請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29708完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 柯淳涵 | |
| dc.contributor.author | Pei-Chun Chiu | en |
| dc.contributor.author | 邱佩君 | zh_TW |
| dc.date.accessioned | 2021-06-13T01:15:41Z | - |
| dc.date.available | 2017-07-20 | |
| dc.date.copyright | 2007-07-28 | |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2007-07-20 | |
| dc.identifier.citation | Agbogbo F. K., K.S. Wenger (2006) Effect of pretreatment chemicals on xylose fermentation by Pichia stipitis. Biotechnology Letters 28: 2065-2069.
A.O.A.C. (2002) Official Methods of Analysis, 17th ed. Association of Official Analytical Chemists, Arlington, Virginia. 684 pp. Canilha, L., W. Carvalho and J.B.A. Silva (2005) Influence of medium composition on xylitol bioproduction from wheat straw hemicellulosic hydrolysate. World Journal of Microbiology and Biotechnology 21: 1087-1093. Chen L. F. and C. S. Gong (1985) Fermentation of sugarcane bagasse hemicellulose hydrolysate to xylitol by a hydrolysate-acclimatized yeast. : an official publication of the institute of food technologists. Journal of Food Science 50: 227. Choi J.H., K.H. Moon, Y.W. Ryu and J.H. Seo (2000) Production of xylitol in cell recycle fermentation of Candida tropicalis. Biotechnology Letters 22(8): 1625-1628. Cruz J.M., J. M.Dominguez, H. Dominguez and J.C. Parajo (2000) Xylitol production from barley bran hydrolysates by continuous fermentation with Debaryomyces hansenii. Biotechnology Letters 22: 1895-1898. Cong C. S., C. S. Chen and L. F. Chen (1993) Pretreatment of sugar cane bagasse hemicellulose hydrolyzate for ethanol production by yeast. Applied Biochemistry and Biotechnology 39-40: 83-88. Converti A., P. Perego, P. Torre and S.S.da Silva (2000) Mixed inhibitions by methanol, furfural and acetic acid on xylitol production by Candida guilliermondii. Biotechnology Letters 22: 1861-1865. Diz J., J.M. Cruz, H. Dominguez and J.C. Parajo (2002) Xylitol production from Eucalyptus wood hydrolysates in low-cost fermentation media. Food Technology and Biotechnology 40: 191-197. Dominguez J. M., N. Cao, C. S. Gong and G. T. Tsao (1997) Dilute acid hemicellulose hydrolysate from corn cobs for xylitol production by yeast. Bioresource Technology 61: 85-90. Faria L. F. F., N. Pereira and R. Nobrega (2002) Xylitol production from D-xylose in a membrane bioreactor. Desalination 149: 231-236. Felipe M., M. Vitolo, I. M. Mancilha and S. S. Silva (1997) Environmental parameters affecting xylitol production from sugarcane bagasse hemicellulose hydrolysate by candida guillieermondii. Journal of Industrial Microbiology and Biotechnology 18: 251-254. Food and Agriculture Organization. 2000 Outlook studies - The global outlook for future wood supply from forest plantations. Global Forest Product Outlook Study Working Paper No.: GFPOS/WP/03, United Nations, 156 pp. Gurgel P. V., I. M. Mancilha, R. P. Pecanha and J. F. M. Squeira (1995) Xylitol recovery from fermented sugarcane bagasse hydrolyzate. Bioresource Technology 52: 219-223. Heikkila H., J. Nurmi, L. Rahkila and M. Toyryla (1992) Method for the production of xylitol. United States patents quarterly 5,081,026. Horistu H., Y. Yahashi, K. Takamizawa, K. Kawai, T. Suzuki and N. Watananb (1992) Production of xyllitol from D-xylose by Candida tropicalis: optimization of production rate. Biotechnology and Bioengineering 40: 1085-1090. Jönsson L. J., E. Palmqvist, N. O. Nilvebrant and B. Hahn-Hägerdal (1998) Detoxification of wood hydrolysates with laccase and peroxidase from the white-rot fungus Trametes versicolor. Applied Microbiology and Biotechnology 49: 691-697. Kim T..B. and D.K. Oh (2003) Xylitol production by Candida tropicalis in a chemically defined medium. Biotechnology Letters 25,: 2085–2088. Kim T.B., Y.J. Lee, P. Kim, C.S. Kim and D.K. Oh (2004) Increased xylitol production rate during long-term cell recycle fermentation of Candida tropicalis. Biotechnology Letters 26: 623-627. Kujala T.S., J.M. Loponen, K.D. Klika and K. Pihlaja (2000) Phenolics and betacyanins in red beetroot (Beta vulgaris) root: distribution and effect of cold storage on the content of total phenolics and three individual compounds. Journal of Agricultural and Food Chemistry 48: 5338-5342. Kwon S.G., S.W. Park and D.K. Oh (2006) Increase of xylitol productivity by cell-recycle fermentation of Candida tropicalis using submerged membrane bioreactor. Journal of Bioscience and Bioengineering 101: 13-18. Latif F. and M.I.Rajoka (2001) Production of ethanol and xylitol from corn cobs by yeasts. Bioresource Technology 77: 57-63. Maciel de Mancilha I. and K. M. Nazmul (2003) Evalyation of ion exchange resins for removal of inhibitory compounda from corn stover hydrolyzate for xylitol fermentation. Biotechnology Progress 19: 1837-1841. Malherbe S. and T.E. Cloete (2003) Lignocellulose biodegradation: fundamentals and applications: A review. Reviews in Environmental Science and Biotechnology 1: 105-114. Melajla A. J. and L. Hamalainen (1997) Process for making xylitol. United States patents quarterly 4,008,285. Mussatto S.I. and J.C. Roberto (2004) Alternatives for detoxification of diluted-acid lignocellulosic hydrolyzates for use in fermentative processes: a review. Bioresource Technology 93: 1-10. O’Mahony K., R. Freitag, , B. Dhote, F. Hilbrig, , P. Müller and I.Schumacher (2006) Capture of Bacteria from Fermentation Broth by Body Feed Filtration: A Solved Problem? Biotechnology Progress 22: 471-483. Palmqvist E. and B. Hahn-Hagerdal (2000) Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresource Technology 74: 25-33. Pandey A., C.R. Soccol, P. Nigam and V. T. Soccol (2000) Biotechnological potential of agro-industrial residues. I: sugarcane bagasse. Bioresource Technology 74: 69-80. Parajó J. C., H. Dominguez and M. J. Dominguez (1995) Production of xylitol from raw wood hydrolysates by Debaryomyces hansenii. Bioprocess and Biosystems Engineering 13: 125-131. Parajò J.C., H. Domínguez and J.M. Domínguez (1998a) Biotechnological production of xylitol part 1: interest of xylitol and fundamentals of its biosynthesis. Bioresource Technology 65: 191-201. Parajò J.C., H.Domínguez and J.M. Domínguez (1998b) Biotechnological production of xylitol part 2: operation in culture media with commercial sugars. Bioresource Technology 65: 203-212. Pepper T. (1989) The use of xylitol in confection production. Confectionery Product.s 3:253-256. Pepper T. and P. M. Olinger (1988) Xylitol in sugar-free confection. Food Technology 10:98-106. Rahman, S.H.A., Choudhury, J.P., Ahmad, A.L., 2007. Optimization studies on acid hydrolysis of oil palm empty fruit bunch fiber for production of xylose. Bioresource Technology 98: 554-559. Rao, R.S., R.S. Prakasham, K.K. Prasad, S. Rajesham, P.N. Sarma and L.V. Rao (2004) Xylitol production by Candida sp.: parameter optimization using Taguchi approach corn steep liquor (CSL). Process Biochemistry 39: 951-956. Rao R.S., C.P. Jyothi and R.S. Prakasham (2006) Xylitol production from corn fiber and sugarcane bagasse hydrolysates by Candida tropicalis. Bioresource Technology 97: 1974-1978. Roberto I. C., B. E. Elizalde and M. Anese (1995) Effect of carmelization and maillard reaction products on peroxidase activity. Journal of Food Biochemistry 18: 445-457. Rosa S. M. A., M. G. A. Felipe, S. S. Silva and M. Vitolo (1998) Xylose reductase production by Candida guilluermondii. Applied Biochemistry and Biotechnology 70-72: 127-135. Saha B. C. and R. J. Bothast (1997) Fuels and chemicals from biomass, ch17, microbial production of xylitol. American Chemical Society 307-319. Schneider H. (1996) Selective removal of acetic acid from hardwoodspent sulfite liquor using a mutant yeast. Enzyme and Microbial Technology 19: 94-98. Sheu D.C., K.J. Duan, , S.R. Jou, Y.C. Chen and C.W. Chen (2003) Production of xylitol from Candida tropicalis by using an oxidation-reduction potential-stat controlled fermentation. Biotechnology Letters 25: 2065-2069. Silva S.S., M.G.A. Felipe and I.M. Mancilha (1998) Factors that affect the biosynthesis of xylitol by xylose-fermenting yeasts. A review. Applied Biochemistry and Biotechnology 70-72:331-9. Silva J.B.A., U.A. Lima, M.E.S. Taqueda and F. G.Guaragna (2003) Use of response surface methodology for selection of nutrient levels for culturing Paecilomyces variotii in eucalyptus hemicellulosic hydrolyzate. Bioresource Technology 87: 45-50. Stape J.L., D. Binkley and M. G. Ryan (2004) Eucalyptus production and the supply, use and efficiency of use of water, light and nitrogen across a geographic gradient in Brazil. Forest Ecology and Management 193: 17–31. Sun, Y. and J. Cheng (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresource Technology 83: 1–11. Suryadi H., T. Katsuragi, N. Yoshida, S. Suzuki and Y. Tani (2000) Polyol production by culture of methanol-utilizing yeast. Journal of Bioscience and Bioengineering 89: 236-240. Vázquez G., M. A. Lage, J. C. Parajó and G. Vázquez (1991) Transformación de materials lignocelulósicos: Composición, fraccionamiento y aprovechamiento. Rev. Agroquím. Tecnol. Alimen 31(2): 143-164. Villarreal M.L.M., A.M.R. Prata, M.G.A Felipe and J.B.A. Silva (2006) Detoxification procedures of eucalyptus hemicellulose hydrolysate for xylitol production by Candida guilliermondii. Enzyme and Microbial Technology 40: 17-24. Wang Y. M. and J. V. Van Eyes (1981) Nutritional significance of fructose and sugar alcohols. Annals Research 1: 437. Washuttle J., P. Riederer and E. Banchem (1973) Agualitative and quantitative study of sugar-alcohols in several foods. Journal of Food Science 38: 1262. Winkelhausen E., S.A. Amartey and S. Kuzmanova (2004) Xylitol production from D-xylose at different oxygen transfer coefficients in a batch bioreactor. Engineering. in Life Sciences 4: 150-154. Yahashi Y., H. Horitsu, K. Kawai, T. Suzuki and K. Takamizawa (1996) Production of xylitol from D-xylose by Candida tropicalis: the effect of D-glucose feeding. Journal of Fermentation Bioenergy 81 (2): 148-152. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29708 | - |
| dc.description.abstract | 木質材料的利用過程中,常產生大量的未被充分利用之木質廢棄物,如在製漿操作過程中所產生的木屑。在本研究中,探討利用漿廠的木質廢棄物轉化木糖醇之效能,首先利用硫酸作為前處理水解木質廢棄物,接著以發酵與超過濾做處理。
在水解處理中,使用水、氫氧化鈉、4% 過氧化氫與3%硫酸作為溶液水解廢棄木屑,而以3%硫酸於140oC下水解60分鐘可得最佳之木糖產量12.31 g L-1 (葡萄糖為4.42 g L-1、阿拉伯糖為0.30 g L-1)。再者,使用硫酸水解不同的漿廠廢棄物比較木糖的產生量,其中以澳洲尤加利 (Eucalyptus globules) 木片有最高木糖量為13.35 g L-1,雖然其有最高產率,但使用廢棄木屑較為經濟。廢棄木屑亦有較高的木糖量為12.31 g L-1,其含量較澳洲尤加利木片少。 本研究為確定發酵製程之可行性,利用混糖基質添加氮源以酵母發酵生產木糖醇,試驗菌種獲得於新竹食品工業發展研究所生物資源保存及研究中心,包括Candida boidinii (BCRC 21432)、C. guilliermondii (BCRC 21549)、C. tropicalis (BCRC 20520)、C. utilis (BCRC 20334)與Pichia anomala (BCRC 21359)。其中以C. tropicalis在培養48小時後具最高的生物轉化率 (YP/S) 為 0.79 g g−1。另以尿素與大豆取代酵母抽出物作為氮源,分別發酵96與72小時後,可得YP/S分別為0.6 g g−1 與0.39 g g−1。發酵液以超過濾方式去除發酵產生的蛋白質,使用10000分子量 (MWCO) 超過濾聚醚砜膜(ultrafiltration polyethersulfone membrane ),以2 mg L−1 polydiallyl dimethyl ammonium chloride (PDADAC) 處理膜表面,再以3 kgf/cm2的壓力以掃流式方式過濾,過濾120分鐘後,約85至96%的蛋白質可被去除。 確定發酵製程之可行性後,在以木屑水解液以去毒處理後濃縮作為發酵基質。前處理是以3% (w/v) 硫酸在140oC下水解1小時,並以Ca(OH)2中和,隨後利用活性炭與陰離子交換樹脂移除水解液中的糠醛、5-羥甲基糠醛、酚類物質與醋酸。使用已去毒並濃縮的水解液作為木糖醇生產的發酵基質,比較五種酵母菌對於木糖醇的轉化能力,其中以熱帶假絲酵母有最高的生物轉化率 (YP/S),於發酵44小時時為0.73 g g−1,另探討廉價發酵培養基的利用可能性,分別添加尿素與大豆粉取代酵母抽出物,C. tropicalis在發酵96小時,其各單位基質的產量分別為0.43 g g−1 與 0.28 g g−1。在發酵液中的木糖可利用分子量為5000超過濾聚醚砜,以2 mg L−1 PDADAC處理固著於膜表面,再以3 kgf/cm2的壓力以掃流式方式過濾,過濾120分鐘後,約82至97%的蛋白質可被去除。在本研究中,證實廉價的發酵培養基可被應用於木質廢棄物轉化為木糖醇的製程。 | zh_TW |
| dc.description.abstract | Substantial amounts of underutilized wood wastes are created by chip storage and handling operation in pulp mills. This paper reports a process for xylitol conversion from pulp mill hardwood wastes, starting from pretreated waste wood acid hydrolysate followed by fermentation and ultrafiltration.
Using the different solvent to hydrolyze the wood fines, including water, NaOH, 4% H2O2 and 3% H2SO4, the best hydrolysis solvent was 3% H2SO4 with condition was at 60 min with 140oC, the xylose yield was 12.31 g L-1 (glucose was 4.42 g L-1and arabinose was 0.30 g L-1). Compared with the yield of xylose in four materials, the first was the Eucalyptus globules (13.35 g L-1), although the Eucalyptus globules had the greatest output in the four materials, the quantity was small in the pulp mill. The waste wood dust, the second (12.31 g L-1), was the better than Eucalyptus globules, the xylose output of waste wood dust was slightly less than the Eucalyptus globules, but the waste wood dust was great quantity. Batch fermentations for xylitol production using the model mixed sugars media were conducted with conventional a nitrogen source using the strain with optimal xylitol conversion efficiency, conventional nitrogen source was employed using following yeast strains obtained from the Bioresources Collection and Resource Center (BCRC), Food Industry Research and Development Institute (FIRDI), Hsin-Chu, Taiwan: Candida boidinii (BCRC 21432), C. guilliermondii (BCRC 21549), C. tropicalis (BCRC 20520), C. utilis (BCRC 20334), Pichia anomala (BCRC 21359), with C. tropicalis exhibiting highest bioconversion yield (YP/S) of 0.79 g g−1 over 48 h. Additional fermentation runs achieved YP/S of 0.6 g g−1 and 0.39 g g−1 after 96 and 72 h with urea and soybean meal, respectively. Xylose in fermentation broth was recovered by ultrafiltration with a cross flow module. With prior application of 2 mg L−1 polydiallyldimethylammonium chloride (PDADAC) on the membrane surface, protein rejections increased from 85 to 96 %. Fermentation hydrolysate, pretreatment started with 140 oC, 3% (w/v) H2SO4 acid hydrolysis for 1 hour, neutralization by Ca(OH)2, followed by sequential removals by furfural, 5-hydroxylmethyl furfural, total phenols and acetic acid with powdered activated carbon and cationic ion exchange columns. Using detoxified and concentrated hydrolysate, batch fermentations for xylitol production were conducted with five yeast strains. Among fermentation runs of the strains, C. tropicalis exhibited highest bioconversion yield (YP/S) of 0.73 g g−1 over 44 h. To investigate feasibility using low-cost fermentation media, additional C. tropicalis fermentation runs achieved YP/S of 0.43 g g−1 and 0.28 g g−1 after 96 h with urea and soybean meal, respectively. Xylose in fermentation broth was recovered by a 5000 molecular weight cutoff (MWCO) ultrafiltration polyethersulfone membrane in a cross flow module with 3 kg/cm2 trans membrane pressure. With prior application of 2 mg L−1 PDADAC on membrane surface, protein rejections increased from 87 to 100 % within 120 min. The present study demonstrates xylitol, a value added derivative, can be effectively converted from hardwood wastes using low-cost fermentation media. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T01:15:41Z (GMT). No. of bitstreams: 1 ntu-96-R94625028-1.pdf: 1025366 bytes, checksum: 346d6caa3a7aa9b40d5c84399c3872e7 (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | Index
Page 摘要-----------------------------------------------------I Abstract------------------------------------------------III Index-----------------------------------------------------V Table index---------------------------------------------VII Figure index---------------------------------------------IX I Introduction--------------------------------------------1 II Literature review--------------------------------------3 2.1 Natural occurrences, properties and application of Xylitol-----------------------------------------------3 2.2 Processes for xylitol production----------------------5 2.2.1 Solid-liquid extraction-----------------------------6 2.2.2 Chemical synthesis----------------------------------7 2.3 Microbial production of xylitol-----------------------8 2.3.1 Effect of xylose concentration on xylitol production-----------------------------------------10 2.3.2 Effect of other sugar on the production of xylitol by yeast-------------------------------------------10 2.3.3 Effect of culture condition------------------------10 2.3.4 Production of xylitol from hemicellulose hydrolysate- -------------------------------------------------- 11 III Materials and methods-------------------------------13 3.1 Research Framework-----------------------------------13 3.2 Preparation of lignocellulosic hydrolysate---------- 15 3.2 Detoxification of hydrolysate------------------------16 3.3 Microorganisms and pre-culture-----------------------16 3.4 Media and fermentation------------------------------ 17 3.5 Ultrafiltration------------------------------------- 18 3.6 Analytical methods-----------------------------------19 IV Results and discussion--------------------------------19 4.1 Pretreatment of lignocellulosic materials------------19 4.1.1 Water hydrolysis with wood fines ------------------19 4.1.2 Sodium hydroxide hydrolysis with wood fines ---20 4.1.3 Hydrogen peroxide hydrolysis with wood fines ------20 4.1.4 Sulfuric acid hydrolysis with four materials ------22 4.2 Fermentation of simulated mixed sugar ---------------26 4.2.1 Effect of the yeast strain on fermentation --------26 4.2.2 Effect of the nitrogen sources on fermentation ----27 4.2.3 Ultrafiltration -----------------------------------29 4.3 Fermentation of detoxified hydrolysates -------------30 4.3.1 Effect of detoxification on hydrolysate composition-- ---------------------------------------------------30 4.3.2 Effect of the yeast strain on fermentation---------32 4.3.3 Effect of the nitrogen sources on C. tropicalis fermentation---------------------------------------35 4.3.4 Ultrafiltration------------------------------------36 V Conclusion---------------------------------------------38 VI Reference---------------------------------------------39 Appendix-------------------------------------------------45 | |
| dc.language.iso | en | |
| dc.subject | 木糖醇 | zh_TW |
| dc.subject | Candida tropicalis | zh_TW |
| dc.subject | 桉木 | zh_TW |
| dc.subject | 廉價發酵培養基 | zh_TW |
| dc.subject | 超過濾 | zh_TW |
| dc.subject | Eucalyptus globules | en |
| dc.subject | Candida tropicalis | en |
| dc.subject | xylitol | en |
| dc.subject | ultrafiltration | en |
| dc.subject | low-cost fermentation media | en |
| dc.title | 漿廠廢棄物轉化木糖醇之製程探討 | zh_TW |
| dc.title | An Xylitol Conversion Process by Fermentation from Pulp Mill Wastes | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張上鎮,蕭英倫,藍浩繁,陳信泰 | |
| dc.subject.keyword | Candida tropicalis,桉木,廉價發酵培養基,超過濾,木糖醇, | zh_TW |
| dc.subject.keyword | Candida tropicalis,Eucalyptus globules,low-cost fermentation media,ultrafiltration,xylitol, | en |
| dc.relation.page | 46 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2007-07-20 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 森林環境暨資源學研究所 | zh_TW |
| 顯示於系所單位: | 森林環境暨資源學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-96-1.pdf 未授權公開取用 | 1 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
