請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29887完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳發林(Falin Chen) | |
| dc.contributor.author | Keh-Hsi Liao | en |
| dc.contributor.author | 廖克曦 | zh_TW |
| dc.date.accessioned | 2021-06-13T01:23:21Z | - |
| dc.date.available | 2007-07-25 | |
| dc.date.copyright | 2007-07-25 | |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2007-07-18 | |
| dc.identifier.citation | [1] Chia-Shun Yih, 'Instability Due to Viscosity Stratification', Journal of
Fluid Mechanics, Vol. 27, part 2, pp. 337-352, 1967. [2] S.G. Yiantsios, B.G. Higgins, 'Linear Stability of Plane Poiseuille Flow of Two Superposed Fluids', Physics of Fluids 31(11), pp. 3225-3238, November 1988. [3] A.P. Hooper, 'The Stability of Two Superposed Viscous Fluids in a Channel', Physics of Fluids A 1(7), pp. 113-1142, July 1989. [4] L. Bousse, C. Cohen, T. Nikiforov, A. Chow, A.R. Kopf-Sill, R. Dubrow, A. W. Parce, 'Electrokinetically Controlled Microfluidic Analysis Systems', Annual Reviews of Biophysics and Biomolecular Structure, Vol. 29, pp. 155-181, 2000. [5] M.H. Oddy, J.G. Santiago, J.C. Mikkelsen, 'Electrokinetic Instability Micromixing', Analytical Chemistry, Vol. 73, No. 24, pp. 5822-5832, December 15, 2001. [6] P. Auroux, D. Iossifidis, D R. Reyes, A. Manz, 'Micro total analysis systems. 1. Introduction, Theory, and Technology', Analytical Chemistry, Vol. 74, No. 12, pp. 2623-2636, June 15, 2002. [7] P. Auroux, D. Iossifidis, D.R. Reyes, A. Manz, 'Micro Total Analysis Systems. 2. Analytical Standard Operations and Applications', Analytical Chemistry, Vol. 74, No. 12, pp. 2637-2652, June 15, 2002. [8] A.O.E. Moctar, N. Aubry, J. Batton, 'Electro-hydrodynamic Micro-fluidic Mixer', Lab on a Chip, Vol. 3, pp. 273-280, 2003. [9] H. Lin, B.D. Storey, M.H. Oddy, C. Chen, J.G. Santiago, 'Instability of Electrokinetic Microchannel Flows with Conductivity Gradients', Physics of Fluids 16(6), pp. 1922-1935, June, 2004. [10] B.D. Storey, B.S. Tilley, 'Electrokinetic Instabilities in Thin Microchannels', Physics of Fluids, Vol. 17, pp. 018103-1 - 018103-4, 2005. [11] S. Tardu, 'Interfacial Electrokinetic Effect on the Microchannel Flow Linear Stability', Transactions of The ASME, Vol. 126, pp. 10-13, January, 2004. [12] J. Park, S.M. Shin, K.Y. Huh, I.S. Kang, 'Application of Elctrokinetic Instability for Enhanced Mixing in Various Micro-T-Channel Geometries', Physics of Fluids, Vol. 17, pp. 118101-1 - 118101-4, 2005. [13] D.A. Saville, 'ELECTRODYNAMICS: The Taylor-Melcher Leaky Dielectric Model', Annual Review of Fluid Mechanics, Vol. 29, pp. 27-64, 1997. [14] N.R. Antukar, T.C. Papanastasiou, J.O. Wilkes, 'Linear Stability Analysis of Multilayer Plane Poiseuille Flow', Physics of Fluids A, Vol. 2, No. 4, April 1990, pp. 530-541. [15] J.R. Melcher, C.V. Smith Jr., 'Electrohydrodynamic Charge Relaxation and Interfacial Perpendicular-Field Instability', Physics of Fluids, Vol. 12, No. 4, pp. 778-790, April, 1969. [16] J.R. Melcher, G.I. Taylor, 'ELECTROHYDRODYNAMICS: A Review of the Role of Interfacial Shear Stresses', Annual Reviews of Fluid Mechanics, Vol. 1, pp. 111-146, 1969. [17] K. Abdella, H. Rasmussen, 'Electrohydrodynamic Instability of Two Superposed Fluids in Normal Electric Fields', Journal of Computational and Applied Mathematics, Vol. 78, pp. 3-61, 1997. [18] R.V. Craster, O.K. Matar, 'Electrically Induced Pattern Formation in Thin Leaky Dielectric Films', Physics of Fluids, Vol. 17, pp. 032104-1 - 032104-17, 2005. [19] O. Ozen, N. Aubry, D.T. Papageorgiou, P.G. Petropoulos, 'Electrohydrodynamic Linear Stability of Two Immiscible Fluids in a Channel', Electrochimica Acta , Vol. 51(25), pp. 5316-5323, 2006. [20] R.M. Thaokar, V. Kumaran, 'Electrohydrodynamic Instability of the Interface Between Two Fluids Confined in a Channel', Physics of Fluids, Vol. 17, pp. 084104-1 - 084104-20, 2005. [21] L.E. Johns, R. Narayanan, “Interfacial Instability”, Springer-Verlag New York Inc., 2002. [22] P.G. Drazin, W.H. Reid, “Hydrodynamic Stability”, 2nd Ed., Cambridge University Press, 2004. [23] S.A. Orszag, “Accurate Solution of the Orr-Sommerfeld Stability Equation”, Journal of Fluid Mechanics, Vol. 50, Part 4, pp. 689-703, 1971. [24] J.J. Dongarra, B. Straughan, D.W. Walker, ”Chebyshev tau-QZ Algorithm Methods for Calculating Spectra of Hydrodynamic Stability Problems”, Applied Numerical Mathematics, vol. 22, pp. 399-434, 1996. [25] J.R. Melcher, W.J. Schwarz, Jr., “Interfacial Relaxation Overstability in a Tangential Electric Field”, Physics of Fluids, vol. 11, Number 12, pp. 2604-2616, December, 1968. [26] J.F. Hoburg, J.R. Melcher, “Internal Electrodynamic Instability and Mixing of Fluids with Orthogonal Field and Conductivity Gradients”, Journal of Fluid Mechanics, vol. 73, part 2, pp. 333-351, 1976. [27] B.S. Tilley, P.G. Petropoulos, D.T. Papageorgiou, “Dynamics and Rupture of Planar Electrified Liquid Sheets”, Physics of Fluids, vol. 13, Number 12, pp. 3547-3563, December, 2001. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29887 | - |
| dc.description.abstract | 本研究針對位在雙層電極板之間,具備不同導電性質且不互溶的
雙層平板流體,在受到外加垂直電場下之流體介面穩定度三維建模。 由於在微流體混合器中,以壓力梯度驅動流體是相當沒有效率的方 式,再者,在如此微小的尺度,微流道由於強度因素,亦無法承受過 大的內部壓力,因此以外加電場的方式驅動流體,較為妥當。而由於 微流道中的Reynolds 數通常相當低,流體多以層流方式流動,導致流 體內部的混合僅能以分子擴散達成,故外加電壓場亦可提高流體的紊 亂度,以增強相異流體的混合度。 相較於單層流體,在雙層流體之中,存在著流體介面。此一介面 對於流體的混合有著關鍵性的角色,若能提高此介面的不穩定度,混 合流體的目的便能達成。本研究將以弱介電質模型(Leaky Dielectric Model),將雙層流體與外加的電場在流體界面上做偶合,由最基本的 動量方程式、連續方程式以及電壓勢能方程式出發,並對方程式作微 擾處理與進ㄧ步的簡化,以得到往後能用以分析此雙層流系統穩定性 的擾動方程式。 | zh_TW |
| dc.description.abstract | This study focuses on the stability system formulation of plane
double-layered flows with different conductivities between two electrodes under external applied perpendicular electric field. In microfluidic mixers, it is quite inefficient to drive fluids by the mean of pressure gradient, and the micro channel could not sustain large internal pressure due to structure weakness under such small scale. Thus, driving the fluids with external electric field is more preferable. Also, the Reynolds number in the micro channels is usually very small, making the flows laminar. Under such condition, the mixing within the flows could only be done by molecule diffusion. In order to enhance the mixing, external electric field could help making the flows become turbulence. Compared to single-fluid flows, there exists a fluid interface in double-layered flows. This interface plays a crucial role in mixing problems. The mixing could be enhanced if the instability of this interface is raised. The external applied electric field and the double-layered flows are coupled with Leaky Dielectric Model on the interface in this study. Starting with the most fundamental equations, including Navier-Stoke equations, continuity and voltage potential equations, small amplitude perturbation and further simplifications will be done, in order to obtain a set of perturbation equations for further stability analysis of the double-layered flows. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T01:23:21Z (GMT). No. of bitstreams: 1 ntu-96-R94543035-1.pdf: 644590 bytes, checksum: 9f5a5476de010614b31464fbb9c92149 (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | 誌 謝..................................................Ⅰ
中文摘要...............................................Ⅱ 英文摘要...............................................Ⅲ 符號說明...............................................Ⅳ 圖表目錄...............................................Ⅶ 第一章 導論...........................................1 1.1 研究背景..........................................1 1.2 電流體動力學之模型................................3 1.3 文獻回顧..........................................4 1.4 研究目的與方法....................................7 第二章 數學模型.......................................9 2.1 系統概說..........................................9 2.2 統御方程式........................................9 2.3 邊界條件.........................................10 2.4 流場與電壓勢能之基態解...........................12 2.5 無因次化.........................................14 2.6 微擾與正交模式展開...............................19 2.7 進一步之整理.....................................22 2.8 方程式總整理.....................................28 第三章 相關討論......................................33 3.1 求解之準備.......................................33 3.2 本模型之障礙.....................................38 第四章 結論與未來展望................................41 參考文獻.............................................42 | |
| dc.language.iso | zh-TW | |
| dc.subject | 導電度 | zh_TW |
| dc.subject | 穩定 | zh_TW |
| dc.subject | 雙層流 | zh_TW |
| dc.subject | 電場 | zh_TW |
| dc.subject | 不互溶 | zh_TW |
| dc.subject | double-layered flows | en |
| dc.subject | electric field | en |
| dc.subject | immiscible | en |
| dc.subject | stability | en |
| dc.subject | electric conductivity | en |
| dc.title | 具導電性差異之雙層不互溶流體之流動穩定性數學模式推導 | zh_TW |
| dc.title | Derivation of Mathematical Model of the Immiscible Superposed Flows with Different Electric Conductivities | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張敏興(Min-Hsing Chang),羅安成(A.C. Ruo) | |
| dc.subject.keyword | 穩定,雙層流,電場,不互溶,導電度, | zh_TW |
| dc.subject.keyword | stability,double-layered flows,electric field,immiscible,electric conductivity, | en |
| dc.relation.page | 48 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2007-07-18 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 應用力學研究所 | zh_TW |
| 顯示於系所單位: | 應用力學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-96-1.pdf 未授權公開取用 | 629.48 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
