Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 漁業科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29924
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃鵬鵬(Pung-Pung Hwang)
dc.contributor.authorYi-Fang Wangen
dc.contributor.author王怡方zh_TW
dc.date.accessioned2021-06-13T01:25:13Z-
dc.date.available2012-07-27
dc.date.copyright2007-07-27
dc.date.issued2007
dc.date.submitted2007-07-16
dc.identifier.citationReferences
Alestrom, P., J.L. Holter, and R. Nourizadeh-Lillabadi. 2006. Zebrafish in functional genomics and aquatic biomedicine. Trends Biotechnol. 24:15-21.
Bachmann, S., H. Velazquez, N. Obermuller, R.F. Reilly, D. Moser, and D.H. Ellison. 1995. Expression of the thiazide-sensitive Na-Cl cotransporter by rabbit distal convoluted tubule cells. J Clin Invest. 96:2510-2514.
Beaumont, K., D.A. Vaughn, A.R. Maciejewski, and D.D. Fanestil. 1989. Reversible downregulation of thiazide diuretic receptors by acute renal ischemia. Am J Physiol. 256:F329-F334.
Boisen, A.M., J. Amstrup, I. Novak, and M. Grosell. 2003. Sodium and chloride transport in soft water and hard water acclimated zebrafish (Danio rerio). Biochim Biophys Acta. 1618:207-218.
Bostanjoglo, M., W.B. Reeves, R.F. Reilly, H. Velazquez, N. Robertson, G. Litwack, P. Morsing, J. Dorup, S. Bachmann, and D.H. Ellison. 1998. 11Beta-hydroxysteroid dehydrogenase, mineralocorticoid receptor, and thiazide-sensitive Na-Cl cotransporter expression by distal tubules. J Am Soc Nephrol. 9:1347-1358.
Chang, I.C., and P.P. Hwang. 2004. Cl- uptake mechanism in freshwater-adapted tilapia (Oreochromis mossambicus). Physiol Biochem Zool. 77:406-414.
Chang, I.C., T.H. Lee, C.H. Yang, Y.Y. Wei, F.I. Chou, and P.P. Hwang. 2001. Morphology and function of gill mitochondria-rich cells in fish acclimated to different environments. Physiol Biochem Zool. 74:111-119.
Costanzo, L.S. 1985. Localization of diuretic action in microperfused rat distal tubules: Ca and Na transport. Am J Physiol. 248:F527-F535.
Doucet, A. 1988. Function and control of Na-K-ATPase in single nephron segments of the mammalian kidney. Kidney Int. 34:749-760.
Edwards, S.L., C.M. Tse, and T. Toop. 1999. Immunolocalisation of NHE3-like immunoreactivity in the gills of the rainbow trout (Oncorhynchus mykiss) and the blue-throated wrasse (Pseudolabrus tetrious). J Anat. 195 (Pt 3):465-469.
Ellison, D.H., H. Velazquez, and F.S. Wright. 1987. Mechanisms of sodium, potassium and chloride transport by the renal distal tubule. Miner Electrolyte Metab. 13:422-432.
Esaki, M., K. Hoshijima, S. Kobayashi, H. Fukuda, K. Kawakami, and S. Hirose. 2007. Visualization in zebrafish larvae of Na(+) uptake in mitochondria-rich cells whose differentiation is dependent on foxi3a. Am J Physiol Regul Integr Comp Physiol. 292:R470-R480.
Evans, D.H., P.M. Piermarini, and K.P. Choe. 2005. The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. Physiol Rev. 85:97-177.
Fenwick, J.C., S.E. Wendelaar Bonga, and G. Flik. 1999. In vivo bafilomycin-sensitive Na(+) uptake in young freshwater fish. J Exp Biol. 202 Pt 24:3659-3666.
Gamba, G. 2005. Molecular physiology and pathophysiology of electroneutral cation-chloride cotransporters. Physiol Rev. 85:423-493.
Gamba, G., A. Miyanoshita, M. Lombardi, J. Lytton, W.S. Lee, M.A. Hediger, and S.C. Hebert. 1994. Molecular cloning, primary structure, and characterization of two members of the mammalian electroneutral sodium-(potassium)-chloride cotransporter family expressed in kidney. J Biol Chem. 269:17713-17722.
Gamba, G., S.N. Saltzberg, M. Lombardi, A. Miyanoshita, J. Lytton, M.A. Hediger, B.M. Brenner, and S.C. Hebert. 1993. Primary structure and functional expression of a cDNA encoding the thiazide-sensitive, electroneutral sodium-chloride cotransporter. Proc Natl Acad Sci U S A. 90:2749-2753.
Gesek, F.A., and P.A. Friedman. 1995. Sodium entry mechanisms in distal convoluted tubule cells. Am J Physiol. 268:F89-F98.
Gillen, C.M., S. Brill, J.A. Payne, and B. Forbush, 3rd. 1996. Molecular cloning and functional expression of the K-Cl cotransporter from rabbit, rat, and human. A new member of the cation-chloride cotransporter family. J Biol Chem. 271:16237-16244.
Hiroi, J., S.D. McCormick, R. Ohtani-Kaneko, and T. Kaneko. 2005. Functional classification of mitochondrion-rich cells in euryhaline Mozambique tilapia (Oreochromis mossambicus) embryos, by means of triple immunofluorescence staining for Na+/K+-ATPase, Na+/K+/2Cl- cotransporter and CFTR anion channel. J Exp Biol. 208:2023-2036.
Horng, J.L., L.Y. Lin, C.J. Huang, F. Katoh, T. Kaneko, and P.P. Hwang. 2007. Knockdown of V-ATPase subunit A (atp6v1a) impairs acid secretion and ion balance in zebrafish (Danio rerio). Am J Physiol Regul Integr Comp Physiol. 292:R2068-R2076.
Hsiao, C.D., M.S. You, Y.J. Guh, M. Ma, Y.J. Jiang, and P.P. Hwang. 2007. A Positive Regulatory Loop between foxi3a and foxi3b Is Essential for Specification and Differentiation of Zebrafish Epidermal Ionocytes. PLoS ONE. 2:e302.
Hwang, P.P., and T.H. Lee. 2007. New insights into fish ion regulation and mitochondria-rich cells. Comp Biochem Physiol A Mol Integr Physiol. (in press).
Kashgarian, M., D. Biemesderfer, M. Caplan, and B. Forbush, 3rd. 1985. Monoclonal antibody to Na,K-ATPase: immunocytochemical localization along nephron segments. Kidney Int. 28:899-913.
Katz, A.I., A. Doucet, and F. Morel. 1979. Na-K-ATPase activity along the rabbit, rat, and mouse nephron. Am J Physiol. 237:F114-F120.
Khuri, R.N., N. Strieder, M. Wiederholt, and G. Giebisch. 1975. Effects of graded solute diuresis on renal tubular sodium transport in the rat. Am J Physiol. 228:1262-1268.
Kunchaparty, S., M. Palcso, J. Berkman, H. Velazquez, G.V. Desir, P. Bernstein, R.F. Reilly, and D.H. Ellison. 1999. Defective processing and expression of thiazide-sensitive Na-Cl cotransporter as a cause of Gitelman's syndrome. Am J Physiol. 277:F643-F649.
Le Hir, M., B. Kaissling, and U.C. Dubach. 1982. Distal tubular segments of the rabbit kidney after adaptation to altered Na- and K-intake. II. Changes in Na-K-ATPase activity. Cell Tissue Res. 224:493-504.
Liapis, H., M. Nag, and D.M. Kaji. 1998. K-Cl cotransporter expression in the human kidney. Am J Physiol. 275:C1432-C1437.
Lin, L.Y., J.L. Horng, J.G. Kunkel, and P.P. Hwang. 2006. Proton pump-rich cell secretes acid in skin of zebrafish larvae. Am J Physiol Cell Physiol. 290:C371-C378.
Lin, L.Y., and P.P. Hwang. 2004. Mitochondria-rich cell activity in the yolk-sac membrane of tilapia (Oreochromis mossambicus) larvae acclimatized to different ambient chloride levels. J Exp Biol. 207:1335-1344.
Mastroianni, N., A. Bettinelli, M. Bianchetti, G. Colussi, M. De Fusco, F. Sereni, A. Ballabio, and G. Casari. 1996a. Novel molecular variants of the Na-Cl cotransporter gene are responsible for Gitelman syndrome. Am J Hum Genet. 59:1019-1026.
Mastroianni, N., M. De Fusco, M. Zollo, G. Arrigo, O. Zuffardi, A. Bettinelli, A. Ballabio, and G. Casari. 1996b. Molecular cloning, expression pattern, and chromosomal localization of the human Na-Cl thiazide-sensitive cotransporter (SLC12A3). Genomics. 35:486-493.
Maunsbach, A.B., H. Vorum, T.H. Kwon, S. Nielsen, B. Simonsen, I. Choi, B.M. Schmitt, W.F. Boron, and C. Aalkjaer. 2000. Immunoelectron microscopic localization of the electrogenic Na/HCO(3) cotransporter in rat and ambystoma kidney. J Am Soc Nephrol. 11:2179-2189.
Monroy, A., C. Plata, S.C. Hebert, and G. Gamba. 2000. Characterization of the thiazide-sensitive Na(+)-Cl(-) cotransporter: a new model for ions and diuretics interaction. Am J Physiol Renal Physiol. 279:F161-F169.
Moreno, E., P.S. Cristobal, M. Rivera, N. Vazquez, N.A. Bobadilla, and G. Gamba. 2006. Affinity-defining domains in the Na-Cl cotransporter: a different location for Cl- and thiazide binding. J Biol Chem. 281:17266-17275.
Obermuller, N., P. Bernstein, H. Velazquez, R. Reilly, D. Moser, D.H. Ellison, and S. Bachmann. 1995. Expression of the thiazide-sensitive Na-Cl cotransporter in rat and human kidney. Am J Physiol. 269:F900-F910.
Pan, T.C., B.K. Liao, C.J. Huang, L.Y. Lin, and P.P. Hwang. 2005. Epithelial Ca(2+) channel expression and Ca(2+) uptake in developing zebrafish. Am J Physiol Regul Integr Comp Physiol. 289:R1202-R1211.
Parks, S.K., M. Tresguerres, and G.G. Goss. 2007. Interactions between Na+ channels and Na+-HCO3- cotransporters in the freshwater fish gill MR cell: a model for transepithelial Na+ uptake. Am J Physiol Cell Physiol. 292:C935-C944.
Plotkin, M.D., M.R. Kaplan, J.W. Verlander, W.S. Lee, D. Brown, E. Poch, S.R. Gullans, and S.C. Hebert. 1996. Localization of the thiazide sensitive Na-Cl cotransporter, rTSC1 in the rat kidney. Kidney Int. 50:174-183.
Reid, S.D., G.S. Hawkings, F. Galvez, and G.G. Goss. 2003. Localization and characterization of phenamil-sensitive Na+ influx in isolated rainbow trout gill epithelial cells. J Exp Biol. 206:551-559.
Schultheis, P.J., L.L. Clarke, P. Meneton, M. Harline, G.P. Boivin, G. Stemmermann, J.J. Duffy, T. Doetschman, M.L. Miller, and G.E. Shull. 1998. Targeted disruption of the murine Na+/H+ exchanger isoform 2 gene causes reduced viability of gastric parietal cells and loss of net acid secretion. J Clin Invest. 101:1243-1253.
Simon, D.B., C. Nelson-Williams, M.J. Bia, D. Ellison, F.E. Karet, A.M. Molina, I. Vaara, F. Iwata, H.M. Cushner, M. Koolen, F.J. Gainza, H.J. Gitleman, and R.P. Lifton. 1996. Gitelman's variant of Bartter's syndrome, inherited hypokalaemic alkalosis, is caused by mutations in the thiazide-sensitive Na-Cl cotransporter. Nat Genet. 12:24-30.
Tang, C.H., and T.H. Lee. 2007a. The effect of environmental salinity on the protein expression of Na+/K+-ATPase, Na+/K+/2Cl- cotransporter, cystic fibrosis transmembrane conductance regulator, anion exchanger 1, and chloride channel 3 in gills of a euryhaline teleost, Tetraodon nigroviridis. Comp Biochem Physiol A Mol Integr Physiol. 147:521-528.
Tang, C.H., and T.H. Lee. 2007b. The novel correlation of carbonic anhydrase II and anion exchanger 1 in gills of the spotted green pufferfish, Tetraodon nigrovirids. J Exp Zool Part A Ecol Genet Physiol.(in press)
Tresguerres, M., F. Katoh, E. Orr, S.K. Parks, and G.G. Goss. 2006. Chloride uptake and base secretion in freshwater fish: a transepithelial ion-transport metabolon? Physiol Biochem Zool. 79:981-996.
Vandewalle, A., F. Cluzeaud, M. Bens, S. Kieferle, K. Steinmeyer, and T.J. Jentsch. 1997. Localization and induction by dehydration of ClC-K chloride channels in the rat kidney. Am J Physiol. 272:F678-F688.
Velazquez, H., D.W. Good, and F.S. Wright. 1984. Mutual dependence of sodium and chloride absorption by renal distal tubule. Am J Physiol. 247:F904-F911.
Wilson, F.H., K.T. Kahle, E. Sabath, M.D. Lalioti, A.K. Rapson, R.S. Hoover, S.C. Hebert, G. Gamba, and R.P. Lifton. 2003. Molecular pathogenesis of inherited hypertension with hyperkalemia: the Na-Cl cotransporter is inhibited by wild-type but not mutant WNK4. Proc Natl Acad Sci U S A. 100:680-684.
Wilson, J.M., P. Laurent, B.L. Tufts, D.J. Benos, M. Donowitz, A.W. Vogl, and D.J. Randall. 2000. NaCl uptake by the branchial epithelium in freshwater teleost fish: an immunological approach to ion-transport protein localization. J Exp Biol. 203:2279-2296.
Woo, A.L., W.T. Noonan, P.J. Schultheis, J.C. Neumann, P.A. Manning, J.N. Lorenz, and G.E. Shull. 2003. Renal function in NHE3-deficient mice with transgenic rescue of small intestinal absorptive defect. Am J Physiol Renal Physiol. 284:F1190-F1198.
Yang, C.L., J. Angell, R. Mitchell, and D.H. Ellison. 2003. WNK kinases regulate thiazide-sensitive Na-Cl cotransport. J Clin Invest. 111:1039-1045.
Yang, T., Y.G. Huang, I. Singh, J. Schnermann, and J.P. Briggs. 1996. Localization of bumetanide- and thiazide-sensitive Na-K-Cl cotransporters along the rat nephron. Am J Physiol. 271:F931-F939.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29924-
dc.description.abstract鈉氯離子運輸蛋白(thiazide-sensitive Na-Cl cotransporter, NCC)主要表現於哺乳類腎臟腎小管的遠端彎曲小管表皮細胞頂端,鈉氯離子運輸蛋白的功能為將腎小管管腔中的鈉離子和氯離子共同運輸進細胞中,其所扮演的角色是負責遠曲小管氯化鈉的再吸收,而一種常用於治療高血壓的醫療用利尿劑thiazide是對鈉氯離子運輸蛋白有專一性的抑制劑。然而,目前在鈉氯離子運輸蛋白方面的研究大部分僅限於in vitro實驗,因此,本實驗的目的在於提供鈉氯離子運輸蛋白對於鈉氯離子運輸所扮演的角色和調控機制in vivo層次之證據。
在本實驗中發現,斑馬魚不同於哺乳類,擁有兩型鈉氯離子運輸蛋白,其中之一(zNCCk)大量表現於腎臟。而另一型則是專一的表現在斑馬魚成魚的鰓上(zNCCg, NCBI accessory number EF591989)。在定量PCR實驗中,進一步發現,將斑馬魚生活適應在高鈉離子和低氯離子濃度環境的人工水中,斑馬魚鰓上的zNCCg mRNA會被刺激而表現增加。此外,本實驗首次提供完整的in vivo證據證明鈉氯離子運輸蛋白專一性的抑制劑metolazone對於鈉及氯離子的吸收均有影響。而當zNCCg被基因專一反股核酸(morpholino-modified antisense oligonucleotide)抑制其蛋白表現後,斑馬魚胚胎的氯離子吸收會因此減少;同時,當zNCCg的capped mRNA和morpholino一同顯微注射到1-4細胞期的斑馬魚胚胎後,幾乎可以完全地將因為morpholino抑制而造成的氯離子運輸異常補救回接近胚胎正常表現量。綜合以上結果,本實驗首次提供在in vivo層次上的分子生理證據,證明斑馬魚皮膚及鰓上的新型鈉氯離子運輸蛋白(zNCCg)參與氯離子的吸收機制。
zh_TW
dc.description.abstractThiazide-sensitive Na-Cl cotransporter (NCC), SLC12A3, is a kidney-specific transporter in mammalian and is mainly expressed in the apical membrane of the distal convoluted tubule (DCT) cells. In mammalian DCT, NCC is responsible for co-transporting Na+ and Cl- from lumen into DCT cells, playing a major role in NaCl reabsorption. NCC also acts as the target for the thiazide diuretics, which is used to treat hypertension. However, only a few in vivo data were available to elucidate the transport mechanism of NCC. In the present study, zebrafish was used as an in vivo model to examine the role of NCC in Na+/Cl- uptake mechanisms. Two NCCs were cloned and sequenced. One (zNCCk) was mainly expressed in kidney and another (zNCCg, NCBI accessory number EF591989) was in gill. Real-time RT-PCR analysis indicated that mRNA expression of the zNCCg was induced by a high-Na+-low-Cl- environment. Incubating with metolazone, a specific inhibitor of NCC, was found to impair both Na+ and Cl- influx in 5-dpf zebrafish embryos. Knockdown of the zNCCg translation with specific morpholino caused a significant decrease in Cl- uptake of zebrafish embryos, while co-injection with the zNCCg capped mRNA completely rescued the defect in morphants. These results for the 1st time provide in vivo molecular physiological evidence for the involvement of the zNCCg in Cl- uptake mechanisms in zebrafish skin/gill.en
dc.description.provenanceMade available in DSpace on 2021-06-13T01:25:13Z (GMT). No. of bitstreams: 1
ntu-96-R94b45024-1.pdf: 1617981 bytes, checksum: a22d0f40cf87515c4256f36a9f8ee433 (MD5)
Previous issue date: 2007
en
dc.description.tableofcontentsTable of contents
中文摘要…………………………………………..…………………………………….1
Abstract………………………………………………..………………………………..2
Introduction………………………………………………..……………………………3
Structure, function and physiological role of mammalian NCC……………...……..…..3
Sodium and chloride reabsorption of the distal tubule in mammalian kidney…………..5
Sodium and chloride uptake in freshwater teleosts………….……………….………….6
Using zebrafish as a model to study ion regulation…………………….......................…9
Materials and Methods……………………………………………………………….10
Experimental Animals………………………………………………………………….10
Acclimation experiment………………………………………………………………..10
Preparation of total RNA……………………………………………………………….10
Cloning of zebrafish thiazide-sensitive Na-Cl cotransporter (NCC)….…..…...……….11
Reverse transcription-PCR analysis……………………………………………………12
Phylogenetic tree analysis……………………………………………………………...12
zNCCk and zNCCg expression in different tissues….…………………………………13
Quantitative RT-PCR…………………………………………………………………...13
In situ hybridization…………………………………………………………………….13
Immunocytochemistry………………………………………………………………….15
Morpholino and phenotypic rescue…………………………………………….………16
36Cl- and 24Na+ uptake of embryos after treatment of morpholino and/or inhibitor and/or rescue……………………………..……………………………………………………16
Statistical analysis……………………………………………………………………...18
Results………………………………………………………………………………….20
Cloning and sequencing of zebrafish sodium chloride cotransporter (NCC)…..............20
Full-length cDNAs of zebrafish NCC………………………………………………….20
Alignment and phylogenetic analysis of NCC amino acid sequences………………....20
Expression patterns of NCC genes in different tissues…………...……………………21
mRNA expression patterns of NCC genes at different developmental stages………….21
Whole-mount in situ hybridization of zNCCg mRNA in zebrafish embryos…...…...…21
Colocalization of zNCCg with H+-ATPase and Na+-K+-ATPase in 5-dpf zebrafish embryos………………………………………………………………………………...22
Effects of NCC inhibitor, metolazone, on ion uptake in 5-dpf zebrafish embryos….....22
Effects of environmental Na+ and Cl- concentrations on zNCCg mRNA expressions in zebrafish gill……………………………………………………………………………23
Effects of zNCCg morpholino on ion uptake in 5-dpf zebrafish embryo………………23
Effects of zNCCg capped mRNA (cRNA) on defects caused by the zNCCg MO in 5-dpf zebrafish embryo………………………………………………………....…………….24
Discussion………………………….. ………………………………………………...25
References……………………………………………………………………………..30
Tables…………………………………………………………………………………..39
Figures…………………………………………………………………………………40
dc.language.isoen
dc.subject斑馬魚zh_TW
dc.subject離子調控zh_TW
dc.subject運輸蛋白zh_TW
dc.subject鈉氯離子zh_TW
dc.subjectzebrafishen
dc.subjectthiazideen
dc.subjectNCCen
dc.subjectosmoregulationen
dc.subjectisoformen
dc.subjectNa-Cl cotransporteren
dc.title斑馬魚之新型鈉氯離子運輸蛋白表現與功能之研究zh_TW
dc.titleExpression and Function of a Novel Na-Cl Cotransporter Isoform in Zebrafish (Danio rerio)en
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張清風(Ching-Fong Chang),李宗翰(Tsung-Han Lee)
dc.subject.keyword斑馬魚,鈉氯離子,運輸蛋白,離子調控,zh_TW
dc.subject.keywordthiazide,zebrafish,Na-Cl cotransporter,isoform,NCC,osmoregulation,en
dc.relation.page55
dc.rights.note有償授權
dc.date.accepted2007-07-18
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept漁業科學研究所zh_TW
顯示於系所單位:漁業科學研究所

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  未授權公開取用
1.58 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved