請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29883
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林萬寅(Wann-Yin Lin) | |
dc.contributor.author | Chia-Ming Kuo | en |
dc.contributor.author | 郭家銘 | zh_TW |
dc.date.accessioned | 2021-06-13T01:23:11Z | - |
dc.date.available | 2007-07-24 | |
dc.date.copyright | 2007-07-24 | |
dc.date.issued | 2007 | |
dc.date.submitted | 2007-07-18 | |
dc.identifier.citation | 第一章
1.F. Kohlrausch, Wiedemanns Ann. Phys. Chem., 62 (1897) 209. 2.A. Tiselus, Trans. Faraday. Soc., 333 (1937) 524. 3.J. Knox, Chromatographia, 26 (1998) 329. 4.S. Hjerten, Chromatogr. Rev., 9 (1967) 122. 5.R. Virtanen, Acta Polytechnica Scand., 123 (1979) 1. 6.J. W. Joegenson and K. D. Lukacs, J. Chromatogr., 218 (1981) 209. 7.J. W. Joegenson and K. D. Lukacs, Anal. Chem., 53 (1981) 1298. 8.P. Jandik and G. Bonn, Capillary Eletrophoresis of Small Molecules anf Ions, VCH, New York, 1993. 9.S. Terabe, K. Otsuka, K. Ichikawa, A. Tsuchiyaand and T. Ando, Anal. Chem., 56 (1984) 111. 10.K. H. Row, W. H. Griest, M. P. Maskarinec, J. Chromatogr., 409 (1987) 193. 11.S. Hjerten and M. D. Zhu, J. Chromatogr., 346 (1985) 265. 12.A. Cohen and B. L. Karger, J. Chromatogr., 397 (1987) 409. 13.X. Huang and R. N. Zare, Anal. Chem., 63 (1991) 2193. 14.X. Huang, M. J. Gordon and R. N. Zare, Anal. Chem., 60 (1988) 375. 15.R. D. Holland and M. J. Sepaniak, Anal. Chem., 65 (1993) 1140. 16.R. T. Kennedy and J. W. Jorgenson, Anal. Chem., 61 (1989) 1128. 17.C. Y. Yan, R. Dadoo, R. N. Zare, D. J. Rakestraw and D. S. Anex, Anal. Chem., 68 (1996) 2726. 18.M. M. Dittmann and G. P. Rozing, J. Chromatogr. A, 744 (1996) 63. 19.F. Foret, L. Krivankova and P. Bocek, Capillary Zone Electrophoresis P8VCH, Weiheim, 1993. 20.R. Kuhn and S. Hoffstetter-Kuhn, Capillary Electrophoresis: Principles and Practice, Springer-Verlag, New York, 1993. 21.B. Krattiger, G. J. M. Bruin, and A. E. Bruno, Anal. Chem., 66 (1994) 1. 22.M. Stefansson and M. Movotny, Anal. Chem., 66 (1994) 1134. 23.Y. Kim and M. D. Morris, Anal. Chem., 66 (1994) 1168. 24.Z. Zhao, A. Malik and M. L. Lee, Anal. Chem., 65 (1994) 2747. 25.G. Gubitz, M. G. Schmid, Electrophoresis, 21, (2000), 4112. 26.H. Engelhardt, W. Beck and T. Schmitt, Capillary Electrophoresis: Methods and Potentials, 27.W. Zhu and G. Vigh, Anal. Chem., 72 (2000) 310. 28.W. G. Kuhr and E. S. Yeung, Anal. Chem., 60 (1988) 2642. 29.J. Liu, O. Shirota and M. V. Novotny, Anal. Chem., 64 (1992) 973. 30.R. D. Smith, J. A. Olivares, N. T. Nguyen and H. R. Udseth, Anal. Chem., 60 (1988) 436. 31.R. D. Smith, C. J. Barinaga and H. R. Udseth, Anal. Chem., 60 (1988) 1948. 32.D. J. Harrison, A. Manz, Z. H. Fan, H. Ludi and H. M. Widmer, Anal. Chem., 64 (1992) 1926. 33.S. C. Jacobson, R. Hergenroder, L. B. Koutny and J. M. Ramsey, Anal. Chem., 66 (1994) 1114. 34.A. T. Woolley, G. F. Sensabaugh and R. A. Mathies, Anal. Chem., 69 (1997) 2181. 35.Y. Shi, P. C. Simpson, J. R. Scherer, D. Wexler, C. Skibola, M. T. Smith, and R. A. Mathies Anal. Chem., 71 (1999) 5354. 36.F. Gavin and A. G. Ewing, Anal. Chem., 69 (1997) 3838. 37.D. Figeys and R. Aebersold, Anal. Chem., 70 (1998) 3721. 38.N. Burggraf, B. Krattiger, A. J. deMello, N. F. deRooil and A. Manz, Analyst, 123 (1998) 1443. 39.V. Dolnik, S. Liu and S. Jovanovich, Electrophoresis, 21 (2000) 41. 40.D. Wistuba, V. Schurig, Electrophoresis, 21 (2000) 4136. 41.S. Fanali, J. Chromatogr. A, 875 (2000) 89. 42.J. Szejtli, Cyclodextrin and their Inclusion Complexes, Akademiai Kiado, Budapest, 1982. 43.D. Y. Pharr, Z. F. Fu, T. K. Smith and W. L. Hinze, Anal. Chem., 61 (1989) 275. 44.M. Yoshinaga and M. Tanaka, J. Chromatogr. A, 710 (1995) 331. 45.S. Fanali, J. Chromatogr. A, 792 (1997) 227. 46.K. Fujimura, S. Suzuki, K. Hayashi and S. Masuda, Anal. Chem., 62 (1990) 2198. 47.S. Li and W.C. Purdy, J. Chromatogr., 625 (1992) 29. 48.D. Sybilska, J. Lipkowski and J. Woycikowski, J. Chromatogr., 253 (1982) 95. 49.L. Bazant, M. Wurst and E. Smolkova-Keulemansova, J. Chromatogr., 445 (1988) 337. 50.J. Zulkowski, and J. Bojarski and D. sybilska, J. Chromatogr., 364 (1986) 225. 51.J. Zulkowski, and R. Nowakowski, J. Liq. Chromatogr., 12 (1989) 1545. 52.J. Snopek, H. Soini, M. Novotny, E. Smolkova-Keulemansova, and I. Jelinkek, J. Chromatogr., 559 (1991) 215. 53.N. W. Smith, J. Chromatogr. A, 652 (1993) 259. 54.R. Kuha and S. Hoffstetter-Khuh, Chromatographia, 34 (1992) 505. 55.T. E. Peterson, J. Chromatogr., 630 (1993) 353. 56.S. G. Penn, E. T. Bergstrom, D. M. Goodall and J. S. Loran, Anal. Chem., 66 (1994) 2866. 57.H. Soini, M. –L. Riekkola and M. V. Novotny, J. Chromatogr., 608 (1992) 265. 58.S. Fanali and F. Kilar, J. Capillary Electrophor., 1 (1994) 72. 59.G. Gubitz, M. G. Schmid, Electrophoresis, 21, (2000), 4112. 60.I.R. Innes, M. Nickersen, in; L.S. Goodman, A. Gilman (Eds.), The Pharmacological Basis of Therapeutics, MacMillan Publishing Co., Inc, New York, 1970, p. 477. 61.Westall, A., Malmstrom, T., Peterson, P., Electrophoresis 2006, 27, 859–864. 第二章 1.Schutzner, W., Fanali, S., Electrophoresis 1992, 13, 687–690. 2.Heuermann, M., Blaschke, G., J. Chromatogr. 1993, 648, 267–274. 3.Rawjee, Y. Y., Starek, D. U., Vigh, G., J. Chromatogr. A 1993, 635, 291–306. 4.Nishi, H., Kokusenya, Y., Miyamoto, T., Sato, T., J. Chromatogr. A 1994, 659, 449–457. 5.Fanali, S., Flieger, M., Steinerova, N., Nardi, A., Electrophoresis 1994, 13, 39–43. 6.Reijenga, J. C., Ingelse, B. A., Everaerts, F. M., J. Chromatogr. A 1997, 792, 371–378. 7.Yuan, H., Thompson, R. A., Ellison, D. K., J. Liq. Chromatogr. Rel. Technol. 2002, 25, 2999–3015. 8.Foulon, C., Danel, C., Vaccher, M.-P., Bonte, J.-P., Vaccher, C., Goossens, J.-F., Electrophoresis 2004, 25, 2735–2744. 9.Morante-Zarcero, S., Crego, A. L., Sierra, I., Fajardo, M., Marina, M. L., Electrophoresis 2004, 25, 2745–2754. 10.Zhuo, L., Thompson, R., Ellison, D., Wyvratt, J. M., Electrophoresis 2004, 25, 2860–2865. 11.Westall, A., Malmstrom, T., Peterson, P., Electrophoresis 2006, 27, 859–864. 12.Lin, C. E., Cheng, H. T., Fang, I. J., Liu, Y. C., Kuo, C. M. Lin, W. Y., Lin, C. H., Electrophoresis 2006,(in press). 13.Altria, K. D., Goodall, D. M., Rogan, M. M., Chromatographia 1992, 34, 19–24. 14.Shibukawa, A., Lloyd, D. K., Wainer, I. W., Chromatographia 1993, 35, 419–429. 15.Drayton, C. J., “Comprehensive Medical Chemistry”, Vol. 6, Pergamon Press, Oxford, UK, 1990. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29883 | - |
dc.description.abstract | 本篇論文利用毛細管區帶電泳法添加硫酸化環糊精為對掌選擇劑,於反向電壓、低pH值的條件下,研究溫度對於對掌選擇之效應。選用兩種兒茶酚胺類及兩種結構相似物種之對掌異構物觀察溫度效應。其中發現兩種兒茶酚胺類(catecholamines)及octopamine,即使添加低濃度硫酸鹽衍生化環糊精,其對掌選擇性會隨著溫度增加而增加。而norephedrine的對掌選擇性則隨溫度增加而減少。此現象由於對掌異構物之間,溫度對兩對掌異構物遷移速率改變不一致所造成,當添加硫酸鹽衍生化環糊精在適當的濃度下,(+)型對掌異構物遷移速率改變大於(-)型異構物,則造成此異常的溫度效應。而此不尋常的溫度效應可應用於增加對掌選擇性,及縮短遷移時間。 | zh_TW |
dc.description.abstract | Temperature effects on the enantioselectivity of basic analytes in CZE enantioseparation were studied under reversed-polarity mode using randomly sulfate-substituted beta-cyclodextrins (MI-S-beta-CD) as chiral seletors. Two catecholamines (epinephrine and isoproterenol) and two structurally related compounds (octapamine and norephedrine) were selected as test compounds in an electrophoretic system at low pH. The mobility differences between the (+)-enantiomers and the (-)-enantiomers of the two catecholamines and dopamine at 40 oC are greater than those at 25 oC with MI-S-beta-CD even at a concentration as low as 0.3 % (w/v). Thus the enantioselectivity of these three basic analytes increases with increasing temperature. This is resulted from the inequality of the temperature effect on the mobility of the two enantiomers. On the contrary, ephedrine behaves differently. The (+)-enantiomers of these basic analytes were found to migrate faster than the (-)-enantiomers. Consequently, the unusual temperature effect on the enantioselectivity can be observed when the mobility difference of the (+)-enantiomer between 40 oC and 25 oC is greater than that of the (-)-enantiomer using MI-S-beta-CD at a concentration greater than about 0.7 %, 0.4 % and 0.3 % (w/v) for enantioseparation of isoproterenol, epinephrine and octopamine, respectively. This unusual temperature effect offers the advantages to enhance enantioselectivity, to improve enantioseparation, and to reduce migration times. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T01:23:11Z (GMT). No. of bitstreams: 1 ntu-96-R93223057-1.pdf: 1735188 bytes, checksum: 6739f2078340c0a2b067aa4b011927df (MD5) Previous issue date: 2007 | en |
dc.description.tableofcontents | 中文摘要 I
英文摘要 II 目錄 III 表目錄 V 圖目錄 VI 第一章 緒論 1 1.1毛細管電泳的發展史 1 1.1.1電泳 1 1.1.2 毛細管電泳 2 1.2毛細管電泳的分離原理 3 1.2.1帶電離子的電泳遷移行為 3 1.2.2 zeta電位與電滲流 4 1.2.3分離效率 6 1.3毛細管電泳的分離模式 8 1.4毛細管電泳在對掌異構物分離的應用 9 1.4.1環糊精性質簡介 11 1.4.2環糊精對對掌異構物分離的原理 13 1.5毛細管電泳儀的裝置 13 1.6毛細管電泳的優點與發展趨勢 13 1.7研究動機 15 1.8參考文獻 15 第二章 在反向電壓下以硫酸化環糊精分離兒茶酚胺化合物(catecholamines):不尋常溫度效應 22 2.1前言 22 2.2實驗 22 2.2.1儀器 22 2.2.1.1毛細管電泳儀 22 2.2.1.2酸鹼度測定儀 23 2.2.1.3毛細管柱 23 2.2.2藥品 23 2.2.2.1分析物 23 2.2.2.2緩衝溶液 23 2.2.2.3緩衝溶液添加劑 23 2.2.2.4其他試藥 24 2.2.3實驗方法 24 2.2.3.1毛細管的處理 24 2.2.3.2標準樣品的配製 25 2.2.3.3緩衝溶液及添加劑的配製 25 2.2.3.4實驗操作條件 25 2.2.4電泳遷移率計算公式 25 2.3分析物在環糊精存在下的遷移行為 26 2.4結果與討論 30 2.4.1 改變溫度對於isoproterenol造成的遷移影響 30 2.4.2 改變溫度對於epinphrine和octopamine造成的遷移影響 31 2.4.3 改變溫度對於norephedrine造成的遷移影響 32 2.4.4 綜合討論 32 2.5結論 33 2.6參考文獻 34 表目錄 第一章 緒論 表1-1 環糊精之種類與性質 20 第二章 在反向電壓下以硫酸化環糊精分離兒茶酚胺化合物(catecholamines):不尋常溫度效應 表2-1 二種兒茶酚胺類對掌異構物及二種結構相似物之分子結構、pKa值及編號 44 表2-2 在25 ℃和40 ℃下使用0.5 %和2.0 %的MI-S-beta-CD濃度所得電泳遷移率及對掌選擇性的數據。 45 表2-3 25 ℃和40 ℃下使用0.4 %,1.0 %和2.0 %的MI-S-beta-CD濃度,所得兩對掌異構物之電泳遷移率差異之數據。. 46 圖目錄 第一章 緒論 圖1-1 毛細管內矽羥基的解離情況 19 圖1-2 毛細管內電雙層模型 19 圖1-3 毛細管電泳儀裝置 20 圖1-4 環糊精的結構圖 21 第二章 在反向電壓下以硫酸化環糊精分離兒茶酚胺化合物(catecholamines):不尋常溫度效應 圖2-1 在反向電壓極性下添加不同濃度的MI-S-beta-CD所得isoproterenol的電泳圖。 .35 圖2-2 在反向電壓極性下isoproterenol添加不同濃度的MI-S-beta-CD ( 0.3-2.0 % (w/v) )所得分析物的視遷移率變化圖。 36 圖2-3 在反向電壓極性下isoproterenol添加不同濃度的MI-S-beta-CD ( 0.3-2.0 % (w/v) )所得分析物的掌性選擇率變化圖。 37 圖2-4 在反向電壓極性下添加不同濃度的MI-S-beta-CD所得epinephrine的電泳圖。 38 圖2-5 在反向電壓極性下添加不同濃度的MI-S-beta-CD所得octopamine的電泳圖。 39 圖2-6 在反向電壓極性下epinephrine添加不同濃度的MI-S-beta-CD ( 0.3-2.0 % (w/v) )所得分析物的視遷移率變化圖。 40 圖2-7 在反向電壓極性下isoproterenol添加不同濃度的MI-S-beta-CD ( 0.3-2.0 % (w/v) )所得分析物的掌性選擇率變化圖。 41 圖2-8 在反向電壓極性下添加不同濃度的MI-S-beta-CD所得norephedrine的電泳圖。 42 圖2-9 在反向電壓極性下norephedrine添加不同濃度的MI-S-beta-CD ( 0.3-2.0 % (w/v) )所得分析物的掌性選擇率變化圖。 43 | |
dc.language.iso | zh-TW | |
dc.title | 在反向電壓下以硫酸化環糊精分離兒茶酚胺對掌化合物(catecholamines):不尋常溫度效應 | zh_TW |
dc.title | Enantioselectivity of basic analytes in CZE
enantioseparation under reversed-polarity mode using sulfated beta-cyclodextrins as chiral selectors: An unusual temperature effect | en |
dc.type | Thesis | |
dc.date.schoolyear | 95-2 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 林敬二(Ching-Erh Lin) | |
dc.contributor.oralexamcommittee | 林震煌(Cheng-Huang Lin) | |
dc.subject.keyword | 毛細管電泳,兒茶酚胺,環糊精,對掌異構物,溫度效應, | zh_TW |
dc.subject.keyword | electrophoresis,catecholamines,cyclodextrin,enantiomer,temperature effect, | en |
dc.relation.page | 46 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2007-07-18 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 化學研究所 | zh_TW |
顯示於系所單位: | 化學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-96-1.pdf 目前未授權公開取用 | 1.69 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。