Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29899
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王倫
dc.contributor.authorKuan-Wen Chouen
dc.contributor.author周冠文zh_TW
dc.date.accessioned2021-06-13T01:23:55Z-
dc.date.available2009-07-26
dc.date.copyright2007-07-26
dc.date.issued2007
dc.date.submitted2007-07-18
dc.identifier.citationReferences
1. W. A. Shurcliff, Polarized Light, Fellows of Harvard College, Massachusetts, 161 (1962).
2. C. Brosseau, Fundamentals of Polarized Light, John Wiley & Sons, New York, 334 (1998).
3. D. S. Kliger, Polarized light in optics and spectroscopy, Academic Press, 31 (1990).
4. C. Brosseau, Fundamentals of Polarized Light, John Wiley & Sons, New York, 331 (1998).
5. H. A. Macleod, Thin-Film Optical Filters, McGraw-Hill, New York, 329 (1986)
6. J. Mouchart, J. Begel and E. Duda, “Modified MacNeille cube polarizer for a wide angular field”, Appl. Opt. 28, 2847 (1989).
7. D. S. Kliger, Polarized light in optics and spectroscopy, Academic Press, 32 (1990).
8. C. Brosseau, Fundamentals of Polarized Light, John Wiley & Sons, New York, 332 (1998).
9. W. A. Shurcliff, Polarized Light, Fellows of Harvard College, Massachusetts, 65 (1962).
10. Rong-Chung Tyan et al, “Design, fabrication, and characterization of form-birefringent multilayer polarizing beam splitter”, JOSA A. 7, 1627 (1997).
11. Philippe Lalanne and G Michael Morris, “Antireflection behavior of silicon subwavelength periodic structures for visible light”, Nanotechnology 8, 53–56 (1997).
12. Wanji Yu, Akio Mizutani, Hisao Kikuta, and Tsuyoshi Konishi, “Reduced wavelength-dependent quarter-wave plate fabricated by a multilayered subwavelength structure”, Appl. Opt. 12, 2601 (2006).
13. Connie J. Chang-Hasnain and Yuri Suzuki, “Broad-Band Mirror (1.12–1.62μm) Using a Subwavelength Grating,” IEEE PTL. 7, 1676 (2004).
14. Douglas P. Hansen et al, “BROAD BAND WIRE GRID POLARIZING BEAM SPLITTER FOR USE IN THE VISIBLE WAVELENGTH REGION,” US patent 6,243,199 B1 (2001).
15. O. M. Lord Rayleigh, “On the dynamical theory of gratings,” Proc. Royal Soc. (London) A79, 399-416, 1907.
16. M. Cadilhac, “Some mathematical aspects of the grating theory,” in Electromagnetic theory of grating, R. Petit ed. Springer-Verlag, Berlin (1980).
17. E. G. Loewen and E. Popov, Diffraction Gratings and Applications, Marcel Deker, Inc., New York, ch.10 (1997).
18. M. Neviere and E. Popov, “Grating electromagnetic theory ’user guide’ ,” J. Imaging Sci. Technol. 41, 315-323 (1997).
19. O. M. Lord Rayleigh, “On the influence of obstacles arranged in rectangular order upon the properties of a medium,” Philos. Mag. 34, 481-502 (1892).
20. J. C. Maxwell Garnett, “Colours in metal glasses, in metallic films, and in metallic solutions,” Philos. Trans. R. Soc. London 205,237-287 (1906).
21 M. Born and E. Wolf, Principle of Optics, Pergamon, London, 705-708 (1980).
22. S. M. Rytrov, “The electromagnetic properties of a finely layered medium,” Sov. Phys. JETP 2, 466-475 (1956).
23. H. Kikuta, H. Yoshida and K. Iwata “Ability and Limitation of Effective medium Theory for Subwavelength Gratings,” Optical Review 2, 92-99 (1995).
24. C. B. Burckhardt, “Diffraction of a plane wave at a sinsoidally stratified dielectric grating,” JOSA. 56, 1502-1509 (1996).
25. S. T. Peng, T. Tamir, an H. L. Bertoni, “Theory of periodic dielectric waveguides,” IEEE Trans. Microwave Theory and Techn. MTT-23, 123-133 (1975).
26. L. R. Lewis and A. Hessel, “Propagation characteristics of periodic arrays of dielectric slabs,” IEEE Trans. Microwave Theory and Techn. MTT-19,276-286 (1971).
27. E. I. Krupitsky and B. C. Chernov, “Rigorous analysis of arbitrary slanted volume holographic gratings,” (in Russian), Proc. IX All-Union scholl of Holography, Leningrad, 84-95 (1977).
28. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of plannar-grating diffraction,” JOSA. 71, 811-818 (1981).
29. E. Popov, M. Neviere, B. Gralak and G. tayeb, “Staircase approximation validity for arbitrary-shaped gratings,” JOSA. A 19, 33-42 (2002).
30. M. G. Moharam, E. B. Grann, and D. A. Pommet, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” JOSA A 5, 1068-1076 (1995).
31. M. G. Moharam, D. A. Pommet, and E. B. Grann, “Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach,” JOSA A 5, 1077-1086 (1995).
32. Roel Baets et al, “OPTICAL SYSTEM WITH A DIELECTRIC SUBWAVELENGTH STRUCTURE HAVING HIGH REFLECTIVITY AND POLARIZATION SELECTIVITY,” US patent 6,191,890 B1 (2001).
33. D. Yi, Y.Yan, H. Liu, S. Lu, and G. Jin,“Broadband polarizing beam splitter based on the form birefringence of a subwavelength grating in the quasi-static domain,” Optics Letters 7, 754 (2004).
34. K. Momoki, and K. Ohtaka, “POLARIATION BEAM SPLITTER AND OPTICAL SYSTEM USING THE SAME, AND IMAGE DISPLAYING APPARATUS, UISNG THE SAME,” US patent 7,116,478 B2 (2006).
35. T. Clausnitzer et al, “An intelligible explanation of highly-efficient diffraction in deep dielectric rectangular transmission gratings,” Optics Express 26, 1048 (2005).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29899-
dc.description.abstract摘要
一維次波長光柵在許多文獻中已被證實對不同偏極化的光具有分光的效果。在以介電質次波長光柵來設計並製作極化分光器的文獻中,大多需要以多層次波長介電質光柵的結構來提升分光的效率。因此在本論文中提出一種新的設計,可以利用簡單的單層次波長介電質光柵來實現不錯的分光效率,具有在光纖通訊波長(1.55μm)上極化分光的效果以及製作複合型光學元件的潛力。
在設計次波長極化分光器上,主要是利用嚴格耦合波動理論(rigorous coupled wave analysis)來進行設計分析,再參考相關文獻調整次波長光柵的材質、週期、深度等參數,由模擬結果可知此一結構能在光纖通訊波長(1.55μm)下有效進行極化分光。
在製作次波長極化分光器上,我們使用干涉微影曝光來製作光阻的圖案,再利用鉻當做金屬擋罩進行活性離子蝕刻,將光阻的圖案轉移至非晶矽薄膜上,達成所需的次波長分光器的結構。
在量測次波長極化分光器上,主要是利用光譜儀量測不同極化光的穿透效率,來計算所製作的次波長極化分光器的分光效率,並且與結果做比較,分析製程上的誤差並驗證模擬結果的準確性。
zh_TW
dc.description.abstractAbstract
In the literature, one dimensional subwavelength gratings have been proved to be able to separate light with different polarization. In most cases, to design a dielectric subwavelength grating polarizing beam splitter requires multilayer structure to improve diffraction efficiency. Here, we design a new structure utilizing single layer dielectric subwavelength grating for polarization beam splitting around wavelength of 1.55μm. It also has potential in fiber communication or hybrid optical elements.
For such a polarization beam splitter, we use rigorous coupled wave analysis to design this structure and refer to related works to adjust its parameters. The simulation result shows it has polarizing-beam-splitting capability around wavelength of 1.55μm.
In the fabrication of this polarization beam splitter, we use interference lithography to define photoresist pattern, followed by lift off to transfer pattern into Cr as a metal mask and then followed by reactive ion etch to fabricate the designed structure.
In the characterization of this polarization beam splitter, we use a spectrometer to measure the transmission spectrum and calculate its diffraction efficiency. From the measured spectrum response, we can prove our design and analyze the fabrication error.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T01:23:55Z (GMT). No. of bitstreams: 1
ntu-96-R94941005-1.pdf: 4263063 bytes, checksum: a4463188dbb08a88721b16b817a53556 (MD5)
Previous issue date: 2007
en
dc.description.tableofcontentsContents
Acknowledgement (Chinese)………………………………….……….I
Abstract (Chinese)……………………………………………………..II
Abstract (English)……………………………………………………..III
Contents……………………………………………………….……….IV
List of Acronyms………………………………………………………VI
Chapter 1 Introduction…………………………………………………1
1-1 Introduction of a polarizer…………………………………………..1
1-1-1 Absorptive polarizer……………………………………………2
1-1-2 Refractive polarizer and reflective polarizer…………………...5
1-1-3 Subwavelength polarizing beam splitter………………...........11
1-2 Comparison of traditional and subwavelength PBS......…………...14
1-3 Organization of the thesis………………………………………….16
Chapter 2 Theory of subwavelength PBS…………………………….17
2-1 Introduction………………………………………………………..17
2-2 The notations of the grating structure in this thesis…………….…18
2-3 Effective medium theory (EMT)…………………………………..21
2-4 Rigorous coupled-wave analysis (RCWA)………………………...26
Chapter 3 Design of subwavelength PBS…………………………….32
3-1 Simulation tools…………………………………………………...32
3-2 Simulation experience and design strategy………………………..35
3-3 Design results……………………………………………………...40
Chapter 4 Fabrication and results……………………………………48
4-1 Fabrication process overview……………………………………...48
4-1-1 Interference lithography (IL)…………………………………..50
4-1-2 Lift-off process…………………………………………………55
4-2 Experimental results and measurement…………….……………...64
4-3 Discussion of Experimental results………………………………..70
Chapter 5 Conclusion and Future work……………………………...77
References………………………………………………………………79
dc.language.isoen
dc.title單層介電質次波長極化分光器之設計、製作與量測zh_TW
dc.titleDesign, Fabrication, and Measurement of Single Layer Dielectric Subwavelength Polarizing Beam Splitteren
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林晃巖,陳學禮
dc.subject.keyword極化分光器,次波長光柵,人工雙折射率,零階光柵,zh_TW
dc.subject.keywordpolarizing beam splitter,subwavelength grating,form-birefringent,zero-order grating,en
dc.relation.page81
dc.rights.note有償授權
dc.date.accepted2007-07-18
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  目前未授權公開取用
4.16 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved