Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 環境工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29876
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor駱尚廉
dc.contributor.authorChih-Hao Chenen
dc.contributor.author陳志豪zh_TW
dc.date.accessioned2021-06-13T01:22:51Z-
dc.date.available2009-07-19
dc.date.copyright2007-07-19
dc.date.issued2007
dc.date.submitted2007-07-16
dc.identifier.citation英文文獻
Chien, S. H., Liou, Y. C., Kuo, M. C., (2005) Preparation and characterization of nanosized Pt/Au particles on TiO2 nanotubes, Synth. Met. 152, 333-336.
Du, G. H., Chen, Q., Che, R. C., Yuan, Z. Y., Peng, L. M., (2001) Preparation and structure analysis of titanium oxide nanotubes, Appl. Phys. Lett. 79, 3702-3704.
Gacoin, T., Lahlil, K., Larregaray, P., (2001) Formation of CdS Colloids: Sols, Gels, and Precipitates. J. Phys. Chem. B, 105, 10228-10235.
Ghicov, A., Ysuchiya, H., Macak, J.M., and Schmuki, P., (2005) Titanium oxide nanotubes prepared in phosphate electrolytes. Electrochemistry Communications, 7, 505-509.
Goldstein, A. N., Echer, C. M., Alivisatora, A. P., (1992) Melting in Semiconductor Nanocrystals. Science, 256, 1425-1427.
Hoyer, P., (1996) Formation of a titanium dioxide nanotube array. Langmuir, 12, 1411-1413.
Hsu, M. C., Leu, I. C., Sun, Y. M., and Hon, M. H., (2005) Fabrication of CdS/TiO2 coaxial composite nanocables arrays by liquid-phase deposition, J.Cryst. Growth 285, 642-648.
Kaneko, M., Katakura, N., Harada, C., Takei, Y., and Hoshino, M., (2005) Visible light decomposition of ammonia to dinitrogen by a new visible light photocatalytic system composed of sensitizer (Ru(bpy)32+), electron mediator (methylviologen) and electron acceptor (dioxygen). Chemical Communication, 3436-3438.
Kasuga, T., Hiramatsu, M., Hoson, A., Sekino, T., (1999) Titania nanotubes prepared by chemical processing, Adv. Mat. 11, 1307-1311.
Kasuga, T., Hiramatsui, M., Hoson, A., Sekino, T., Niihara, K., (1998) Formation of titanium oxide nanotube. Langmuir ,14, 3160-3163.
Kukovecz, A., Hodos, M., Kónya, Z., (2005) Complex-assisted one-step synthesis of ion-exchangeable titanate nanotubes decorated with CdS nanoparticles, Chem. Phys. Lett. 411, 445-449.
Lazell, M., and O’Brien, P., (1999) Synthesis of CdS nanocrystals using cadmium dichloride and trioctylphosphine sulfide. J. Mater. Chem, 9, 1381-1382.
Lee, J., Park, H., and Choi, W., (2002) Selective photocatalytic oxidation of NH3 to N2 on platinized TiO2 in water. Environmental Science and Technology, 36, 5462-5468.
Liao, X. H., Zhu, J. J., Chen, H. Y., (2001) Microwave synthesis of nanocrystalline metal sulfides in formaldehyde solution. Materials Science and Engineering B, 85, 85-89.
Macintyre, J. E., Daniel, F. M., Stirling, V. M., (1992) Dictionary of inorganic compounds. published by Chapman & Hall.
Morgado, E., Abreu, M.A.S., Pravia, O.R.C., Marinkovic, B.A., (2006) A study on the structure and thermal stability of titanate nanotubes as a function of sodium content, Solid State Sci. 8, 888-900.
Nakahira, A., Kubo, T., Yamasaki, Y., (2005) Synthesis of Pt-entrapped titanate nanotubes, Jap. J. Appl. Phys., Part 1 44, L690-L692.
Nanda, J., Kuruvilla, B. A., Sarma, D. D., (1999) Photoelectron spectroscopic study of CdS nanocrystallites. Physical Review B, 59, 7473-7479.
Nazir, M., Takasaki, J., and Kumazawa, H., (2003) Photocatalytic degradation of gaseous ammonia and trichloroethylene over TiO2 ultrafine powders deposited on activated carbon particles. Chemical Engineering Communication, 190, 322-333.

Nian, J. N., and Teng, H., (2006) Hydrothermal synthesis of single-crystalline anatase TiO2 nanorods with nanotubes as the precursor, J. Phys. Chem. B 110, 4193-4198.
Sakai, H., Kawahara, H., Shimazaki, M., and Abe, M., (1998) Preparation of ultrafine titanium dioxide particles using hydrolysis and condensation reactions in the inner aqueous phase of reversed micelles: effect of alcohol addition. Langmuir 14, 2208-2212.
Seo, D. S., Lee, J. K., and Kim, H., (2001) Preparation of nanotube-shaped TiO2 power. Journal of Crystal Growth, 229, 428-432.
Serpone, N., Maruthanuthu, P., Pichat, P., Pelizzatti, E., Hidaka, H., (1995) Exploiting the interparticle electron transfer process in the photocatalysed oxidation of phenol, 2-chlorophenol, and pentachlorophenol: chemical evidence for electron and hole transfer between coupled semiconductors. Journal of Photochemistry and Photobiology A: Chemistry, 85, 247-225.
Steigerwald, M. L., Alivisatos, A. P., Gibson, J. M., Harris,T. D., (1988) Surface Derivatization and Isolation of Semiconductor Cluster Molecules. J. Am. Chem. Soc, 110, 3046-3050.
Štengl, V., Bakardjieva, S., Šubrt, J., Veçerníková, E., Szatmary, L., Klementová, M., Balek, V., (2006) Sodium titanate nanorods: Preparation, microstructure characterization and photocatalytic activity. Appl. Catal. B: Environ. 63, 20-30.
Tsai, C. C., and Teng, H., (2004) Regulation of the physical characteristics of titania nanotube aggregates synthesized from hydrothermal treatment, Chem. Mater. 16, 4352-4358.
Umek, P., Cevc, P., Jesih, A., Gloter, A., Ewels, C. P., (2005) Impact of structure and morphology on gas adsorption of titanate-based nanotubes and nanoribbons, Chem. Mater. 17, 5945-5950.
Wada,Y., Kuramoto, H., Anand, J., Kitamura, T., Sakata, T., (2001) Microwave-assisted size control of CdS nanocrystallites. J. Mater. Chem, 11, 1936-1940.
Wada, Y., Yin, H., and Yanagida, S., (2002) Environmental remediation using catalysis driven under electromagnetic irradiation. Catalysis Surveys, 5, 127-138.
Walter, Z. T., and Huang, C. P., (1995) Inhibitory Effect of Thioacetamide On CdS Dissolution During Photocatalytic Oxidation of 2,4-Dichlorophenol, Chemosphere, 30, 1385-1399
Wang, A., Edwards, J. G., and Davies, J. A., (1994) “Photooxidation of aqueous ammonia with titania-based heterogeneous catalysts.” Solar Energy, 52(6), 459-466.
Wei, M., Konishi, Y., Zhou, H., Sugihara, H. and Arakawa, H., (2005) Formation of nanotubes TiO2 from layered titanate particles by a soft chemical process. Solid State Communication, 133, 493-497.
Weng, L. Q., Song, S. H., Hodgson, S., Baker, A., (2006) Synthesis and characterization of nanotubular titanates and titania, J. Eur. Ceram. Soc. 26, 1405-1409.
Wu, X., Jiang, Q. Z., Ma, Z. F., Fu, M., Shangguan, W. F., (2005) Synthesis of titania nanotubes by microwave irradiation. Solid State Communication, 136, 513-517.
Xu, J.C., Lu, M., Guo, X.Y., (2005) Zinc ions surface-doped titanium dioxide nanotubes and its photocatalysis activity for degradation of methyl orange in water, J. Molec. Catal. A: Chem. 226, 123-127.
Yang, J., Jin, Z., Wang, X., Li, W., Zhang, J., Zhang, S., (2003) Study on composition, structure and formation process of nanotube Na2Ti2O-4(OH)2, Dalton Trans. 3898-3901.
Zhang, M., Jin, Z., Znang, J., Guo, X., Yang, J., Li, W., Wang, X., and Zhang, Z., (2004) Effect of annealing temperature on morphology, structure and photocatalytic behavior of nanotubed H2Ti2O4(OH)2. Journal of Molecular Catalysis A: Chemical, 217, 203-210.

Zhao, J., Wang, X., Chen, R., and Li, L., (2005) Fabrication of titanium oxide nanotube arrays by anodic oxidation. Solid State Communications, 134, 705-710.
Zhu, J., Palchik, O., Chen, S., and Gedanken, A., (2000) Microwave Assisted Preparation of CdSe, PbSe, and Cu2-xSe Nanoparticles. J. Pyhs. Chem. B, 104, 7344-7347.
Zhu, J., Zhou, M., Xu, J., Liao, X., (2001) Preparation of CdS and ZnS nanoparticles using microwave irradiation. Mater. Lett, 47, 25-29.
Zhu, X., Castleberry, S. R., Nanny, M. A., and Butler, E.C., (2005) Effect of pH and catalyst concentration on photocatalytic oxidation of aqueous ammonia and nitrite in titanium dioxide suspensions. Environmental Science and Technology, 39, 3784-3791.
中文文獻
勞工安全衛生研究所,http://www.iosh.gov.tw
中華民國環境工程學會編印,環境微生物,文太印刷,台北,1999
歐信宏,光觸媒間電子傳遞效應催化降解4-CP及4-NP,碩士論文,國立台灣大學環境工程學研究所,台北,2003
陳琪婷,以二氧化錳催化降解水中氨氮之研究,碩士論文,國立中山大學環境及工程學系,高雄,2003
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29876-
dc.description.abstract摘要
氨氮(NH3/NH4+)是水中主要常見的含氮污染物之一,其存在不僅會對水中的生物造成影響,當水體存在過量氨氮時,還會造成魚類的死亡,同時也會降低對自來水的加氯消毒效果。現行氮氨處理技術包括有生物脫硝、氣提、折點加氯、離子交換等。光催化反應已被證實是一有效且具可行性之氧化方式,乃利用光觸媒受激發之電子進行一連串之化學反應所生成之氫氧自由基(OH∙),再利用氫氧自由基具極強氧化能力之特性將氨氮予以氧化去除。
本研究利用微波水熱法製備硫化鎘(CdS)奈米粒子及氧化鈦奈米管(TNTs),探討在不同條件下所合成之CdS、TNTs、CdS/TNTs對氨氮去除效果之影響。控制因子包括有溫度、功率、Cd/S比例,除了探討上述因子對光催化NH3造成之影響外,同時也配合一些物性分析如粒徑、孔隙、比表面積、SEM/EDX、XRD等對微波所合成之光觸媒做一輔助說明。另外本研究也將針對TNTs之離子交換能力做進一步之探討。
研究結果顯示當反應系統中存在CdS/TNTs時,由於光電子間傳遞效應之影響(Interparticle electron transfer, IPET),其光催化去除NH3之效果比單純只使用CdS、TNTs之效果來得更好。TNTs之離子交換能力則有隨著微波功率增而有下降的趨勢。
zh_TW
dc.description.abstractAbstract
Aqueous ammonia (NH3/NH4+) is a major nitrogen-containing pollutants in wastewater. Its existence will be toxic to aquatic life and will cause fishes die. When there is high amount of ammonia in natural water, it will reduce the effect of disinfection in the treatments of tap water. Currently, there are some treatments for ammonia removal like biological nitrification, ammonia stripping, break-point chlorination and ion exchange. The photocatalytic reaction has been proved that it is an effective and a feasible method for ammonia removal . When photocatalysts are under UV illumination, the excited electron will follow a series of reaction and will produce the hydroxyl radicals (OH∙) which possess high ability of oxidation and then the ammonia will be oxidized.
The cadmium sulfide and titanate nanotubes (TNTs) were prepared by microwave hydrothermal method in this research, the efficiency of ammonia removal by using photocatalysts under different microwave conditions were also investigated. The control factors include temperature, irradiation power and Cd/S ratio. In addition to examining the effects of ammonia by the above factors, we also cooperate with the physical analysis like particle size analysis, pore volume analysis, specific surface area, SEM/EDX, XRD to make some assistant descriptions. However, the ion exchange ability of TNTs were also determined.
When there are CdS/TNTs in our photocatalytic system, the efficiency of ammonia removal was better than either only CdS or TNTs in the photocatalytic system. The result can be due to the interparticle electron transfer (IPET). Moreover, the ion exchange ability of TNTs decreased with the irradiation power increased.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T01:22:51Z (GMT). No. of bitstreams: 1
ntu-96-R94541131-1.pdf: 3798277 bytes, checksum: bf38d1b796e36e82aa4f145b24fef5c5 (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents目錄
誌謝………………………………………………………………… ……i
摘要…………………………………………………………………... …ii
Abstract………………………………………………………………….iii
圖目錄…………………………………………………………..…... …vii
表目錄………………………………………………………………...…ix
第一章 緒論…………………..…………………….….………………1
1-1 研究緣起...………………………….………..…………………1
1-2 研究目的與內容…...…………………………..……………….2
第二章 文獻回顧……………………………………….……..……….3
2-1 氨氮………………………………………………….………….3
2-1-1 氨氮之來源……………….………….………………..3
2-1-2 氨氮之物化性質.………………….…………………..4
2-1-3氨氮之健康危害效應……………………….…….…...5
2-1-4 現行氨氮之處理技術……………………….………...7
2-2 微波理論....………………………………………………...…...9
2-3 氧化鈦奈米管 (TNTs)..……………………………..………..11
2-3-1 TNTs之製備方式……..…..……..………...………….11
2-3-2 TNTs之光催化特性………………….……………….13
2-3-3 溫度對TNTs形成之影響……………….…………...14
2-3-4 TNTs負載金屬化合物…….……...…………………..14
2-3-5 TNTs之離子交換及吸附………….………………….15
2-3-6 酸洗對TNTs之影響………….……………………...15
2-4 光催化……..…………………..……………………………...16
2-4-1 光催化反應………………………….……………….16
2-4-2 氨氮之光催化技術……………………….………….19
2-5 光觸媒介紹……..…………………..………………………...21
2-5-1 半導體性質……………………….………………….21
2-5-2 半導體之應用……………………….……………….23
2-5-3 硫化鎘光觸媒……………………….……………….23
2-5-4 硫化鎘之製備方式……………………….………….24
2-5-5 硫化鎘的光催化應用………………………………..25
第三章 實驗方法與材料……………………….………………….…28
3-1 實驗硫程………..……………………….…………………….28
3-2 實驗材料………..……………………….…………………….29
3-2-1 藥品……………………….………………………….29
3-2-2 實驗設備……………………….…………………….31
3-3 實驗內容…………………………..…….…………………….34
3-3-1 實驗方法……………………….…………………….34
3-3-1-1 光觸媒製備………………………………….34
3-3-1-2 氨氮降解實驗……………………………….35
3-3-2 操作因數……………………….…………………….36
3-3-3 實驗步驟……………………….…………………….36
3-4 分析方法……………..………………...……………………...37
3-4-1 觸媒物性分析……...…..…………………………….37
3-4-2 目標污染物定量分析……...……..………………….40
3-4-3 光催化產物定量分析…………….....……………….41
第四章 結果與討論…………………………………….…………….42
4-1 合成CdS之溶劑、溫度選擇……………...………………….42
4-2 背景實驗…..………..................................................................45
4-2-1 揮發實驗……………………………………………..45
4-2-2 直接光解……………………………………………..46
4-2-3 CdS之最佳添加劑量…...…………………………….47
4-2-4 吸附實驗…...………………………………………...48
4-3 光催化降解實驗…………..…………...……...........................49
4-3-1 微波功率對NH3光催化之影響……....……………..50
4-3-2 鎘源及硫源比例(Cd/S)對NH3光催化之影響......…..58
4-3-3 合成功率對TNTs之吸附及離子交換能力之影響…66
4-3-4 CdS/HTNTs 對NH3光催化之影響….……...……..68
4-3-5 CdS/WTNTs 對NH3光催化之影響….……...…….72
第五章 結論與建議………………...………………………………...77
5-1 結論…………………...……………………………………….77
5-2 建議…………………...……………………………………….78
第六章 參考文獻………..…………………...……………………….79
附錄 實驗數據.…………………...…...……………………..…….....84
dc.language.isozh-TW
dc.subject光催化zh_TW
dc.subject微波zh_TW
dc.subject氧化鈦奈米管zh_TW
dc.subject硫化鎘zh_TW
dc.subject氨氮zh_TW
dc.subjectCdSen
dc.subjectAmmoniaen
dc.subjectTNTsen
dc.subjectMicrowaveen
dc.subjectPhotocatalyticen
dc.title以微波水熱法合成光觸媒硫化鎘結合氧化鈦奈米管去除水中氨氮之研究zh_TW
dc.titlePhotocatalytic oxidation of ammonia over cadmium sulfide / titanate nanotube synthesized via microwave irradiationen
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.oralexamcommittee官文惠,劉雅瑄
dc.subject.keyword光催化,氨氮,硫化鎘,氧化鈦奈米管,微波,zh_TW
dc.subject.keywordPhotocatalytic,Ammonia,CdS,TNTs,Microwave,en
dc.relation.page93
dc.rights.note有償授權
dc.date.accepted2007-07-18
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept環境工程學研究所zh_TW
顯示於系所單位:環境工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  未授權公開取用
3.71 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved