請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29791完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 魏國彥(Kuo-Yen Wei) | |
| dc.contributor.author | Yang-Hui Hsu | en |
| dc.contributor.author | 許揚蕙 | zh_TW |
| dc.date.accessioned | 2021-06-13T01:19:00Z | - |
| dc.date.available | 2010-07-17 | |
| dc.date.copyright | 2007-07-26 | |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2007-07-17 | |
| dc.identifier.citation | [Anon]. (1976). Surface of Ice-Age Earth. Science 191, 1131-1137.
An, Z. S. (2000). The history and variability of the East Asian paleomonsoon climate. Quaternary Science Reviews 19, 171-187. An, Z. S., Porter, S. C., Kutzbach, J. E., Wu, X. H., Wang, S. M., Liu, X. D., Li, X. Q., and Zhou, W. J. (2000). Asynchronous Holocene optimum of the East Asian monsoon. Quaternary Science Reviews 19, 743-762. Andrus, C. F. T., Crowe, D. E., Sandweiss, D. H., Reitz, E. J., and Romanek, C. S. (2002). Otolith delta O-18 record of mid-Holocene sea surface temperatures in Peru. Science 295, 1508-1511. Betts, A. K., and Miller, M. L. (1993). 'The Betts-Miller scheme.' American meterology Society. Chou, C. (2003). Land-sea heating contrast in an idealized Asian summer monsoon. Climate Dynamics 21, 11-25. Chou, C., and Neelin, J. D. (1996). Linearization of a longwave radiation scheme for intermediate tropical atmospheric models. Journal of Geophysical Research-Atmospheres 101, 15129-15145. Chou, C., and Neelin, J. D. (1999). Cirrus detrainment-temperature feedback. Geophysical Research Letters 26, 1295-1298. Chou, C., and Neelin, J. D. (2004). Mechanisms of global warming impacts on regional tropical precipitation. Journal of Climate 17, 2688-2701. Chou, C., Neelin, J. D., and Su, H. (2001). Ocean-atmosphere-land feedbacks in an idealized monsoon. Quarterly Journal of the Royal Meteorological Society 127, 1869-1891. Clement, A. C., Hall, A., and Broccoli, A. J. (2004). The importance of precessional signals in the tropical climate. Climate Dynamics 22, 327-341. Coe, M. T., and Harrison, S. P. (2002). The water balance of northern Africa during the mid-Holocene: an evaluation of the 6 ka BPPMIP simulations. Climate Dynamics 19, 155-166. Crucifix, M., Loutre, M. F., Tulkens, P., Fichefet, T., and Berger, A. (2002). Climate evolution during the Holocene: a study with an Earth system model of intermediate complexity. Climate Dynamics 19, 43-60. de Noblet-Ducoudre, N., Claussen, R., and Prentice, C. (2000). Mid-Holocene greening of the Sahara: first results of the GAIM 6000 year BP Experiment with two asynchronously coupled atmosphere/biome models. Climate Dynamics 16, 643-659. Doney, S. C., Large, W. G., and Bryan, F. O. (1998). Surface ocean fluxes and water-mass transformation rates in the coupled NCAR Climate System Model. Journal of Climate 11, 1420-1441. Fu, Q., and Liou, K. N. (1993). Parameterization of the Radiative Properties of Cirrus Clouds. Journal of the Atmospheric Sciences 50, 2008-2025. Hansen, J., Fung, I., Lacis, A., Rind, D., Lebedeff, S., Ruedy, R., Russell, G., and Stone, P. (1988). Global Climate Changes as Forecast by Goddard Institute for Space Studies 3-Dimensional Model. Journal of Geophysical Research-Atmospheres 93, 9341-9364. Hansen, J., Ruedy, R., Lacis, A., Russell, G., Sato, M., Lerner, J., Rind, D., and Stone, P. (1997). Wonderland climate model. Journal of Geophysical Research-Atmospheres 102, 6823-6830. Harshvardhan, Davies, R., Randall, D. A., and Corsetti, T. G. (1987). A Fast Radiation Parameterization for Atmospheric Circulation Models. Journal of Geophysical Research-Atmospheres 92, 1009-1016. Haug, G. H., Hughen, K. A., Sigman, D. M., Peterson, L. C., and Rohl, U. (2001). Southward migration of the intertropical convergence zone through the Holocene. Science 293, 1304-1308. Jolly, D., Harrison, S. P., Damnati, B., and Bonnefille, R. (1998). Simulated climate and biomes of Africa during the late quaternary: Comparison with pollen and lake status data. Quaternary Science Reviews 17, 629-657. Joussaume, S., and Braconnot, P. (1997). Sensitivity of paleoclimate simulation results to season definitions. Journal of Geophysical Research-Atmospheres 102, 1943-1956. Joussaume, S., Taylor, K. E., Braconnot, P., Mitchell, J. F. B., Kutzbach, J. E., Harrison, S. P., Prentice, I. C., Broccoli, A. J., Abe-Ouchi, A., Bartlein, P. J., Bonfils, C., Dong, B., Guiot, J., Herterich, K., Hewitt, C. D., Jolly, D., Kim, J. W., Kislov, A., Kitoh, A., Loutre, M. F., Masson, V., McAvaney, B., McFarlane, N., de Noblet, N., Peltier, W. R., Peterschmitt, J. Y., Pollard, D., Rind, D., Royer, J. F., Schlesinger, M. E., Syktus, J., Thompson, S., Valdes, P., Vettoretti, G., Webb, R. S., and Wyputta, U. (1999). Monsoon changes for 6000 years ago: Results of 18 simulations from the Paleoclimate Modeling Intercomparison Project (PMIP). Geophysical Research Letters 26, 859-862. Kutzbach, J., Bonan, G., Foley, J., and Harrison, S. P. (1996). Vegetation and soil feedbacks on the response of the African monsoon to orbital forcing in the early to middle Holocene. Nature 384, 623-626. Kutzbach, J. E. (1988). Climatic Changes of the Last 18,000 Years - Observations and Model Simulations. Science 241, 1043-1052. Kutzbach, J. E., and Liu, Z. (1997). Response of the African monsoon to orbital forcing and ocean feedbacks in the middle Holocene. Science 278, 440-443. Li, C. F., and Yanai, M. (1996). The onset and interannual variability of the Asian summer monsoon in relation to land sea thermal contrast. Journal of Climate 9, 358-375. Liew, P. M., Lee, C. Y., and Kuo, C. M. (2006). Holocene thermal optimal and climate variability of East Asian monsoon inferred from forest reconstruction of a subalpine pollen sequence, Taiwan. Earth and Planetary Science Letters 250, 596-605. Liu, Z., Harrison, S. P., Kutzbach, J., and Otto-Bliesner, B. (2004). Global monsoons in the mid-Holocene and oceanic feedback. Climate Dynamics 22, 157-182. Liu, Z., Otto-Bliesner, B., Kutzbach, J., Li, L., and Shields, C. (2003). Coupled climate simulation of the evolution of global monsoons in the Holocene. Journal of Climate 16, 2472-2490. Martin, L., Bertaux, J., Correge, T., Ledru, M. P., Mourguiart, P., Sifeddine, A., Soubies, F., Wirrmann, D., Suguio, K., and Turcq, B. (1997). Astronomical forcing of contrasting rainfall changes in tropical South America between 12,400 and 8800 cal yr BP. Quaternary Research 47, 117-122. Neelin, J. D., and Zeng, N. (2000). A quasi-equilibrium tropical circulation model - Formulation. Journal of the Atmospheric Sciences 57, 1741-1766. Ruddiman, W. F. (2000). 'Earth's climate: past and future.' W.H. Freeman abd Conpany, New York. Ryner, M., Gasse, F., Rumes, B., and Verschuren, D. (2007). Climatic and hydrological instability in semi-arid equatorial East Africa during the late Glacial to Holocene transition: A multi-proxy reconstruction of aquatic ecosystem response in northern Tanzania. Palaeogeography, Palaeoclimaology, Palaeoecology 248, 440-458. Shin, S. I., Sardeshmukh, P. D., Webb, R. S., Oglesby, R. J., and Barsugli, J. J. (2006). Understanding the mid-Holocene climate. Journal of Climate 19, 2801-2817. Sun, D. H., Gagan, M. K., Cheng, H., Scott-Gagan, H., Dykoski, C. A., Edwards, R. L., and Sua, R. X. (2005). Seasonal and interannual variability of the Mid-Holocene East Asian monsoon in coral delta O-18 records from the South China Sea. Earth and Planetary Science Letters 237, 69-84. Wang, Y. J., Cheng, H., Edwards, R. L., He, Y. Q., Kong, X. G., An, Z. S., Wu, J. Y., Kelly, M. J., Dykoski, C. A., and Li, X. D. (2005). The Holocene Asian monsoon: Links to solar changes and North Atlantic climate. Science 308, 854-857. Webster, P. J., Magana, V. O., Palmer, T. N., Shukla, J., Tomas, R. A., Yanai, M., and Yasunari, T. (1998). Monsoons: Processes, predictability, and the prospects for prediction. Journal of Geophysical Research-Oceans 103, 14451-14510. Wohlfahrt, J., Harrison, S. P., and Braconnot, P. (2004). Synergistic feedbacks between ocean and vegetation on mid- and high-latitude climates during the mid-Holocene. Climate Dynamics 22, 223-238. Yancheva, G., Nowaczyk, N. R., Mingram, J., Dulski, P., Schettler, G., Negendank, J. F. W., Liu, J. Q., Sigman, D. M., Peterson, L. C., and Haug, G. H. (2007). Influence of the intertropical convergence zone on the East Asian monsoon. Nature 445, 74-77. Yu, J. Y., Chou, C., and Neelin, J. D. (1998). Estimating the gross moist stability of the tropical atmosphere. Journal of the Atmospheric Sciences 55, 1354-1372. Yu, J. Y., and Neelin, J. D. (1994). Modes of Tropical Variability under Convective Adjustment and the Madden-Julian Oscillation .2. Numerical Results. Journal of the Atmospheric Sciences 51, 1895-1914. Zeng, N., Neelin, J. D., and Chou, C. (2000). A quasi-equilibrium tropical circulation model - Implementation and simulation. Journal of the Atmospheric Sciences 57, 1767-1796. Zhao, Y., Braconnot, P., Marti, O., Harrison, S. P., Hewitt, C., Kitoh, A., Liu, Z., Mikolajewicz, U., Otto-Bliesner, B., and Weber, S. L. (2005). A multi-model analysis of the role of the ocean on the African and Indian monsoon during the mid-Holocene. Climate Dynamics 25, 777-800. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29791 | - |
| dc.description.abstract | 第四紀以來地球軌道的週期變化,使到達大氣層頂日照量的緯度分佈和季節分佈,隨著時間不斷變化,氣候系統也產生了相應的反應,而有了冰期與間冰期的循環。全新世中期,覆蓋北美和歐洲的廣大冰帽消融了,地表狀態和今天漸趨接近,但地球軌道的變化卻讓當時的日照分佈和今日不同,因此我們可以利用中全新世的數值模式模擬,在不需考慮高緯度冰川造成的效應下,瞭解不同的日照分佈如何影響氣候系統的運作。
準平衡熱帶環流模式(Quasi- Equilibrium Tropical Circulation Model, QTCM)是中型的大氣海洋模式,部分物理過程以參數化簡化,但仍能夠掌握熱帶地區的動力過程及氣候型態,雖然對高緯度地區的解析能力較差,但用在古氣候的研究上,有利於增加我們對熱帶地區氣候變化背後動力機制的瞭解。且中型的氣候模式與複雜的全球大氣海洋耦合模式(General Circulation Models, GCMs)相比,中型氣候模式速度快且物理過程簡單,方便使用者設計實驗,測試某個物理過程在氣候變化中扮演的角色。 本研究利用古氣候模擬—資料比較計畫(Paleoclimate Modeling Inter- comparison Project)所提供的中全新世邊界條件,進行一連串數值模式實驗。在這個時期,近日點靠近北半球夏季,地軸傾角較大,造成北半球夏季日照量在高緯度較強,並呈現強烈的南北半球不對稱性;冬季地球接近遠日點,因此地表接收的日照量比今日接收的少,和夏季日照量變化的強烈不對稱性相較,冬季日照量變化的分佈則大致對稱於赤道。夏季日照量較強造成的暖化作用及冬季較弱的日照量造成的冷卻效應,及構成所謂的日照量的季節不對稱性。 在陸地上方,大氣環流直接受陸地表面接收的太陽輻射影響,在夏季時造成更強的季風環流,使降雨帶向北推移。冬季時,由於地球接收的太陽輻射變弱,陸地無法提供足夠的能量給上空的間熱帶輻合帶(Inter-Tropical Convergence Zone, ITCZ),造成大陸上的降雨減少;在海洋上方,由於海水的熱慣性大,對日照量變化的反應較遲滯,夏季時,前一個冬季造成的冷卻效果使海陸溫差對比增大,使季風帶的北移更強烈。冬季時,夏季及秋季接收較多的熱量則儲存在海水裡,在冬季時釋放,抵銷太陽輻射減少直接造成的效果,使海洋上方的降雨增強。 根據本研究的結果,海洋的回饋作用在調控熱帶地區的降雨佔重要的角色,軌道效應造成的日照量分佈變化,部分會被海洋釋放前一個季節貯存的能量抵銷,而改變降雨變化的型態。 | zh_TW |
| dc.description.abstract | A series of model experiments were conducted using an intermediate ocean-atmosphere-land model for better understanding how the tropical climate responds to asymmetric insolation forcing during the Mid-Holocene, 6ka. During the mid-Holocene, summer insolation at high latitudes of Northern hemisphere is stronger than that in the present due to a larger obliquity, while winter insolation in the tropics is weaker due to the precessional shift of perihelion relative to vernal equinox. The solar forcing presents both spatial and seasonal asymmetric patterns.
However, the precipitation response does not necessarily follow the insolation forcing patterns of different seasons. Our analysis indicates that ocean feedback plays an important role in regulating the tropical precipitation. The solar forcings are cancelled out by the surface heat flux from the slow-responding ocean to the warming or cooling brought about by insolation changes one or two seasons ago. The northward shift of the Asian summer monsoon rain belt, which is widely found in numerous proxy records, is enhanced by the increased land-sea thermal contrast. Enhanced precipitation is caused by energy fluxes over ocean in boreal summer, resulting in a pronounced latitudinal land-sea contrast in the pattern of precipitation changes. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T01:19:00Z (GMT). No. of bitstreams: 1 ntu-96-R94224105-1.pdf: 6634282 bytes, checksum: a981be9bd5e5a255b0064128c3e1f006 (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | 口試委員審定書............................................I
致謝.....................................................II Chinese Abstract........................................III English Abstract..........................................V Content.................................................ⅵ List of Figures..........................................ⅧList of Table...........................................XI Chapter 1 Introduction....................................1 Chapter 2 Model and Experimental Design...................5 2.1 Introduction of Model: QTCM1 (Version 2.3) .........5 2.2 Model Formulation...................................8 2.2.1 The Moisture Equation...........................8 2.2.2 The Energy Equation............................11 2.3 Boundary Conditions and Forcings...................12 2.4 Mid-Holocene Insolation Forcing....................13 2.5 Experimental Design................................16 Chapter 3 Mid-Holocene climate ..........................25 3.1 Proxy Data Reconstructed mid-Holocenen Climate.....25 3.2 Model Simulated mid-Holocene Climate...............27 3.3 Control Experiment Climate Differences.............28 3.4 Budget Analysis....................................30 Chapter 4 Role of the Ocean in Mid-Holocene Climate Changes..................................................43 4.1 Test of the Fnet effect............................43 4.2 Direct Climate Responses to Insolation Forcing.....45 4.3 The Role of Ocean Memory...........................48 Chapter 5 Discussion.....................................60 Chapter 6 Conclusion.....................................64 Reference................................................67 Appendix.................................................71 | |
| dc.language.iso | en | |
| dc.subject | 氣候模式 | zh_TW |
| dc.subject | 中全新世 | zh_TW |
| dc.subject | 日照量 | zh_TW |
| dc.subject | mid-Holocene | en |
| dc.subject | model experiment | en |
| dc.subject | insolation forcing | en |
| dc.title | 日照量的季節不對稱性對中全新世熱帶地區降雨變化之影響 | zh_TW |
| dc.title | Impact of the insolation seasonal asymmetry on the tropical precipitation during the mid-Holocene | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 周佳(Chia Chou) | |
| dc.contributor.oralexamcommittee | 劉平妹(Ping-Mei Liew),許晃雄(Huang-Hsung Hsu) | |
| dc.subject.keyword | 中全新世,日照量,氣候模式, | zh_TW |
| dc.subject.keyword | mid-Holocene,insolation forcing,model experiment, | en |
| dc.relation.page | 84 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2007-07-19 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 地質科學研究所 | zh_TW |
| 顯示於系所單位: | 地質科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-96-1.pdf 未授權公開取用 | 6.48 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
