I., Cloez I., Clement M. and Bourre J. M. (1989) Antioxidant enzymes and related trace elements in aging brain capillaries and choroid plexus. Journal of neurochemistry 53, 817-824.
Tetrud J. W. and Langston J. W. (1989) The effect of deprenyl (selegiline) on the natural history of Parkinson's disease. Science 245, 519-522.
The Parkinson study group (1989) Effect of deprenyl on the progression of disability in early Parkinson's disease. . The New England Journal of Medicine 321, 1364-1371.
The Parkinson study group (1998) Mortality in DATATOP: a multicenter trial in early Parkinson's disease. Annals of Neurology 43, 318-325.
Tishler D. M., Weinberg K. I., Hinton D. R., Barbaro N., Annett G. M. and Raffel C. (1995) MDR1 gene expression in brain of patients with medically intractable epilepsy. Epilepsia 36, 1-6.
Tomi M., Mori M., Tachikawa M., Katayama K., Terasaki T. and Hosoya K. (2005) L-type amino acid transporter 1-mediated L-leucine transport at the inner blood-retinal barrier. Investigative ophthalmology & visual science 46, 2522-2530.

Uchino H., Kanai Y., Kim D. K., Wempe M. F., Chairoungdua A., Morimoto E., Anders M. W. and Endou H. (2002) Transport of amino acid-related compounds mediated by L-type amino acid transporter 1 (LAT1): insights into the mechanisms of substrate recognition. Molecular Pharmacology 61, 729-737.
Uitti R. J., Rajput A. H., Ahlskog J. E., Offord K. P., Schroeder D. R., Ho M. M., Prasad M., Rajput A. and Basran P. (1996) Amantadine treatment is an independent predictor of improved survival in Parkinson's disease. Neurology 46, 1551-1556.
Verhagen Metman L., Del Dotto P., van den Munckhof P., Fang J., Mouradian M. M. and Chase T. N. (1998) Amantadine as treatment for dyskinesias and motor fluctuations in Parkinson's disease. Neurology 50, 1323-1326.
Volgyi G., Ruiz R., Box K., Comer J., Bosch E. and Takacs-Novak K. (2007) Potentiometric and spectrophotometric pKa determination of water-insoluble compounds: validation study in a new cosolvent system. Analytica chimica acta 583, 418-428.
Widdowson P. S., Farnworth M. J., Simpson M. G. and Lock E. A. (1996) Influence of age on the passage of paraquat through the blood-brain barrier in rats: a distribution and pathological examination. Human & Experimental Toxicology 15, 231-236.
Zhang L., Schaner M. E. and Giacomini K. M. (1998) Functional characterization of an organic cation transporter (hOCT1) in a transiently transfected human cell line (HeLa). The Journal of pharmacology and experimental therapeutics 286, 354-361.
Zhang Y. and Pardridge W. M. (2001) Rapid transferrin efflux from brain to blood across the blood-brain barrier. Journal of neurochemistry 76, 1597-1600.
施靖宇 引起巴金森氏症相關因子的血腦屏障穿透之研究 (2005) 國立台灣大學藥理學研究所碩士論文
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29928-
dc.description.abstract目前已經有許多化合物被報導可能導致巴金森氏症,包括了MPTP/MPP+、paraquat和rotenone都可造成實驗動物的神經壞死和巴金森氏症症狀;另一方面,nicotine則被發現對巴金森氏症有保護效果,可減少巴金森氏症的發生率。在本實驗室先前的研究中,發現MPP+可經由轉運蛋白運輸進入大腦微血管內皮細胞 (ARBEC),且此運輸途徑可被nicotine競爭型抑制。在第一部分的實驗中,我們延續之前的研究,納入更多巴金森氏症相關的化合物進行研究,深入探討此機轉的可能性。另外,paraquat也是結構類似MPP+的致巴金森氏症環境因子,文獻中曾被報導可經由大型中性胺基酸轉運蛋白1 (LAT1) 轉運進入中樞,因此在第二部分的實驗中,我們同樣以ARBEC試驗腦血管內皮細胞攝取paraquat的機轉,以確認paraquat和LAT1的關係。
第一部分的研究結果指出,MPP+的結構類似物MPTP也能透過轉運蛋白運輸進入大鼠腦微血管內皮細胞,其進入細胞的km為35.7 ± 0.9 uM、Vmax為1228.4 ± 106.5 pmole/mg protein-30 sec,而nicotine也可以競爭型抑制的方式抑制細胞攝取MPTP,其抑制常數ki為329 uM。另一方面,我們發現其他結構上和MPTP/MPP+相關的巴金森氏症用藥—amantadine、selegiline也能顯著抑制MPTP/MPP+被腦血管內皮細胞攝取,並且計算出這兩個藥物對於細胞攝取MPTP的抑制常數分別為178 uM和246 uM,顯示這些巴金森氏症的治療藥物和nicotine一樣可能影響MPTP/MPP+進入中樞。由於RT-PCR的結果顯示大鼠腦微血管內皮細胞上有表現有機陽離子轉蛋白1 (OCT1),卻偵測不到多巴胺轉運蛋白 (DAT) 的表現,由於細胞攝取MPP+的路徑可被OCT選擇性抑制劑—decynium22大幅度抑制,顯示MPP+是由OCT進入細胞,雖然細胞攝取MPTP以及nicotine的路徑也能被decynium22抑制,但由於此路徑不受典型有機陽離子存在的影響,因此MPTP以及nicotine可能除OCT外仍經由其他路徑進入腦血管內皮細胞。最後,其他結構類似MPTP/MPP+的isoquinoline類致巴金森物質在實驗中也能影響腦血管內皮細胞攝取MPTP/MPP+和nicotine,顯示此類物質可能也部份經由轉運蛋白進入中樞,但仍需進一步的實驗證明。
在第二部分的研究中,我們發現paraquat無法經由轉運蛋白轉介 (carrier-mediated) 的方式進入細胞,也無法影響LAT1在ARBEC上的功能,因此我們的實驗結果不支持paraquat可經由LAT1進入中樞的論點,另一方面,我們發現新生大鼠星狀細胞 (neonatal rat astrocyte,NRA) 可以轉運蛋白轉介的方式攝取paraquat,考慮到星狀細胞的偽足在血腦屏障上也有屏障的功能,這樣的現象是否和paraqaut進入中樞的路徑有關在未來可以進一步的探討。
總結以上的實驗結果,我們發現nicotine可以競爭型抑制的方式抑制MPTP進入腦血管內皮細胞,這部分地解釋了nicotine對於巴金森氏症的保護作用,而且除了nicotine之外,amantadine和selegiline也可能有相同的保護作用。另一方面,我們的實驗結果指出paraquat並不會經由LAT1運輸,然而其進入中樞的機轉仍需進一步的研究。
zh_TW
dc.description.abstractTo date, compounds including MPTP/MPP+, paraquat and rotenone have been reported to be related to Parkinson’s disease (PD). On the other hand, nicotine may have neuroprotective effect on PD. Previously, using adult rat brain endothelial cell (ARBEC), we showed that nicotine competitively inhibited cellular uptake of MPP+. In this regard, the current study further examines the interaction between MPTP/MPP+ and several compounds, including nicotine, organic cations and MPTP/MPP+ analogues in ARBEC. In addition, since paraquat was reported to penetrate blood-brain barrier via large neutral amino acid transport 1 (LAT1), in the second part of this study, we used cell culture (ARBEC) model to further examine the interaction between LAT1 and paraquat.
In the study of MPTP/MPP+, firstly, the results showed that cellular uptake of MPTP can be mediated by a carrier-mediated system, with Km and Vmax value of 35.7 ± 0.9 μM and 1228.4 ± 106.5 pmole/mg protein-30 sec, respectively. Secondly, the carrier system transported MPTP/MPP+ and nicotine was sensitive to decynium22, a selective organic cation transporter (OCT) inhibitor. RT-PCR showed that OCT1 mRNA was detectable in ARBEC. Thirdly, not only nicotine but also amantadine and selegiline can inhibit the cellular uptake of MPTP and MPP+, whereas caffeine and levodopa did not have any significant effect. Nicotine, amantadine and selegiline competitively inhibited cellular uptake of MPTP with inhibition constants (Ki) of 329 μM, 178 μM and 246 μM respectively. In addition, MPTP/MPP+ analogues such as tetrahydroisoquinoline (TIQ) and N-methyl-salsolinol showed significant inhibition on cellular uptake of MPTP, MPP+ and nicotine. These results indicated that nicotine, amantadine and selegiline may inhibit MPTP-like neurotoxins across the blood-brain barrier. Nonetheless, due to structural similarity, BBB transfer characteristics and structure-transport relationship for MPTP/MPP+ analogues need to be further elucidated.
In the study of paraquat, different from the reports in literature, our result showed that LAT1 did not recognize and transport paraquat into the brain endothelial cell. Instead, paraquat seems to enter ARBEC by passive diffusion. On the other hand, neonatal rat astrocytes (NRA) can uptake paraquat via a carrier-mediated process. Since NRA was considered a secondary barrier in the BBB constitute, further study is required to investigate whether NRA plays a role in the transport of paraquat into the CNS.
In conclusion, our results showed that nicotine could competitively inhibit cellular uptake of MPTP. It might partly explain the neuroprotective effect of nicotine in PD. In addition to nicotine, amantadine and selegiline may exhibit the same neuroprotective effect. On the other hand, our results showed that paraquat is not transported by LAT1. The transport mechanisms of paraquat through BBB should be further varified.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T01:25:26Z (GMT). No. of bitstreams: 1
ntu-96-R94423008-1.pdf: 2024691 bytes, checksum: 7a5d4496087592f57b7cbe838a2400f7 (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents第一章 緒論 1
1.1.巴金森氏症 (Parkinson’s disease,PD) 1
1.2. MPTP和MPP+ 2
1.3.巴拉刈 (paraquat) 4
1.4.尼古丁 (nicotine) 5
1.5. Amantadine 7
1.6. Selegiline 8
1.7.血腦屏障 (Blood-brain barrier,BBB) 9
1.8.有機陽離子轉運蛋白 (Organic cation transporter) 10
1.9.大型中性胺基酸轉運蛋白 (Large neutral amino acid transporter) 11
第二章 實驗目的 18
第三章 實驗材料 19
3.1.細胞培養 19
3.2.蛋白質濃度測定 (Bio-Rad DC protein assay) 20
3.3.細胞藥物攝取量研究 (uptake study) 20
3.4.反轉錄聚合酶鏈鎖反應分析 (RT-PCR) 22
3.5.螢光免疫染色 24
3.6.其他 25
第四章 實驗方法 26
4.1.細胞培養 26
4.2.蛋白質濃度測定 27
4.3.藥物在ARBEC的攝取量研究 27
4.4. Paraquat在NRA的攝取量研究 30
4.5.反轉錄及聚合酶鏈鎖反應分析 31
4.6.免疫螢光染色 33
4.7.數據分析 34
第五章 實驗結果 36
5.1. MPTP在ARBEC的攝取量之時間相依性研究 36
5.2. MPTP在ARBEC的攝取量之濃度相依性研究 36
5.3.各類化合物抑制3H-MPP+在ARBEC攝取量之研究結果 37
5.4.各類化合物抑制3H-MPTP在ARBEC攝取量之研究結果 38
5.5.各類化合物抑制3H-Nicotine在ARBEC攝取量之研究結果 38
5.6. Nicotine影響ARBEC細胞MPTP攝取量之機轉研究結果 39
5.7. Amantadine影響ARBEC細胞MPTP攝取量之機轉研究結果 39
5.8. Selegiline影響ARBEC細胞MPTP攝取量之機轉研究結果 40
5.9. ARBEC細胞內有機陽離子轉運蛋白以及多巴胺轉運蛋白之mRNA表現 41
5.10. ARBEC細胞內大型中性胺基酸轉運蛋白之mRNA表現 42
5.11.各類化合物抑制14C-Paraquat在ARBEC攝取量之研究結果 42
5.12.各類化合物抑制3H-L-Valine在ARBEC攝取量之研究結果 43
5.13. Paraquat在NRA的攝取量研究結果 44
5.14. Paraquat對細胞間緊密連接影響之研究結果 44
第六章 結果討論 67
6.1. ARBEC攝取MPTP之機轉 68
6.2. Nicotine對於ARBEC攝取MPTP之影響 69
6.3.巴金森氏症相關保護因子或藥物對於ARBEC攝取MPTP/MPP+之影響 70
6.4. ARBEC攝取MPTP/MPP+的路徑 73
6.5.其他巴金森氏症致病因子與血腦屏障上轉運蛋白的關聯 74
6.6. ARBEC攝取paraquat的機轉 76
6.7. Paraquat對腦血管內皮細胞緊密連接之影響 78
第七章 結 論 80
第八章 參考文獻 81
附錄 A 論文中使用之化合物結構圖 94
附錄 B 原始數據 96
dc.language.isozh-TW
dc.subject巴拉刈zh_TW
dc.subject巴金森氏症zh_TW
dc.subject血腦屏障zh_TW
dc.subject轉運蛋白zh_TW
dc.subjectMPTPzh_TW
dc.subject尼古丁zh_TW
dc.subjectMPTPen
dc.subjectnicotineen
dc.subjectparaquaten
dc.subjectBBBen
dc.subjecttransporteren
dc.title以大鼠腦血管內皮細胞 (ARBEC) 探討導致巴金森氏症之相關因子通透血腦屏障之機轉及其影響zh_TW
dc.titleCellular uptake of MPTP/MPP+ and paraquat in adult rat brain endothelial cells and its implications to Parkinson’s diseaseen
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李水盛(Shoei-Sheng Lee),符文美,陳繼明,劉宏輝
dc.subject.keyword巴金森氏症,血腦屏障,轉運蛋白,MPTP,尼古丁,巴拉刈,zh_TW
dc.subject.keywordBBB,transporter,MPTP,paraquat,nicotine,en
dc.relation.page103
dc.rights.note有償授權
dc.date.accepted2007-07-18
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept藥學研究所zh_TW
顯示於系所單位:藥學系

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  未授權公開取用
1.98 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved