Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 大氣科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29900
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor郭鴻基
dc.contributor.authorYen-Chih Shenen
dc.contributor.author沈彥志zh_TW
dc.date.accessioned2021-06-13T01:23:58Z-
dc.date.available2007-07-19
dc.date.copyright2007-07-19
dc.date.issued2007
dc.date.submitted2007-07-16
dc.identifier.citationAnthes, R. A., 1982: Tropical cyclones: Their evolution, structure and effects. American Meteorological Soc. Met. Monograph No. 41.
Arfken, G. B., and H. J. Weber, 2001: Mathematical methods for physicists (5th Ed.). Harcourt Academic Press, 1112 pp.
Black, M. L., and H. E. Willoughby, 1992: The concentric eyewall cycle of Hurricane Gilbert. Mon. Wea. Rev., 120, 947-957.
Bourke, W. 1972: An efficient, one-Level, primitive-equation spectral model. Mon. Wea. Rev., 100, 683-689.
Dodge, P., R. W. Burpee, and F. D. Marks Jr., 1999: The kinematic structure of a hurricane with sea level pressure less than 900 mb. Mon. Wea. Rev., 127, 987–1004.
DeMaria , M., and J. C. L. Chan, 1984: Comments on “A numerical study of the interactions between two tropical cyclones.” Mon. Wea. Rev., 112, 1643-1645.
Dritschel, D. G., and D. W. Waugh, 1992: Quantification of the inelastic interaction of unequal vortices in two-dimensional vortex dynamics. Phys. Fluids, 4A, 1737–1744.
Enagonio, J., and M. T. Montgomery, 2001: Tropical cyclogenesis via convectively forced vortex Rossby waves in a shallow water primitive equation model. J. Atmos. Sci., 58, 685–705.
Franklin, J. L., S. J. Lord, S. E. Feuer, and F. D. Marks, Jr., 1993: The kinematic structure of hurricane Gloria (1985) determined from nested analyses of dropwindsonde and Doppler radar data. Mon. Wea. Rev., 121, 2433-2451.
Fulton, S. R. and W. H. Schubert, 1985: Vertical normal mode transforms: Theory and application. Mon. Wea. Rev., 113, 647-658.
Gentry, R. C., T. T. Fujita, and R. C. Sheets, 1970: Aircraft, spacecraft, satellite and radar observations of Hurricane Gladys, 1968. J. Appl. Meteor., 9, 837–850.
Gray, W. M., 1998: The formation of tropical cyclones. Meteor. Atmos. Phys., 67, 37–69.
Hawkins, J. D., and M. Helveston, 2004: Tropical cyclone multiple eyewall characteristic. Preprints, 26th Conference on Hurricane and Tropical Meteorology, Miami, FL., Amer. Meteor. Soc., 276-277.
Hendricks, E. A., M. T. Montgomery, and C. A. Davis, 2004: The role of ‘‘vortical’’ hot towers in the formation of tropical cyclone Diana (1984). J. Atmos. Sci., 61, 1209-1232.
Holland, G.J., and R.T. Merrill, 1984: On the dynamics of tropical cyclone structural changes.Quant. J. Roy. Meteor. Soc., 110723-745.
Houze Jr., R. A., S. S. Chen, B. F. Smull, W-C. Lee, M. M. Bell, 2007: Hurricane intensity and eyewall replacement, Science, 315, 1235-1239.
Hughes, L. A., 1952: On the low-level wind structure of tropical storms. J. Meteor., 9, 422-428.
Kuo, H.-C., R.-T. Williams, J-H. Chen, and Y.-L. Chen, 2001: Topographic effects on barotropic vortex motion: no mean flow. J. Atmos. Sci., 58, 1310-1327.
___, L.-Y. Lin, C.-P. Chang, and R. T. Williams, 2004: The formation of concentric vorticity structures in typhoons. J. Atmos. Sci., 61, 2722-2734.
___, W. H. Schubert, C.-L. Tsai, and Y.-F. Kuo, 2007: Vortex interactions and the barotropic aspects of concentric eyewall formation., J. Atmos. Sci., submitted.
Leith, C.E., 1980: Nonlinear normal mode initialization and quasi-geostrophic theory. J. Atmos. Sci., 37, 958–968.
Malkus, J. S. and H. Riehl, 1960: On the dynamics and energy transformation in steady-state hurricanes. Tellus, 12, 1-20.
Miller, B. I., 1967: Characteristics of hurricanes. Science, 157, 1389-1399.
McWilliams, J. C., 1984: The emergence of isolated coherent vortices in turbulent flow. J. Fluid Mech., 146, 21-43.
Montgomery, M. T., M. Bell, S. D. Aberson, and M. Black, 2006: Hurricane Isabelle (2003): New insights into the physics of intense storms. Part I: Mean vortex structure and maximum intensity estimate. Bull. Amer. Meteor. Soc., 87, 1335–1347.
Orszag, S. A., 1970: Transform method for the calculation of vector-coupled sums: Application to the spectral form of the vorticity equation. J. Atmos. Sci., 27, 890-895.
Riehl, H., 1963: Some relations between wind and thermal structure of steady state hurricanes. J. Atmos. Sci., 20, 276-287.
Rozoff, C. M., W. H. Schubert, B. D. McNoldy, and J. P. Kossin, 2006: Rapid filamentation zones in intense tropical cyclones. J. Atmos. Sci., 63, 325-340.
Schubert, W. H., and J. J. Hack, 1982: Inertial stability and tropical cyclone development. J. Atmos. Sci., 39, 1687-1697.
_______, W. H., M. T. Montgomery, R. K. Taft, T. A. Guinn, S. R. Fulton, J. P. Kossin, and J. P. Edwards, 1999: Polygonal eyewalls, asymmetric eye contraction, and potential vorticity mixing in hurricanes. J. Atmos. Sci., 56, 1197-1223.
Silva Dias, Pedro L., W. H. Schubert, and M. DeMaria, 1983: Large-scale response of the tropical atmosphere to transient convection. J. Atmos. Sci., 40, 2689–2707.
Sheets, R. C., 1980: Some aspects of tropical cyclone modification. Aust. Meteor. Mag., 27, 259-280.
Weiss, J., 1981: The dynamics of enstrophy transfer in two-dimensional hydrodynamics. La Jolla Inst., LJI-TN-81-121.
Wu, C.-C., T.-S. Huang, W.-P. Huang, and K.-H. Chou, 2003: A new look at the binary interaction: potential vorticity diagnosis of the unusual southward movement of tropical storm Bopha (2000) and its interaction with supertyphoon Saomai (2000). Mon. Wea. Rev., 131, 1289-1300.
Zehr, R.M., 2006: Atlantic Tropical Cyclogenesis - Satellite Analysis. 27th Conference on Hurricanes and Tropical Meteorology, Monterey, CA, Amer. Meteor. Soc.
陳怡良, 1995:地形對渦旋路徑影響之探討。國立台灣大學大氣科學研究所碩士論文。
郭郁芬, 2004:雙眼牆形成之正壓動力探討。國立台灣大學大氣科學研究所碩士論文。
蔡佳伶, 2005:颱風雙眼牆形成機制之探討。國立台灣大學大氣科學研究所碩士論文。
江豪章, 2006:雙眼牆颱風之特性探討。國立台灣大學大氣科學研究所碩士論文。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29900-
dc.description.abstract本研究利用區域淺水模式模擬,探討渦旋交互作用、颱風渦旋結構改變與起轉效應。我們以淺水模式延續前人之正壓雙渦旋實驗,雖然強渦旋周圍的羅士比變形半徑遠小於背景環境值,但是渦旋交互作用結果和正壓模式類似,亦即渦度動力(vorticity dynamics)和位渦動力(potential vorticity dynamics)在強颱風形成雙眼牆的結構之下並沒有很大不同,皆屬於慢速流形(slow manifold)動力,重力波造成的影響很有限。
我們以渦旋交互作用探討颱風的結構改變,包括颱風最大風速增強或暴風圈半徑變大,並分為兩個範疇:(1)強颱風的增強作用(intensification);(2)弱渦旋的旋生(cyclogenesis)。依據颱風衛星觀測與RAINEX觀測Hurricane Rita的近中心渦度場,以初始值問題及強迫外力問題,設計理想實驗,探討中渦旋對強、弱中心渦旋造成的起轉效應。並由其特徵,定義出兩種不同的起轉類型,並依此分析實驗結果。第一種為中心渦旋之最大切向風速增強,第二種為最大切向風速不變或減弱,但最大風速半徑增加。結果顯示:(1)若中渦旋發生在中心渦旋的最大風速半徑內,將與中心渦旋合併並增強中心渦旋之最大切向風速,屬於第一種起轉類型;反之,若發生在中心渦旋的最大風速半徑外,則屬第二種起轉類型;(2)中心渦旋最大切向風速增加的幅度,與中渦旋強度成正比;(3)當中心渦旋之渦度結構愈鬆散,中渦旋愈能使中心渦旋產生起轉效應;若結構較緊密,則中心渦旋較難起轉。這些實驗結果皆能以渦旋之「快速帶狀化區域(rapid filamentation zone)」動力理論來解釋。此外,以背景亂流之實驗結果亦支持以上觀點。
zh_TW
dc.description.abstractThis study utilizes a shallow water model to understand the vortex interaction, structural change and spinup effect of typhoons. Despite the Rossby Radius of Deformation around strong vortexes is much smaller than of the background, the results of experiments in the nondivergent barotropic model and in the shallow water model are similar. This indicates that there is little differences between vorticity dynamics and potential vorticity dynamics in the formation of the concentric eyewall structure of typhoons. The dynamics of this formation belongs to a slow manifold dynamics and the effect of the gravity waves is limited.
We attempt to study the structural change of typhoons in vorticity interactions, including both (1) The intensification of maximum tangential wind and radius of maximum wind of typhoons and (2) The cyclogenesis of weak vortexes. We designed ideal experiments according to observations of RAINEX in order to study the spinup effect of the vortex contributed by mesovortex. The results of these experiments are classified according to its structural characteristic . Type I includes the cases which the maximum tangential wind of the core vortex increases and Type II includes the cases which the maximum tangential wind does not increases , but the radius of maximum wind increase. The Result shows that: (1) If the mesovortex arise within the radius of maximum wind, the structural change of core vortex belongs to Type I. Otherwise, it belongs to Type II, (2) The raise of the maximum tangential wind is proportion to the strength of the mesovortex, (3) If the vorticity structure of the core vortex is looser, the mesovortex will more profound impact on the core vortex. These results can be explained by the rapid filamentation zone dynamic theory of the vortex. Finally, we have also perform simulations with turbulent vorticity background. In general, the result of the turbulent background experiments supports the ideal experiments.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T01:23:58Z (GMT). No. of bitstreams: 1
ntu-96-R94229002-1.pdf: 13746552 bytes, checksum: b4af03da6015ca2ee79503d62acefdc9 (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents誌謝 I
摘要 II
ABSTRACT III
目錄 IV
圖錄 VI
第一章 前言 1
第二章 論文回顧與觀測 5
2.1 起轉效應(spinup) 5
2.2 中渦旋(mesovortex) 8
2.3 雙渦旋交互作用 10
2.4 快速帶狀化區域(rapid filamentation time) 12
2.5 研究動機 14
第三章 模式介紹與測試 16
3.1 控制方程式 16
3.2 模式設計 18
3.3 模式測試 19
第四章 雙渦旋實驗設計與結果 21
4.1 雙渦旋實驗設計 21
4.2 雙渦旋實驗結果 23
4.2.1 雙眼牆形成探討 23
4.2.2 雙渦旋實驗的重力波影響 24
4.3 雙渦旋實驗結論 25
第五章 起轉效應實驗設計與結果 26
5.1 起轉效應實驗設計 26
5.2 起轉效應實驗結果 29
5.2.1 無因次距離隨環流比變化之敏感度探討 29
5.2.2 中心渦旋結構變化之敏感度探討 33
5.2.3 環流比隨無因次距離變化之敏感度探討 35
5.2.4 亂流渦度之起轉實驗 36
5.3 起轉效應實驗結論 37
第六章 討論與總結 40
參考文獻 44
附圖 48
附錄A 垂直轉換與淺水方程式 115
附錄B 軸對稱平均 121
附錄C 渦旋動力特性 124
dc.language.isozh-TW
dc.subject起轉效應zh_TW
dc.subject雙渦旋實驗zh_TW
dc.subject雙眼牆zh_TW
dc.subject帶狀化時間zh_TW
dc.subject中渦旋zh_TW
dc.subjectspinupen
dc.subjectmesovortexen
dc.subjectfilamentation timeen
dc.subjectconcentric eyewallen
dc.title渦旋交互作用與結構改變zh_TW
dc.titleVortex Interaction and Structural Changeen
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳泰然,李清勝,吳俊傑,葉天降
dc.subject.keyword雙渦旋實驗,雙眼牆,帶狀化時間,中渦旋,起轉效應,zh_TW
dc.subject.keywordconcentric eyewall,filamentation time,mesovortex,spinup,en
dc.relation.page136
dc.rights.note有償授權
dc.date.accepted2007-07-18
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept大氣科學研究所zh_TW
顯示於系所單位:大氣科學系

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  未授權公開取用
13.42 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved