請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29837完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳漢忠,林欽塘 | |
| dc.contributor.author | Albert Lo | en |
| dc.contributor.author | 羅元駿 | zh_TW |
| dc.date.accessioned | 2021-06-13T01:20:59Z | - |
| dc.date.available | 2010-04-15 | |
| dc.date.copyright | 2007-08-08 | |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2007-07-18 | |
| dc.identifier.citation | Al-Batran, S.E., Bischoff, J., von Minckwitz, G., Atmaca, A., Kleeberg, U., Meuthen, I., Morack, G., Lerbs, W., Hecker, D., Sehouli, J., et al. (2006). The clinical benefit of pegylated liposomal doxorubicin in patients with metastatic breast cancer previously treated with conventional anthracyclines: a multicentre phase II trial. British journal of cancer 94, 1615-1620.
Allen, T.M. (1994). Long-circulating (sterically stabilized) liposomes for targeted drug delivery. Trends in pharmacological sciences 15, 215-220. Allen, T.M. (2002). Ligand-targeted therapeutics in anticancer therapy. Nature reviews 2, 750-763. Allen, T.M., and Cullis, P.R. (2004). Drug delivery systems: entering the mainstream. Science 303, 1818-1822. Arap, W., Pasqualini, R., and Ruoslahti, E. (1998). Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science 279, 377-380. Atwell, S., Ultsch, M., De Vos, A.M., and Wells, J.A. (1997). Structural plasticity in a remodeled protein-protein interface. Science 278, 1125-1128. Avila, M.A., Berasain, C., Sangro, B., and Prieto, J. (2006). New therapies for hepatocellular carcinoma. Oncogene 25, 3866-3884. Barbas, C.F., 3rd, Kang, A.S., Lerner, R.A., and Benkovic, S.J. (1991). Assembly of combinatorial antibody libraries on phage surfaces: the gene III site. Proceedings of the National Academy of Sciences of the United States of America 88, 7978-7982. Bernier, J., Hall, E.J., and Giaccia, A. (2004). Radiation oncology: a century of achievements. Nature reviews 4, 737-747. Bosslet, K., Straub, R., Blumrich, M., Czech, J., Gerken, M., Sperker, B., Kroemer, H.K., Gesson, J.P., Koch, M., and Monneret, C. (1998). Elucidation of the mechanism enabling tumor selective prodrug monotherapy. Cancer research 58, 1195-1201. Bottger, V., Bottger, A., Howard, S.F., Picksley, S.M., Chene, P., Garcia-Echeverria, C., Hochkeppel, H.K., and Lane, D.P. (1996). Identification of novel mdm2 binding peptides by phage display. Oncogene 13, 2141-2147. Burroughs, A., Hochhauser, D., and Meyer, T. (2004). Systemic treatment and liver transplantation for hepatocellular carcinoma: two ends of the therapeutic spectrum. The lancet oncology 5, 409-418. Castano, A.R., Tangri, S., Miller, J.E., Holcombe, H.R., Jackson, M.R., Huse, W.D., Kronenberg, M., and Peterson, P.A. (1995). Peptide binding and presentation by mouse CD1. Science 269, 223-226. Chabner, B.A., and Roberts, T.G., Jr. (2005). Timeline: Chemotherapy and the war on cancer. Nature reviews 5, 65-72. Cheirsilpa, A., Leelasethakul, S., Auethaveekiat, V., Maoleekulpriroj, S., Kangsumrit, N., Thanakaravit, P., and Phanthumjida, P. (1989). High-dose mitomycin C: activity in hepatocellular carcinoma. Cancer chemotherapy and pharmacology 24, 50-53. Chen Y.C., Huang H.N., Lin C.T., Chen Y.F., King C.C., Wu H.C. (2007) Generation and characterization of monoclonal antibodies against dengue virus type 1 for epitope mapping and serological detection by epitope-based peptide antigens. Clin Vaccine Immunol. 14, 404-411. Chlebowski, R.T., Brzechwa-Adjukiewicz, A., Cowden, A., Block, J.B., Tong, M., and Chan, K.K. (1984). Doxorubicin (75 mg/m2) for hepatocellular carcinoma: clinical and pharmacokinetic results. Cancer treatment reports 68, 487-491. Chonn, A., and Cullis, P.R. (1995). Recent advances in liposomal drug-delivery systems. Current opinion in biotechnology 6, 698-708. D'Mello, F., Partidos, C.D., Steward, M.W., and Howard, C.R. (1997). Definition of the primary structure of hepatitis B virus (HBV) pre-S hepatocyte binding domain using random peptide libraries. Virology 237, 319-326. DeLeo, F.R., Yu, L., Burritt, J.B., Loetterle, L.R., Bond, C.W., Jesaitis, A.J., and Quinn, M.T. (1995). Mapping sites of interaction of p47-phox and flavocytochrome b with random-sequence peptide phage display libraries. Proceedings of the National Academy of Sciences of the United States of America 92, 7110-7114. Drummond, D.C., Meyer, O., Hong, K., Kirpotin, D.B., and Papahadjopoulos, D. (1999). Optimizing liposomes for delivery of chemotherapeutic agents to solid tumors. Pharmacological reviews 51, 691-743. Duncan, R. (2003). The dawning era of polymer therapeutics. Nat Rev Drug Discov 2, 347-360. Duncan, R. (2006). Polymer conjugates as anticancer nanomedicines. Nature reviews 6, 688-701. Dunn, F.B. (2002). National Cancer Act: leaders reflect on 30 years of progress. Journal of the National Cancer Institute 94, 8-9. Essler, M., and Ruoslahti, E. (2002). Molecular specialization of breast vasculature: a breast-homing phage-displayed peptide binds to aminopeptidase P in breast vasculature. Proceedings of the National Academy of Sciences of the United States of America 99, 2252-2257. Falkson, G., and Burger, W. (1995). A phase II trial of vindesine in hepatocellular cancer. Oncology 52, 86-87. Falkson, G., Cnaan, A., Simson, I.W., Dayal, Y., Falkson, H., Smith, T.J., and Haller, D.G. (1990). A randomized phase II study of acivicin and 4'deoxydoxorubicin in patients with hepatocellular carcinoma in an Eastern Cooperative Oncology Group study. American journal of clinical oncology 13, 510-515. Farazi, P.A., and DePinho, R.A. (2006). Hepatocellular carcinoma pathogenesis: from genes to environment. Nature reviews 6, 674-687. Folgori, A., Tafi, R., Meola, A., Felici, F., Galfre, G., Cortese, R., Monaci, P., and Nicosia, A. (1994). A general strategy to identify mimotopes of pathological antigens using only random peptide libraries and human sera. The EMBO journal 13, 2236-2243. Gabizon, A., and Martin, F. (1997). Polyethylene glycol-coated (pegylated) liposomal doxorubicin. Rationale for use in solid tumours. Drugs 54 Suppl 4, 15-21. Gabizon, A., Shmeeda, H., and Barenholz, Y. (2003). Pharmacokinetics of pegylated liposomal Doxorubicin: review of animal and human studies. Clinical pharmacokinetics 42, 419-436. Gebbia, V., Maiello, E., Serravezza, G., Giotta, F., Testa, A., Borsellino, N., Pezzella, G., and Colucci, G. (1999). 5-Fluorouracil plus high dose levofolinic acid and oral hydroxyurea for the treatment of primary hepatocellular carcinomas: results of a phase II multicenter study of the Southern Italy Oncology Group (G.O.I.M.). Anticancer research 19, 1407-1410. Gschwind, A., Fischer, O.M., and Ullrich, A. (2004). The discovery of receptor tyrosine kinases: targets for cancer therapy. Nature reviews 4, 361-370. Harrington, K.J., Mohammadtaghi, S., Uster, P.S., Glass, D., Peters, A.M., Vile, R.G., and Stewart, J.S. (2001). Effective targeting of solid tumors in patients with locally advanced cancers by radiolabeled pegylated liposomes. Clin Cancer Res 7, 243-254. Hashizume, H., Baluk, P., Morikawa, S., McLean, J.W., Thurston, G., Roberge, S., Jain, R.K., and McDonald, D.M. (2000). Openings between defective endothelial cells explain tumor vessel leakiness. The American journal of pathology 156, 1363-1380. Heldin, C.H., Rubin, K., Pietras, K., and Ostman, A. (2004). High interstitial fluid pressure - an obstacle in cancer therapy. Nature reviews 4, 806-813. Hoffman, J.A., Giraudo, E., Singh, M., Zhang, L., Inoue, M., Porkka, K., Hanahan, D., and Ruoslahti, E. (2003). Progressive vascular changes in a transgenic mouse model of squamous cell carcinoma. Cancer cell 4, 383-391. Hong, R.L., Huang, C.J., Tseng, Y.L., Pang, V.F., Chen, S.T., Liu, J.J., and Chang, F.H. (1999). Direct comparison of liposomal doxorubicin with or without polyethylene glycol coating in C-26 tumor-bearing mice: is surface coating with polyethylene glycol beneficial? Clin Cancer Res 5, 3645-3652. Hong, R.L., and Tseng, Y.L. (2001). Phase I and pharmacokinetic study of a stable, polyethylene-glycolated liposomal doxorubicin in patients with solid tumors: the relation between pharmacokinetic property and toxicity. Cancer 91, 1826-1833. Hong, R.L., and Tseng, Y.L. (2003). A phase II and pharmacokinetic study of pegylated liposomal doxorubicin in patients with advanced hepatocellular carcinoma. Cancer chemotherapy and pharmacology 51, 433-438. Jemal, A., Murray, T., Ward, E., Samuels, A., Tiwari, R.C., Ghafoor, A., Feuer, E.J., and Thun, M.J. (2005). Cancer statistics, 2005. CA: a cancer journal for clinicians 55, 10-30. Joyce, J.A., Laakkonen, P., Bernasconi, M., Bergers, G., Ruoslahti, E., and Hanahan, D. (2003). Stage-specific vascular markers revealed by phage display in a mouse model of pancreatic islet tumorigenesis. Cancer cell 4, 393-403. Koivunen, E., Arap, W., Rajotte, D., Lahdenranta, J., and Pasqualini, R. (1999). Identification of receptor ligands with phage display peptide libraries. J Nucl Med 40, 883-888. Kraft, S., Diefenbach, B., Mehta, R., Jonczyk, A., Luckenbach, G.A., and Goodman, S.L. (1999). Definition of an unexpected ligand recognition motif for alphav beta6 integrin. The Journal of biological chemistry 274, 1979-1985. LaVan, D.A., McGuire, T., and Langer, R. (2003). Small-scale systems for in vivo drug delivery. Nature biotechnology 21, 1184-1191. Lee, T.Y., Wu, H.C., Tseng, Y.L., and Lin, C.T. (2004). A novel peptide specifically binding to nasopharyngeal carcinoma for targeted drug delivery. Cancer research 64, 8002-8008. Leung, T.W., Tang, A.M., Zee, B., Yu, S.C., Lai, P.B., Lau, W.Y., and Johnson, P.J. (2002). Factors predicting response and survival in 149 patients with unresectable hepatocellular carcinoma treated by combination cisplatin, interferon-alpha, doxorubicin and 5-fluorouracil chemotherapy. Cancer 94, 421-427. Li, B., Tom, J.Y., Oare, D., Yen, R., Fairbrother, W.J., Wells, J.A., and Cunningham, B.C. (1995). Minimization of a polypeptide hormone. Science 270, 1657-1660. Lin, J., Shiu, W., Leung, W.T., Tao, M., Leung, N., Lau, W.Y., and Li, A.K. (1993). Phase II study of high-dose ifosfamide in hepatocellular carcinoma. Cancer chemotherapy and pharmacology 31, 338-339. Liu, I.J., Hsueh, P.R., Lin, C.T., Chiu, C.Y., Kao, C.L., Liao, M.Y., and Wu, H.C. (2004). Disease-specific B Cell epitopes for serum antibodies from patients with severe acute respiratory syndrome (SARS) and serologic detection of SARS antibodies by epitope-based peptide antigens. The Journal of infectious diseases 190, 797-809. Liu, M., Kono, K., and Frechet, J.M. (2000). Water-soluble dendritic unimolecular micelles: their potential as drug delivery agents. J Control Release 65, 121-131. Maeda, H. (2001). The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Advances in enzyme regulation 41, 189-207. Matsumura, Y., and Maeda, H. (1986). A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer research 46, 6387-6392. Matsumura, Y., Hamaguchi, T., Ura, T., Muro, K., Yamada, Y., Shimada, Y., Shirao, K., Okusaka, T., Ueno, H., Ikeda, M., et al. (2004). Phase I clinical trial and pharmacokinetic evaluation of NK911, a micelle-encapsulated doxorubicin. British journal of cancer 91, 1775-1781. McCafferty, J., Griffiths, A.D., Winter, G., and Chiswell, D.J. (1990). Phage antibodies: filamentous phage displaying antibody variable domains. Nature 348, 552-554. Moghimi, S.M., Hunter, A.C., and Murray, J.C. (2001). Long-circulating and target-specific nanoparticles: theory to practice. Pharmacological reviews 53, 283-318. Mori, T. (2004). Cancer-specific ligands identified from screening of peptide-display libraries. Current pharmaceutical design 10, 2335-2343. Muggia, F.M., Hainsworth, J.D., Jeffers, S., Miller, P., Groshen, S., Tan, M., Roman, L., Uziely, B., Muderspach, L., Garcia, A., et al. (1997). Phase II study of liposomal doxorubicin in refractory ovarian cancer: antitumor activity and toxicity modification by liposomal encapsulation. J Clin Oncol 15, 987-993. Nord, K., Gunneriusson, E., Ringdahl, J., Stahl, S., Uhlen, M., and Nygren, P.A. (1997). Binding proteins selected from combinatorial libraries of an alpha-helical bacterial receptor domain. Nature biotechnology 15, 772-777. Northfelt, D.W., Dezube, B.J., Thommes, J.A., Miller, B.J., Fischl, M.A., Friedman-Kien, A., Kaplan, L.D., Du Mond, C., Mamelok, R.D., and Henry, D.H. (1998). Pegylated-liposomal doxorubicin versus doxorubicin, bleomycin, and vincristine in the treatment of AIDS-related Kaposi's sarcoma: results of a randomized phase III clinical trial. J Clin Oncol 16, 2445-2451. Northfelt, D.W., Martin, F.J., Working, P., Volberding, P.A., Russell, J., Newman, M., Amantea, M.A., and Kaplan, L.D. (1996). Doxorubicin encapsulated in liposomes containing surface-bound polyethylene glycol: pharmacokinetics, tumor localization, and safety in patients with AIDS-related Kaposi's sarcoma. Journal of clinical pharmacology 36, 55-63. Pasqualini, R., Koivunen, E., and Ruoslahti, E. (1995). A peptide isolated from phage display libraries is a structural and functional mimic of an RGD-binding site on integrins. The Journal of cell biology 130, 1189-1196. Pastorino, F., Brignole, C., Di Paolo, D., Nico, B., Pezzolo, A., Marimpietri, D., Pagnan, G., Piccardi, F., Cilli, M., Longhi, R., et al. (2006). Targeting liposomal chemotherapy via both tumor cell-specific and tumor vasculature-specific ligands potentiates therapeutic efficacy. Cancer research 66, 10073-10082. Prezzi, C., Nuzzo, M., Meola, A., Delmastro, P., Galfre, G., Cortese, R., Nicosia, A., and Monaci, P. (1996). Selection of antigenic and immunogenic mimics of hepatitis C virus using sera from patients. J Immunol 156, 4504-4513. Ranson, M.R., Carmichael, J., O'Byrne, K., Stewart, S., Smith, D., and Howell, A. (1997). Treatment of advanced breast cancer with sterically stabilized liposomal doxorubicin: results of a multicenter phase II trial. J Clin Oncol 15, 3185-3191. Schmidinger, M., Wenzel, C., Locker, G.J., Muehlbacher, F., Steininger, R., Gnant, M., Crevenna, R., and Budinsky, A.C. (2001). Pilot study with pegylated liposomal doxorubicin for advanced or unresectable hepatocellular carcinoma. British journal of cancer 85, 1850-1852. Schrama, D., Reisfeld, R.A., and Becker, J.C. (2006). Antibody targeted drugs as cancer therapeutics. Nat Rev Drug Discov 5, 147-159. Scott, J.K., and Smith, G.P. (1990). Searching for peptide ligands with an epitope library. Science 249, 386-390. Shadidi, M., and Sioud, M. (2003). Identification of novel carrier peptides for the specific delivery of therapeutics into cancer cells. Faseb J 17, 256-258. Shockley, T.R., Lin, K., Nagy, J.A., Tompkins, R.G., Dvorak, H.F., and Yarmush, M.L. (1991). Penetration of tumor tissue by antibodies and other immunoproteins. Annals of the New York Academy of Sciences 618, 367-382. Shoemaker, R.H. (2006). The NCI60 human tumour cell line anticancer drug screen. Nature reviews 6, 813-823. Smith, G.P. (1985). Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228, 1315-1317. Stewart, S., Jablonowski, H., Goebel, F.D., Arasteh, K., Spittle, M., Rios, A., Aboulafia, D., Galleshaw, J., and Dezube, B.J. (1998). Randomized comparative trial of pegylated liposomal doxorubicin versus bleomycin and vincristine in the treatment of AIDS-related Kaposi's sarcoma. International Pegylated Liposomal Doxorubicin Study Group. J Clin Oncol 16, 683-691. Tetef, M., Doroshow, J., Akman, S., Coluzzi, P., Leong, L., Margolin, K., Morgan, R.J., Jr., Raschko, J., Shibata, S., Somlo, G., et al. (1995). 5-Fluorouracil and high-dose calcium leucovorin for hepatocellular carcinoma: a phase II trial. Cancer investigation 13, 460-463. Thomas, M.B., and Zhu, A.X. (2005). Hepatocellular carcinoma: the need for progress. J Clin Oncol 23, 2892-2899. Valle, J.W., Dangoor, A., Beech, J., Sherlock, D.J., Lee, S.M., Scarffe, J.H., Swindell, R., and Ranson, M. (2005). Treatment of inoperable hepatocellular carcinoma with pegylated liposomal doxorubicin (PLD): results of a phase II study. British journal of cancer 92, 628-630. Vicent, M.J., and Duncan, R. (2006). Polymer conjugates: nanosized medicines for treating cancer. Trends in biotechnology 24, 39-47. Woodle, M.C., and Lasic, D.D. (1992). Sterically stabilized liposomes. Biochimica et biophysica acta 1113, 171-199. Wrighton, N.C., Farrell, F.X., Chang, R., Kashyap, A.K., Barbone, F.P., Mulcahy, L.S., Johnson, D.L., Barrett, R.W., Jolliffe, L.K., and Dower, W.J. (1996). Small peptides as potent mimetics of the protein hormone erythropoietin. Science 273, 458-464. Wu, H.C., Huang, Y.L., Chao, T.T., Jan, J.T., Huang, J.L., Chiang, H.Y., King, C.C., and Shaio, M.F. (2001). Identification of B-cell epitope of dengue virus type 1 and its application in diagnosis of patients. Journal of clinical microbiology 39, 977-982. Wu, H.C., Jung, M.Y., Chiu, C.Y., Chao, T.T., Lai, S.C., Jan, J.T., and Shaio, M.F. (2003). Identification of a dengue virus type 2 (DEN-2) serotype-specific B-cell epitope and detection of DEN-2-immunized animal serum samples using an epitope-based peptide antigen. The Journal of general virology 84, 2771-2779. Wu, H.C., Chang, D.K., and Huang, C.T. (2006). Targeted therapy for cancer. Journal of Cancer Molecules 2, 57-66. Yoshino, M., Okazaki, N., Yoshida, T., Kanda, Y., Miki, M., Oda, H., Sasagawa, Y., Hayashi, S., and Hashimoto, N. (1989). A phase II study of etoposide in patients with hepatocellular carcinoma by the Tokyo Liver Cancer Chemotherapy Study Group. Japanese journal of clinical oncology 19, 120-122. Zitzmann, S., Mier, W., Schad, A., Kinscherf, R., Askoxylakis, V., Kramer, S., Altmann, A., Eisenhut, M., and Haberkorn, U. (2005). A new prostate carcinoma binding peptide (DUP-1) for tumor imaging and therapy. Clin Cancer Res 11, 139-146. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29837 | - |
| dc.description.abstract | 肝癌在世界上的發生率排行為第五位,而導致癌症病患死亡排行為第四位。在美國,罹患肝癌的病人即使在接受傳統治療,五年存活率也僅有8.9%,使得肝癌為致死率第二高的癌症。在台灣,肝癌為造成癌症病患死亡的主因之一,每年約奪走6000~8000人的生命。目前有許多新興的治療策略持續的被發展來治療這個疾病。利用噬菌體顯現法(phage display)的方法,我們找到一種肝癌細胞的標的胜肽。在活體外,藉由ELISA與flow cytometry分析,此PC94噬菌體顯現的標的胜肽具有與肝癌細胞專一性結合的能力。在活體內,PC94噬菌體也可以和異體移植的肝癌細胞有專一性的結合,而不與正常組織結合;同時,PC94噬菌體專一性結合到異體移植的肝癌細胞的能力會被相對應的標的胜肽SP94競爭抑制。而免疫染色也證實此表現標的胜肽的PC94噬菌體只聚集在異體移植的肝癌細胞卻不聚集於正常組織。當標的胜肽SP94與微脂體包裹化學治療藥物連結後,可應用於引導抗癌藥物至異體移植的肝癌細胞,有效地殺死肝癌細胞。同時,PC94噬菌體表現之標的胜肽與其合成之標的胜肽SP94具有與肝癌病人檢體專一性結合的能力。因此,該標的胜肽亦可被應用於作為開發肝癌檢驗試劑,同時對於未來在臨床肝癌病患的治療方面也具有極大的潛力。 | zh_TW |
| dc.description.abstract | Hepatocellular carcinoma (HCC) is the fifth most common cancer and ranks the forth leading cause of cancer death worldwide. The 5-year survival rate of individuals with liver cancer in the United States is only 8.9% despite aggressive conventional therapy, marking this malignancy as the second most lethal cancer. In Taiwan, liver cancers cause 6000~8000 deaths annually and rank the leading cause of cancer death. Novel treatment strategies derived from increased knowledge of molecular oncology are constantly being developed to cure this disease. In this study, we describe the identification of a novel peptide (SP94) which could bind specifically to HCC cells using in vitro phage display. In vitro, the phage clone PC94 was able to bind to HCC cell lines but not normal cells by ELISA and flow cytometry analysis. In vivo, PC94 has homing ability to tumor tissues but not normal visceral organs in human HCC xenografts model. In addition, the homing ability of PC94 could be competitively inhibited by synthetic peptide SP94. Immunohistochemical staining also confirmed that the localization of PC94 were found in the tumor tissues but not in SP94 competed tumor tissues nor in the normal organs. Furthermore, with conjugation of the targeting peptide SP94 and liposomes containing doxorubicin, the targeting drug delivery system enhanced the therapeutic efficacy against human HCC xenografts through decreased tumor vessels density and enhanced tumor apoptosis. Moreover, PC94 and biotin-labeled SP94 could recognize the unknown target protein expressed on the cell surface in surgical specimens from HCC patients. Our results indicate that this targeting peptide has a strong clinical potential as a drug delivery guider in the treatment of HCC. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T01:20:59Z (GMT). No. of bitstreams: 1 ntu-96-R94444001-1.pdf: 2602128 bytes, checksum: 76123ee496882d38e18c810cf238c8f0 (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | 中文摘要 1
Abstract 2 Introduction 3 Materials and methods 9 Results 17 Discussion 23 Figures 28 Reference 41 | |
| dc.language.iso | en | |
| dc.subject | 噬菌體顯現法 | zh_TW |
| dc.subject | 肝癌 | zh_TW |
| dc.subject | 標的治療 | zh_TW |
| dc.subject | Phage display | en |
| dc.subject | Hepatocellular carcinoma | en |
| dc.subject | Targeted therapy | en |
| dc.title | 肝癌標的胜肽之尋找及其在標的化療之應用 | zh_TW |
| dc.title | Identification of a Novel Peptide Ligand for Targeted Drug Delivery against Hepatocellular Carcinoma | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 洪瑞隆,蘇燦隆,林中梧 | |
| dc.subject.keyword | 肝癌,噬菌體顯現法,標的治療, | zh_TW |
| dc.subject.keyword | Hepatocellular carcinoma,Phage display,Targeted therapy, | en |
| dc.relation.page | 51 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2007-07-19 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 病理學研究所 | zh_TW |
| 顯示於系所單位: | 病理學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-96-1.pdf 未授權公開取用 | 2.54 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
