請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29776完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李嗣涔(Si-Chen Lee) | |
| dc.contributor.author | Chi-Feng Chen | en |
| dc.contributor.author | 陳季鋒 | zh_TW |
| dc.date.accessioned | 2021-06-13T01:18:24Z | - |
| dc.date.available | 2010-07-23 | |
| dc.date.copyright | 2007-07-23 | |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2007-07-19 | |
| dc.identifier.citation | [1] S. Husted and J. K. Schjoerring. Ammonia flux between oilseed rape plants and the atmosphere in response to changes in leaf temperature, light intensity and air humidity (interactions with leaf conductance and apoplastic NH4+ and H+ concentrations). Plant Physiology, Vol 112, Issue 1 67-74 (1996)
[2] D. O. Hall & K.K. Rao. Photosynthesis, 6th ed. (1999). [3] T.H. Attridge. Light and plant responses: a study of plant photophysiology and the natural environment (1990). [4] Jean M. Whatley and F.R. Whatley. Light and plant life (1980). [5] J.W. Hart. Light and Plant Growth (1988). [6] V. S. Rama Das. Photosynthesis: regulation under varying light regimes (2004). [7] Chentao Lin. Blue light receptors and signal transduction. The plant cell, Supplement 2002, S207-S225. [8] Quail, P.H. An emerging molecular map of the phytochromes. Plant Cell Eviron. 20, 657-666 (1997). [9] Ahmad, M., and Cashmore, A. R. HY4 gene of A. thaliana encodes a protein with the characteristics of a blue-light photoreceptor. Nature 366, 162-166 (1993). [10] Kendrick, R. E., and Kronenberg, G. H. M. Photomorphogenesis in plants, 2nd ed (1994). [11] Briggs, W. R., and Huala, E. Blue-light photoreceptors in higher plants. Anno. Rev. Cell Dev. Biol. 15, 33-63 (1999). [12] Briggs, W. R., and Christie, J. M. Phototropins 1 and 2, versatile plant blue-light receptors. Trend Plant Sci. 7, 204-210 (2002). [13] Ing-Chien Chen. Functional characterization of light signaling components in mungbean and Arabidopsis (2007). [14] YANG Ji, GU Hongya. Duplication and divergent evolution of the CHS and CHS-like genes in the chalcone synthase (CHS) superfamily. Chinese Science Bulletin 05 (2006). [15] R. H. Ritchie, Phys. Rev. 106, 874−881 (1957). [16] C. J. Powell, J. B. Swan, Phys. Rev. 118, 640 (1960). [17] William L. Barnes, Alain Dereux and Thomas W. Ebbesen, Nature (London) 424, 824 (2003). [18] M.A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, Jr. , and C. A. Ward, Applied Optics, 22, 1099 (1983). [19] Handbook of Instrumental Techniques for Analytical Chemistry, Ch. 15, edited by C. P. Sherman Hsu. [20] Alwine, J. C., Kemp, D. J., and Stark, G. R. Method for detection of specific RNAs in agarose gels by transfer to diazobenzyloxymethyl-paper and hybridization with DNA probes. Proc Natl Acad Sci U. S. A., 74(12):5350-5354 (1977). [21] Southern, E.M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol., 98:503-517 (1975). [22] Ming-Wei Tsai, Tzu-Hung Chuang, Chao-Yu Meng, Yi-Tsung Chang, and Si-Chen Lee. High performance midinfrared narrow-band plasmonic thermal emitter. Applied Physics Letters, 89, 173116 (2006). [23] Ming-Wei Tsai. Transmission Properties of Periodic Metal/Dielectric Hole Array and Its Application to Narrow Bandwidth Infrared Thermal Emitter (2007). [24] Bill George, Peter Mclntyre. Infrared Spectroscopy (2000). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29776 | - |
| dc.description.abstract | 本研究的目的是設計一種窄頻寬的紅外光源,並用此光源來照射植物,找出哪一特定波段的紅外光會對綠豆發芽及生長產生影響。此紅外光源結構係在矽基板上鍍上銀/二氧化矽/銀三層薄膜,而最上層的銀挖出週期排列的孔洞。矽基板背面鍍上鉬金屬,藉由通電流加熱,可以發出窄頻寬高功率的紅外光。此紅外光發射器可藉由改變孔洞的週期及直徑來調整發射紅外光之波長。
我們設計了五個不同發射波長的紅外光發光元件,發射波長分別為4.81、4.49、3.90、3.62和3.17 μm。其半高寬分別為0.6、0.68、0.92、0.7和0.48 μm。實驗樣品綠豆在經過四天不同波長之紅外光照射後,先測量其下胚軸的長度,再使用北方墨點法分析GIR1, CHS及RbcS三基因之表現圖譜。實驗結果顯示4.81及3.62 μm之紅外光不會影響綠豆的下胚軸長度及基因表現。4.49及3.90 μm的紅外光照射,對綠豆的下胚軸長度分別有39.81及20.09%的抑制,GIR1基因的表現量也同時被紅外光改變。3.17 μm的紅外光不影響綠豆下胚軸長度,但是GIR1的表現量被抑制了24.03%。CHS及RbcS的表現量在此實驗中無明顯差異,顯示此二基因不受紅外光照射所影響。 | zh_TW |
| dc.description.abstract | The purpose of this study is to design a narrow bandwidth, high power infrared light source and investigate the effect of plants exposed to these infrared irradiation with specific waveband during seed germination and seedling development of mungbean. This infrared emitter can be achieved by heating the triple layer structure which consists of an SiO2 layer between two Ag films on a Si substrate. The top Ag layer is perforated by periodic holes, the emission wavelength can be altered by changing the lattice constant and diameter of the hole arrays.
Five plasmonic thermal emitters with different emission peak wavelength, which are 4.81, 4.49, 3.90, 3.62 and 3.17 μm, were designed and fabricated. The full width at half maximum (FWHM) of these emitters are 0.6, 0.68, 0.92, 0.7 and 0.48 μm, respectively. After the 4 days exposed to different wavelength of infrared radiation treatment, the hypocotyl length of mungbean is measured and the Northern blot analysis is applied to observe the gene expression pattern of chosen genes GIR1, CHS and RbcS. The experimental results revealed that the infrared of wavelength 4.81 and 3.62 μm do not affect the growth of mungbean, neither the elongation of hypocotyl length nor gene expression patterns. The infrared of wavelength 4.49 and 3.90 μm inhibits the elongation of hypocotyl length by 39.81 and 20.09%, respectively. From the gene expression pattern, we can also find the expressions of GIR1 are altered by infrared treatment. The 3.17 μm infrared irradiation do not affect the hypocotyl length of mungbean, but the gene expression of GIR1 is reduced by 24.03% compared to the dark control group. The gene expression of CHS and RbcS do not have significant change in this experiment, showing that the gene expressions of these two genes are not influenced by infrared exposure. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T01:18:24Z (GMT). No. of bitstreams: 1 ntu-96-R94921111-1.pdf: 1178624 bytes, checksum: ee9a546c755cd1edc3782812038f0529 (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | Chapter 1 Introduction 1
1.1 Introduction to plant photo-physiology 1 1.2 Three chosen genes of mungbean 3 1.3 Purpose of this research 4 1.4 Framework of this thesis 6 Chapter 2 The Fundamentals of Plasmonic Thermal Emitters 8 2.1 The Fundamentals of surface plasmons 8 2.1.1 Surface Plasmons on Smooth Surfaces 8 2.1.2 Surface Plasmons on the surface with hole arrays 11 2.3 Process Flow 15 2.3.1 Fabrication processes of metal hole arrays 15 2.3.2 Fabrication processes of plasmonic thermal emitter 17 2.4 Measuring systems 20 2.4.1 Introduction of FTIR 20 2.4.2 Thermal emitter chamber 22 Chapter 3 Experimental Materials and Methods 24 3.1 Plant material and experimental setup 24 3.1.1 Plant material 24 3.1.2 Experimental setup 25 3.1.3 Emitter intensity measurement 25 3.2 Experiment flow 29 3.3 Student’s T-test 33 3.4 Gene expression pattern analysis 36 3.4.1 RNA isolation 36 3.4.2 Northern blotting 36 Chapter 4 Results and Discussion 40 4.1 Infrared exposure experiment #1 (λp= 5 μm) 40 4.2 Infrared exposure experiment #2 (λp= 4.5 μm) 43 4.3 Infrared exposure experiment #3 (λp= 4 μm) 46 4.4 Infrared exposure experiment #4 (λp= 3.5 μm) 50 4.5 Infrared exposure experiment #5 (λp= 3 μm) 53 4.6 Discussion 56 Chapter 5 Conclusions 59 Appendix I – RNA isolation protocol 61 Appendix II – Northern blot analysis protocol 63 Appendix III – T-test results of experiment #1 66 Appendix IV – T-test results of experiment #2 67 Appendix V – T-test results of experiment #3 68 Appendix VI – T-test results of experiment #4 69 Appendix VII – T-test results of experiment #5 70 Reference 71 | |
| dc.language.iso | en | |
| dc.subject | 綠豆 | zh_TW |
| dc.subject | 電漿熱輻射源 | zh_TW |
| dc.subject | 紅外光 | zh_TW |
| dc.subject | 基因表現 | zh_TW |
| dc.subject | plasmonic thermal emitter | en |
| dc.subject | gene expression | en |
| dc.subject | mungbean | en |
| dc.subject | infrared | en |
| dc.title | 窄頻寬紅外線照射對綠豆發育及基因表現之影響 | zh_TW |
| dc.title | Effect of Narrow Bandwidth Infrared Radiation on Mungbean Growth and Gene Expression | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林清富(Ching-Fuh Lin),江昭皚(Joe-Air Jiang) | |
| dc.subject.keyword | 電漿熱輻射源,紅外光,綠豆,基因表現, | zh_TW |
| dc.subject.keyword | plasmonic thermal emitter,infrared,mungbean,gene expression, | en |
| dc.relation.page | 73 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2007-07-19 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電機工程學研究所 | zh_TW |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-96-1.pdf 未授權公開取用 | 1.15 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
