請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29851完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳文中(Wen-Jong Wu) | |
| dc.contributor.author | Shu-Bai Liu | en |
| dc.contributor.author | 劉淑白 | zh_TW |
| dc.date.accessioned | 2021-06-13T01:21:39Z | - |
| dc.date.available | 2016-08-22 | |
| dc.date.copyright | 2011-08-22 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-08-20 | |
| dc.identifier.citation | [1] '軟性電子之市場展望,' 工業材料雜誌, 2008/11/1 2008.
[2] 何家充, '有機電晶體陣列技術,' 中華民國自動化科技學會, p. 24, 2005.12.01 2005. [3] H. K. A. Tsumura, et al., 'Macromolecular electronic device: Field‐effect transistor with a polythiophene thin film ' Applied Physics Letters, vol. 49, p. 1210, 1987. [4] C. S. A. Assadi, et al., 'Field-effect mobility of poly(3-hexylthiophene),' Applied Physics Letters, vol. 53, p. 195, 1988. [5] G. W. Hsieh, et al., 'High performance nanocomposite thin film transistors with bilayer carbon nanotube-polythiophene active channel by ink-jet printing,' Journal of Applied Physics, vol. 106, Dec 2009. [6] A. Dodabalapur, et al., 'ORGANIC TRANSISTORS - 2-DIMENSIONAL TRANSPORT AND IMPROVED ELECTRICAL CHARACTERISTICS,' Science, vol. 268, pp. 270-271, Apr 1995. [7] C. D. Dimitrakopoulos, et al., 'Molecular beam deposited thin films of pentacene for organic field effect transistor applications,' Journal of Applied Physics, vol. 80, pp. 2501-2508, Aug 1996. [8] D. J. Gundlach, et al., 'Pentacene organic thin-film transistors - Molecular ordering and mobility,' Ieee Electron Device Letters, vol. 18, pp. 87-89, Mar 1997. [9] D. J. M. C.D. DIMITRAKOPOULOS, et al., 'Organic thin-film transistors: A review of recent advances ' IBM J. RES. & DEV., vol. 45, p. 1, JANUARY, 2001 2001. [10] L. Ma, et al., 'High performance polythiophene thin-film transistors doped with very small amounts of an electron acceptor,' Applied Physics Letters, vol. 92, Feb 2008. [11] X. Z. Bo, et al., 'Carbon nanotubes-semiconductor networks for organic electronics: The pickup stick transistor,' Applied Physics Letters, vol. 86, May 2005. [12] Y. D. Park, et al., 'Enhancement of the field-effect mobility of poly(3-hexylthiophene)/functionalized carbon nanotube hybrid transistors,' Organic Electronics, vol. 9, pp. 317-322, Jun 2008. [13] A. Liscio, et al., 'Charge transport in graphene-polythiophene blends as studied by Kelvin Probe Force Microscopy and transistor characterization,' Journal of Materials Chemistry, vol. 21, pp. 2924-2931, 2011. [14] P. B. Daniel Gamota, et al., 'Printed organic molecular electronics,' p. 363, 2004. [15] J. Smith, et al., 'Percolation behaviour in high mobility p-channel polymer/small-molecule blend organic field-effect transistors,' Organic Electronics, vol. 12, pp. 143-147, 2011. [16] R. F. Pierret, 'semiconductor device fundamentals,' p. 85, 1996. [17] Y. Wu, et al., 'High-Performance Organic Thin-Film Transistors with Solution-Printed Gold Contacts,' Advanced Materials, vol. 17, pp. 184-187, 2005. [18] D. Kim, et al., 'Organic thin film transistor using silver electrodes by the ink-jet printing technology,' Thin Solid Films, vol. 515, pp. 7692-7696, 2007. [19] H. Akamatu, et al., 'ELECTRICAL CONDUCTIVITY OF THE PERYLENE-BROMINE COMPLEX,' Nature, vol. 173, pp. 168-169, 1954. [20] R. G. Kepler, et al., 'Electronic Conduction and Exchange Interaction in a New Class of Conductive Organic Solids,' Physical Review Letters, vol. 5, p. 503, 1960. [21] L. B. Coleman, et al., 'Superconducting fluctuations and the Peierls instability in an organic solid,' Solid State Communications, vol. 88, pp. 989-995, 1993. [22] L. Groenendaal, et al., 'Poly(3,4-ethylenedioxythiophene) and Its Derivatives: Past, Present, and Future,' Advanced Materials, vol. 12, pp. 481-494, 2000. [23] B. AG., European Patent, vol. EP440, p. 957, 1991. [24] Q. X. Jianyong Ouyang, et al., 'On the mechanism of conductivity enhancement in poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) film through solvent treatment,' Polymer, vol. 45, pp. 8443–8450, 2004. [25] J. Huang, et al., 'Investigation of the Effects of Doping and Post-Deposition Treatments on the Conductivity, Morphology, and Work Function of Poly(3,4-ethylenedioxythiophene)/Poly(styrene sulfonate) Films,' Advanced Functional Materials, vol. 15, pp. 290-296, 2005. [26] R. P. Ortiz, et al., 'High-k Organic, Inorganic, and Hybrid Dielectrics for Low-Voltage Organic Field-Effect Transistors,' Chemical Reviews, vol. 110, pp. 205-239, Jan 2010. [27] X. Peng, et al., 'All-organic thin-film transistors made of alpha-sexithienyl semiconducting and various polymeric insulating layers,' Applied Physics Letters, vol. 57, pp. 2013-2015, 1990. [28] Y. Jang, et al., 'Influence of the dielectric constant of a polyvinyl phenol insulator on the field-effect mobility of a pentacene-based thin-film transistor,' Applied Physics Letters, vol. 87, Oct 2005. [29] D. J. Park, et al., 'An Analysis on the Electrical Short in a Large Area Organic Thin Film Transistor Array with the Poly(4-vinylphenol) Gate Dielectrics,' Japanese Journal of Applied Physics, vol. 48, Aug 2009. [30] D. K. Hwang, et al., 'Improving Resistance to Gate Bias Stress in Pentacene TFTs with Optimally Cured Polymer Dielectric Layers,' Journal of The Electrochemical Society, vol. 153, pp. G23-G26, 2006. [31] Z. Bao, et al., 'New Air-Stable n-Channel Organic Thin Film Transistors,' Journal of the American Chemical Society, vol. 120, pp. 207-208, 1998. [32] A. C. Arias, et al., 'Materials and Applications for Large Area Electronics: Solution-Based Approaches,' Chemical Reviews, vol. 110, pp. 3-24, Jan 2010. [33] H. R. E. P. Denton, et al., 'Vanadate glass,' Nature, vol. 173, p. 1030, 1954. [34] J.-F. Chang, et al., 'Enhanced Mobility of Poly(3-hexylthiophene) Transistors by Spin-Coating from High-Boiling-Point Solvents,' Chemistry of Materials, vol. 16, pp. 4772-4776, 2004. [35] W. Yang, et al., 'Stirring-induced aggregation of graphene in suspension,' New Journal of Chemistry, vol. 35, pp. 780-783, 2011. [36] 王之傑, '製作於軟性基板的高分子有機薄膜電晶體之電性研究,' p. 47, 2007. [37] 林麗娟, 'X光繞射原理及其應用,' 工業材料86期, 83年2月 1994. [38] D. Motaung, et al., 'The influence of thermal annealing on the morphology and structural properties of a conjugated polymer in blends with an organic acceptor material,' Journal of Materials Science, vol. 44, pp. 3192-3197, 2009. [39] M.-L. P. Chen, et al., 'Synthesis and Characterization of Metal (Pt, Pd and Fe)-graphene Composites ' Journal of the Korean Ceramic Society, vol. 48, pp. 147-151, March 2011. [40] A. K. Nandi, et al., 'Physical, Mechanical, and Conductivity Properties of Poly(3-hexylthiophene)-Montmorillonite Clay Nanocomposites Produced by the Solvent Casting Method,' Macromolecules, vol. 37, pp. 8577-8584, September 7, 2004 2004. [41] D. Yu, et al., 'Soluble P3HT-Grafted Graphene for Efficient Bilayer−Heterojunction Photovoltaic Devices,' ACS Nano, vol. 4, pp. 5633-5640, 2010. [42] G. Eda, et al., 'Blue Photoluminescence from Chemically Derived Graphene Oxide,' Advanced Materials, vol. 22, pp. 505-+, Jan 2010. [43] 吳至彧, '利用化學氣相沉積法合成數層石墨烯以及其透明導電薄膜之研究,' p. 140, 2009. [44] 謝嘉民、賴一凡、林永昌、枋志堯, '光激發螢光量測的原理、架構及應用,' 奈米通訊, vol. 第十二卷第二期. [45] 黃明義,黃哲勳,李虹儀, '激發光光譜分析(含PL及CL).' [46] Z. L. Yang, et al., 'Preparation of poly(3-hexylthiophene)/graphene nanocomposite via in situ reduction of modified graphite oxide sheets,' Applied Surface Science, vol. 257, pp. 138-142, Oct 2010. [47] J. G. Wang, et al., 'Composition and annealing effects in solution-processable functionalized graphene oxide/P3HT based solar cells,' Synthetic Metals, vol. 160, pp. 2494-2500, Dec 2010. [48] Z. Y. Liu, et al., 'Solution-processable functionalized graphene in donor/acceptor-type organic photovoltaic cells,' Solar Energy Materials and Solar Cells, vol. 94, pp. 1196-1200, Jul 2010. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29851 | - |
| dc.description.abstract | 近年來由於消費者對資訊產品便利性以及易於攜帶的需求,市場對軟性電子的期待逐漸提高,使得一些原本使用無機材料所製作的電子產品逐漸使用有機材料來製作以達到可撓的效果,例如可撓式顯示器、太陽能電池、電子紙及RFID標籤等,其中有機薄膜電晶體更是被廣泛的應用於顯示器的背板。
有機材料通常使用溶液製程,具有成本低以及低溫製程的優勢,但其電性表現往往不如無機材料,目前有機薄膜電晶體受限於其電性,只能被應用於較低階的電子產品,如何提升有機材料的電性表現便成為一個重要的課題。 本論文使用團隊自行架設的噴墨系統與學長所建立的噴墨製程SOP,利用全噴墨製程搭配全有機材料,並透過在半導體材料P3HT中摻雜石墨烯製作出電性提升的有機薄膜電晶體;在摻雜濃度Graphene/P3HT = 2 wt.% 時的載子漂移率為Pristine P3HT的十倍,且電流開關比大於105,同時也找出石墨烯摻雜P3HT在逾滲理論中的臨界值,並探討摻雜石墨烯後接觸電阻與通道電阻的改變。 另外,本論文透過X光粉末繞射儀、傅立葉轉紅外線光譜儀來觀察摻雜石墨烯後P3HT的晶格狀態以及分子內部是否有產生新的官能基及鍵結,以及透過紫外光/可見光光譜儀及螢光光譜儀來探討電子在石墨烯與P3HT中的行為,證實兩者之間確實有電荷轉移的現象存在,石墨烯在P3HT半導體層中扮演載子移動時的優先路徑,可提升電晶體的電性。 | zh_TW |
| dc.description.abstract | In recent years, information terminal devices have become more convenient and easily portable to meet customers’ needs. This desire and request gradually stimulates the development of flexible electronics. Electronic products made of inorganic materials in the past are replaced by organic materials in order to achieve the goal of being” flexible”, such as flexible display, solar cells, electronic paper and RFID tags.
In the fabrication process of organic devices, solution based process were adopted in this study, which have advantages such as low cost and low process temperature. However, the performance of state of the art organic thin film transistors (OTFT) are usually poor compare with thin-film transistor made of inorganic materials. The performance improvement on OTFT is therefore an important research issue and will be investigated in this thesis. In this study, the system set up by our research team and the OTFT standard operation process (SOP) developed in house is adopted, which is already proven to be a stable all ink-jet printing process. To improve the performance of all organic thin-film transistors, we blended graphene into P3HT. At blending concentration 2 wt.%, the mobility was ten times higher than pristine P3HT, while keeping the On/Off Ratio larger than 105. We also observed the decrease of contact resistance and channel resistance in our experiment. Furthermore, we found the percolation limit of blended graphene in P3HT. To understand the charge behavior in P3HT and graphene, material analyses such as XRD, FTIR, UV-Vis and PL are conducted to observe the lattice state, molecular internal vibration, and charge behavior after blending graphene with P3HT, respectively. These analyses demonstrated that the performance of the transistors can be improved since charge transfer between P3HT and graphene indeed exists and graphene sheets act as a preferential path which caused charge transport more easily than in pristine P3HT. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T01:21:39Z (GMT). No. of bitstreams: 1 ntu-100-R98525023-1.pdf: 7243364 bytes, checksum: fd86792ea43f0c086dbc76b519b8d016 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 誌謝 i
中文摘要 iii Abstract iv 圖目錄 viii 表目錄 xiii 第一章 緒論 1 1-1 前言 1 1-2 研究背景 4 1-3 研究動機 9 1-4 論文架構 15 第二章 元件原理與材料介紹 16 2-1 有機薄膜電晶體原理 17 2-2 基板材料 22 2-3 導線材料 25 2-4 絕緣層材料 29 2-5 半導體材料 35 2-6 封裝材料 41 第三章 噴墨製程系統 43 3-1 噴墨原理簡介 43 3-2 噴墨系統架構 45 3-3 正負壓供墨系統 47 3-4 墨滴觀測系統 48 3-5 位移平台系統 50 3-6 程式控制系統 50 第四章 全噴墨有機薄膜電晶體製程 55 4-1 噴印流程簡介 55 4-2 電極 56 4-3 絕緣層 58 4-4 半導體層 59 4-5 元件封裝 62 4-6 製程設備與量測儀器 63 第五章 全噴墨OTFT實驗結果與討論 68 5-1 有機薄膜電晶體特性分析及討論 68 5-2 接觸電阻與通道電阻的探討 81 5-3 材料分析 85 第六章 結論與未來展望 93 6-1 結論 93 6-2 未來展望 94 參考資料 95 附錄 99 | |
| dc.language.iso | zh-TW | |
| dc.subject | 有機薄膜電晶體 | zh_TW |
| dc.subject | P3HT | zh_TW |
| dc.subject | 全噴墨 | zh_TW |
| dc.subject | 軟性電子 | zh_TW |
| dc.subject | 石墨烯 | zh_TW |
| dc.subject | flexible electronics | en |
| dc.subject | graphene | en |
| dc.subject | P3HT | en |
| dc.subject | organic thin film transistor | en |
| dc.subject | all ink-jet printing | en |
| dc.title | 全噴墨有機半導體摻雜石墨烯之薄膜電晶體效能提升研究 | zh_TW |
| dc.title | Performance Improvement of All Ink-jet Printing Organic Thin Film Transistor by Blending Organic Semiconductor and Graphene | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 林致廷(Chih-Ting Lin) | |
| dc.contributor.oralexamcommittee | 李世光(Chih-Kung Lee),林怡君 | |
| dc.subject.keyword | 軟性電子,全噴墨,有機薄膜電晶體,P3HT,石墨烯, | zh_TW |
| dc.subject.keyword | flexible electronics,all ink-jet printing,organic thin film transistor,P3HT,,graphene, | en |
| dc.relation.page | 101 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-08-21 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 工程科學及海洋工程學研究所 | zh_TW |
| 顯示於系所單位: | 工程科學及海洋工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 7.07 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
