請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29690
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 洪挺軒(Ting-Hsuan Hung) | |
dc.contributor.author | Hsuan-Yi Wu | en |
dc.contributor.author | 巫宣毅 | zh_TW |
dc.date.accessioned | 2021-06-13T01:15:01Z | - |
dc.date.available | 2010-07-23 | |
dc.date.copyright | 2007-07-23 | |
dc.date.issued | 2007 | |
dc.date.submitted | 2007-07-19 | |
dc.identifier.citation | 王仁晃。2001。木瓜輪點病毒對番木瓜抗感病品種(系)光合成的影響。國
立臺灣大學園藝學研究所碩士論文。台北市。86頁。 王啟正。1997。番木瓜抗木瓜輪點病毒遺傳差異性之研究。國立台灣大學 園藝學研究所碩士論文。台北市。107頁。 王惠亮、王金池、邱人璋、孫明賢。1978。台灣番木瓜輪點病研究初報。 植保會刊20:133-140。 王德男。1982。木瓜耐輪點毒素病品種之檢定。中華農業研究31:162-168。 王德男。1991。台灣番木瓜栽培之回顧及展望。台灣果樹之生產及研究發 展研討會專刊p.357-371。台灣省農業試驗所嘉義分所。 王德男。1991。台灣木瓜栽培之回顧與展望。杜金池、程永雄、顏昌瑞主 編。台灣果樹之生產及研究發展研討會專刊p.357-371。台灣省農業試 驗所試驗特刊第35號。 王德男。1993。木瓜抗(耐)毒素病品種之選育及‘台農五號’之繁殖。果 樹育種研習會專刊p.233-248。台灣省農業試驗所。 王震宇。1988。木瓜輪點病毒系統之細胞病理學研究。國立台灣大學植物 病蟲害學研究所碩士論文。台北市。50頁。 包慧俊。2000。木瓜輪點病毒鞘蛋白轉基因木瓜抗病性狀之研究。國立中 興大學植物病理學研究所博士論文。台中市。135頁。 吉井三惠子。1986。影響木瓜輪點病毒病徵表現與變異之因素。國立台灣 大學植物病蟲害學研究所碩士論文。台北市。128頁。 李宜霞。2006。木瓜輪點病毒之 Real-Time RT-PCR 定量偵測技術之研發 與應用。國立台灣大學植物病理與微生物學研究所碩士論文。台北市。 110頁。 林正忠。1980。木瓜輪點毒素病之系統及交叉保護。國立臺灣大學植物病 蟲害學研究所博士論文。台北市。115頁。 林育萱。2004。柑桔破葉病毒系統之鑑別與快速偵測法之研發。國立台灣 大學植物病理與微生物學研究所碩士論文。台北。75頁。 林澤揚、蔡淑貞、葉錫東、王叔菀、施養志。GM-木瓜鑑別檢驗方法之探 討與研究。 施明山、陳吉雄、鄧如蘭。1990。番木瓜設施栽培。台灣農業21:84- 87。 翁芬華。1981。木瓜輪點病毒之變異性。國立台灣大學植物病蟲害學研究 所碩士論文。台北市。73頁。 袁秋英、蔣慕琰。2002。基因改造作物及食品之檢測方法-抗嘉磷塞大豆 之基因特性及PCR檢測。藥毒所專題報導第65期。行政院農業委員 會農業藥物毒物試驗所。台中。 徐慈鴻、李貽華、李國欽。2003。基因轉殖植物之生物安全性評估及管理。 藥毒所專題報導第70期。行政院農業委員會農業藥物毒物試驗所。 台中。 張世揚。2000。植物防疫之重要性。苗栗區農情月刊10: 1-2。 張春蕉。1995。番木瓜輪點病的增殖與擴散。國立台灣大學園藝學研究所 碩士論文。台北市。64頁。 陳光慧。1986。對木瓜輪點病病毒之單源抗體試製與其對病毒系統之血清 學反應。國立台灣大學植物病蟲害研究所碩士論文。台北市。129頁。 陳脈紀、劉顯達、王惠亮、位國慶、邱人璋。1976。木瓜輪點病之電子顯 微鏡觀察。植物保護學會會刊論文摘要18:399。 陳脈紀。1984。木瓜輪點病毒之電子顯微鏡觀察。植物保護學會會刊26: 23-31。 郭耀庭。2001。親子迴歸法估算番木瓜抗木瓜輪點病毒病之遺傳力。國立 台灣大學園藝學研究所碩士論文。台北市。60頁。 馮雅智。2006。香蕉新病毒-香蕉苞葉嵌紋病毒之鑑定及分佈調查。國立 台灣大學植物病理與微生物學研究所碩士論文。台北市。88頁。 葉慈容。2004。利用逆墨點雜合法鑑定九種馬鈴薯Y屬病毒。國立台灣大 學植物病理與微生物學研究所碩士論文。台北市。55頁。 廖奕晴。2004。台灣木瓜輪點病毒系統之變異與鑑別及快速檢測。國立台 灣大學植物病理與微生物學研究所碩士論文。台北市。107頁。 廖翊廷。2006。台灣木瓜畸葉嵌紋病毒全長度基因體序列之解讀。私立大 葉大學生物產業科技學研究所碩士論文。彰化縣。68頁。 蔡文惠。1995。木瓜接種不同輪點病毒系統後的反應。國立台灣大學園藝 學研究所碩士論文。台北市。66頁。 潘子明。2000。基因改造食品檢驗方法總論。基因改造食品之貿易管理檢 驗與標示問題研討會論文集p.27-86。台北。 潘子明。2001。豆腐乳、味噌及臭豆腐等基因改造食品檢驗方法之研究。 基因改造食品之檢驗與管理研討會p.27-59。 戴邦本。1976。木瓜栽培。台灣省政府農林廳。南投。27頁。 關政平。1990。木瓜輪點病毒之單元抗體的特異性。國立台灣大學植物病 蟲害學研究所碩士論文。台北市。127頁。 蘇遠志。2000。基因食物面面觀。元氣齋出版社。台北。 蘇遠志。2000。基因改造食品之各國管理現況介紹。基因改造食品之貿易 管理檢驗與標示問題研討會論文集p.1-26。台北。 蘇遠志。2001。國際基因改造食品標示制度的發展趨勢。基因改造食品之 檢驗與管理研討會論文集p.1-19。中國農業化學會。 Adsuar, J. 1946. Studied on virus disease of papaya (Carica papaya) in PuertoRico III-Property studies of papaya mosaic virus. Revista Jurídica de la Universidad de Puerto Rico 4:7-11. Agrios, G. N. 2005. Plant Pathology, 5th ed. Elsevier Academic Press, Burlingtin, USA. 922 pp. Ahmed, F. E. 2002. Detection of genetically modified organisms in foods. Trends in Bio/technology 20:215-223. Bau, H. J., Cheng, Y. H., Yu, T. A., Yang, J. S., Liou, P. C., Hsiao, C. H., Lin, C. Y., and Yeh, S. D. 2004. Field evaluation of transgenic papaya lines carrying the coat protein gene of Papaya ringspot virus in Taiwan. Plant Disease 88:594-599. Bau, H. J., Cheng, Y. H., Yu, T. A., Yang, J. S., and Yeh, S. D. 2003. Broad- spectrum resistance to different geographic strains of Papaya ringspot virus in coat protein gene transgenic papaya. Phytopathology 93:112-120. Bechtold N., Ellis, J., and Pelletier, G. 1993. In planta Agrobacterium-mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. Comptes rendus de l'Académie des sciences. Série III, Sciences de la vie 316: 1194-1199. Braun, R., and Bennett, D. J. 2001. Antibiotic resistance markers in genetically modified (GM) crops. European Federation of Biotechnology. Briefing paper No. 10. Capoor, S. P. and Varma, P. M. 1948. A mosaic disease of Carica papaya L. in the Bombay Province. Current Science 17:265-266. Capoor, S. P. and Varma, P. M. 1956. A mosaic disease of papaya in Bombay. Indian Journal of Agriculture Science 28:225-233. Chang, L. S. and Chung, T. Y. 1992. Papaya ringspot virus tolerance among diverse papaya genotypes. HortScience 27:658. Chang, S. S., Park, S. K., Kim, B. C., Kang, B. J., Kim, D. U., and Nam, H. G. 1994. Stable genetic transformation of Arabidopsis thaliana by Agrobacterium inoculation in planta. The Plant Journal 5:551-558. Chang, L. S. 1996. The response of papaya cultivars after inoculation of SMN papaya rinspot viral strain. Fruit Var. J. 50:1-7. Conner, A. J., Glare T. R. and Nap, J. P. 2003. The release of genetically modified crops into the environment. Part I. Overview of ecological risk assessment. The Plant Journal 33:19-46. Conover, R. A. 1962. Virus disease of the papaya in Florida. Phytopathology 52: 6. Conover, R. A. 1976. A program for development of papayas tolerant to the distortion ringspot virus. Proc. Fla. State Hort. Soc. 89:229-231. Conover, R. A., Litz, R. E. and Malo., S. E. 1986. “Cariflora”-a papaya ringspot virus-tolerance papaya for sourth Florida and the Caribbean. HortScience 21:1072. Cook, A. A. and F. W. Zettler. 1970. Suceptibility of papaya cultivars to papaya ringspot and papaya mosaic viruses. Plant Dis. Rep. 54:893-895. Cook, A. A. and Milbrath, G. 1971. Virus disease of papaya on Oahu (Hawaii) and identification of additional diagnostic host plants. Plant Disease 55: 785-787. Cook, A. A. 1972. Virus disease of papaya. Fla. Agr. Expt. State Inst. Food and Agr. Sci. 1-9. Costa, A. S. and Müller, G. W. 1980. Tristeza control by cross protection. Plant Disease 64:358-451. Curtis, I. S., Davey, M. R., and Power, J. B. 1995. Leaf disc transformation. Methods in Molecular Biology 44:59-70. De Bokx, J. A. 1965. Hosts and electron microscopy of two papaya viruses. Plant Dis. Rep. 49:742-746. De la Rosa, M. and Lastra, R. 1983. Purification and partial characterization of papaya ringspot virus. Phytopathol. Z. 106: 329-336. English, J. J., Mueller, E. and Baulcombe, D. C. 1996. Suppression of virus accumulation in transgenic plants exhibiting silencing of nuclear genes. Plant Cell 8:179-188. Fagan, J., Schoel, B., Haegert, A., Moore, J., and Beeby, J. 2001. Performance assessment under field conditions of a rapid immunological test for transgenic soybeans. Int. J. Food Sci. Technol. 36:357-367. Feldmann, K. A. and Marks, M. D. 1987. Agrobacterium-mediated transformation of germinating seeds of Arabidopsis thaliana: a non-tissue culture approach. Molecular & general genetics 208:1-9. Ferreira, S. A., Pitz, K. Y., Manshardt, R., Zee, F., Fitch, M., and Gonsalves, D. 2002. Virus coat protein transgenic papaya provides practical control of Papaya ringspot virus in Hawaii. Plant Disease 86:101-105. Fitch, M.M., Manshardt, R.M., Gonsalves, D., Slightom, J.L., and Sanford, J.C. 1992. Virus resistant papaya derived from tissues bombarded with the coat protein gene of papaya ringspot virus. Bio/Technology 10:1466-1472. Gert, V. D., Ria, V. B., Henriëtte, B. M., Heleen, P., and Martin, H. 1999. Detection methods for genetically modified crops. Food Control 10:375-378. Gonsalves, D. 1998. Control of papaya ringspot virus in papaya: A case study. Annual Review of Phytopathology 36:415-437. Hernández, M., Rodríguez-Lázaro, D., Zhang, D., Esteve, T., Pla, M. And Prat, S. 2005. Interlaboratory Transfer of a PCR Multiplex Method for Simultaneous Detection of Four Genetically Modified Maize Lines: Bt11, MON810, T25, and GA21. Journal of Agriculture Food Chemistry 53:3333-3337 Holst-Jensen, A. 2000. Sporbarhet av genmodifiserte ingredienser I matvarer, utvikling av analyseverktøy. Genialt. 4:28-33. Horsch, R. B., Fry, J. E., Hoffmann, N. L., Eichholtz, D., Rogers, S. G., and Fraley, R. T. 1985. A simple and general method for transferring genes into plants. Science 227:1229-1231. Hung, T. H., Wu, M. L., and Su, H. J. 1999a. Detection of fastidious bacteria causing citrus greening disease by nonradioactive DNA probes. Ann. Phytopath. Soc. Japan. 65:140-146. Hung, T. H., Wu, M. L., and Su, H. J. 1999b. Development of a rapid method for the diagnosis of citrus greening disease using the polymerase chain reaction. Journal of Phytopathology 147:599-604. Hung, T. H., Wu, M. L., and Su, H. J. 1999. A rapid method based on the one-step RT-PCR technique for detection for detection of different strains of citrus tristeza virus. Journal of Phytopathology 148:469-475. Hung, T. H., Wu, M. L., and Su, H. J. 2000. Identification of a alternative hosts of the fastidious bacterium causing citrus greening disease. Journal of Phytopathology 148:321-326. Hull, R. 2002. Matthew’s Plant Virology, 4th ed. Elsevier Academic Press, San Diego, USA. 1001 pp. Jensen, D. D. 1949b. Papaya ringspot virus and its insect vector relationships. Phytopathology 39:212-220. Kawano, S., and Yonaha, T. 1992. The occurrence of papaya leaf-distortion mosaic virus in Okinawa. Tech. Bull. of FFTC 132:13-23. Food and Fertilizer Technology Center for the Asian and Pacific Regions, Taipei, Taiwan, ROC. Kuiper, H. A., Kleter, G. A., Noteborn, H. P. J. M., and Kok, E. J. 2001. Assessment of the food safety issues related to genetically modified foods. The Plant Journal 27:503-528. Kuvshinov, V., Kimmo, K., Anne, K., and Pehu, E. 2001. Molecular control of transgene escape from genetically modified plants. Plants Science. 160:517-522. Lin, C. C., Su, H. J., and Wang, D. N. 1989. The control of papaya ringspot virus in Taiwan R.O.C. ASPAC Food and Fertilizer Tech. 114:1-13. Lindbo, J. A. and Dougherty, W. G. 1992. Untranslatable transcripts of the tobacco etch virus coat protein gene sequence can interfere with tobacco etch virus replication in transgenic plants and protoplasts. Virology 189:725-733. Lipton, C. R., Dautlick, J. X., Grothaus, G. D., Hunst, P. L., Magin, K. M., Mihaliak, C. A., Rubio, F. M., and Stave, J. W. 2000. Guidelines for the validation and use of immunoassays for detection of introduced proteins in biotechnology enhanced crops and derived food ingredients. Food and Agriculture Immunology 12:153-164. Lius, S., Manshardt, R.M., Fitch, M.M., Slightom, J.L., Sanford, J.C., and Gonsalves, D. 1997. Pathogen-derived resistance provides papaya with effective protection against papaya ringspot virus. Molecular Breeding 3: 161-168. Lüthy, J. 1999. Detection strategies for food authenticity and genetically modified foods. Food Control 10:359-361. Meyer, R. 1999. Development and application of DNA analytical methods for the detection of GMOs in food. Food Control 10:391-399. Nap, J. P., Metz, P. L. J., Escaler, M. and Conner, A. J. 2003. The release of genetically modified crops into the environment. Part I. Overview of current status and regulations. The Plant Journal 33:1-18. Powell, A. P., Nelson, R. S., De, B., Hoffmann, N., Rogers, S. G., Fraley, R. T., and Beachy, R. N. 1986. Delay of disease development in transgenic plants that express the Tobacco mosaic virus coat protein gene. Science 232:738-743. Purcifull, D.E., Edwardson, J., and Gonsalves, D. 1984. Papaya ringspot virus. CMI/AAB Descriptions of Plant Viruses No. 292 (No. 84 revised). Ridings, W. H., Zettler, F. W., and Conover, R. A. 1978. Distortion ringspot of papaya. Plant Path. Cir. No. 184. Fla. Dept. Agr. and Consume Serv. Div. of Plant Industry. Singh, A. B. 1971. Transmission of papaya leaf reduction virus by Myzus persicae. Plant Dis. Rep. 55:526-529. Svab, Z. and Maliga, P. 1993. High-frequency plastid transformation in tobacco by selection for achimeric aadA gene. Proc. Natl. Acad. Sci. USA 90:913-917. Takeuchi, Y., Dotson, M., and Keen, N. T. 1992. Plant transformation: a simple partical bombardment device based on flowing hekium. Plant Molecular Biology 18:835-839. Tennant, P.F., Gonsalves, C., Ling, K.S., Fitch, M.M., Manshardt, R., Slightom, L.J, and Gonsalves, D. 1994. Differential protection against papaya ringspot virus isolates in coat protein gene transgenic papaya and classically cross-protected papaya. Phytopathology 84:1359-1366. Tennant, P., Fermin, G., Fitch, M.M., Manshardt, R.M., Slightom, J.L., and Gonsalves, D. 2001. Papaya ringspot virus resistance of transgenic Rainbow and SunUp is affected by gene dosage, plant development, and coat protein homology. European Journal of Plant Pathology 107:645-653. Vos, P., Hogers, R., Bleeker, M., Reijans, van de Lee, T., Hornes, M., Frijters, A., Pot, J., Pleleman, J., Kuiper, M., and Zabeau, M. 1995. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Research 23:4407-4414. Wang, H. L., Wang, C. C., Chiu, R. J., and Sun, M. H. 1978. Preliminary study on papaya ringspot virus in Taiwan. Plant Prot. Bull. 20:133-140. Wang, H. L., Yeh, S. D., Chiu, R. J., and Gonsalves, D. 1987. Effectiveness of cross-protection by mild mutants of papaya ringspot virus for control of ringspot disease of papaya in Taiwan. Plant Disease 71:491-497. Wang, C. H., and Yeh, S. D. 1992. Nucleotide sequence comparison of the 3-terminal regions of severe, mild and non-papaya infecting strains of papaya ringspot virus. Archives of Virology 127:345-354. Wang, C., Bau, H., and Yeh, S. 1994. Comparison of the nuclear inclusion b protein and coat protein genes of five Papaya ringspot virus strain distinct in geographic origin and pathogenicity. 84:1205-1210. Wang, C. H. and Yeh, S. D. 1997. Divergence and conservation of the genomic RNAs of Taiwan and Hawaii strains of papaya ringspot potyvirus. Archives of Virology 142:271-285. Waterhouse, P. M., Graham, M. W., and Wang, M. B. 1998. Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA. Proc. Natl. Acad. Sci. USA 95:13959-13964. Wittwer, C. T., Herrmann, M. G., Moss, A. A. and Rasmussen, R. P. 1997. Continuous fluorescence monitoring of rapid cycle DNA amplification. Biotechniques 22:130-131. Wlison, T., and Watkins, P. 1986. Influence of exogenous viral coat protein on the co-translational disassembly of Tobacco mosaic virus. Virology 149:132-135. Yang, J. S., and Ye, C. A. 1992. Plant regeneration from petioles of in vitro regenerated papaya (Carica papaya L.) shoots. Bot. Bull. Acad. Sin. 33:375-381. Yeh, S.D. and Gonsalves, D. 1984a. Evaluation of induced mutants of papaya ringspot virus for control by cross protection. Phytopathology 74: 1086-1091. Yeh, S.D., Gonsalves, D., and Provvidenti, R. 1984b. Comparative studies on host range and serology of papaya ringspot virus and watermelon mosaic virus 1. Phytopathology 74: 1081-1085. Yeh, S. D. and Gonsalves, D. 1985. Translation of PRSV RNA in vitro: detection of a possible polyprotein that is processed for capsid protein, cylindrical- inclusion protein, and amorphous-inclusion protein. Virology 143:260-271. Yeh, S.D., Gonsallves, D., Wang, H.L., Namba, R., and Chiu, R.J. 1988. Control of papaya ringspot virus by cross protection. Plant Disease 72: 375-380. Yeh, S. D., Jan, F. J., Chiang, C. H., Doong, T. J., Chen, M. C., Chung, P. H., and Bau, H. J. 1992. Complete nucleotide sequence and genetic organization of papaya ringspot virus RNA. The Journal of general virology 73:2531-2541. Yeh, S. D. 1994. Comparison of the genetic organization of papaya ringspot virus with other potyvirus. Plant Pathology 3:54-64. Yeh, S. D., and Gonsalves, D. 1994. Practices and perspective of control of papaya ringspot virus by cross protection. Adv. Dis. Vector Res. 10:237-257. Zettler, F. W., Edwardson, J. R., and Purcifull, D. E. 1968. Ultramicropic differences in inclusions of papaya mosaic virus and papaya ringspot virus correlated with differential aphid transmission. Phytopathology 58:332-335. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29690 | - |
dc.description.abstract | 本研究主要以各項DNA檢測技術為基礎,建構一套完整的基因轉殖木瓜篩檢網,以防止抗木瓜輪點病毒(Papaya ringspot virus = PRSV)的基因轉殖木瓜與非基因轉殖木瓜混雜難辨的情況產生,進而提供國內消費市場與國際行銷通路上的標示依據。本論文所研發的方法涵括:一、PCR (polymerase chain reaction)檢測法:主要針對35S promoter、PRSV coat protein (CP) gene、Nos terminator序列各設計專一性的引子對35S-726、CP-739、Nos-220,以總核酸抽取法抽取木瓜葉片核酸後,再以PCR增幅做快速檢定,訊號較弱的樣本可以再使用35S-348與CP-372做nested PCR以加強敏感度;也完成35S-726與Nos-220的multiplex PCR之研發,可有效的節省時間與成本;另又於35S promoter、CP、Nos terminator基因之間設計跨基因的引子對SC-670與CN-716,增加偵測的專一性與正確度;於Right boarder、Nos promoter、NPTⅡgene區域設計RBNP-308與NPTⅡ-718,可擴及應用到其他的基因轉殖作物之偵測。基因轉殖木瓜各個部位,不論根部、葉柄、第一片葉、完全展開葉、花、果實都可進行PCR檢測,市場果品的抽查以採集果皮的效果為佳。二、墨點雜合法(Dot blot hybridization):此法主要是為了防止因遺傳變異,造成轉殖基因的部分片段漏失或突變而建立;為增強雜合訊號,選擇採用冷光(如CSPD)來反應,並可搭配AFLP(Amplification fragment length Polymorphism)之非專一性增幅,以提升偵測敏感度。三、Real-time PCR檢測法:以先前研發的PRSV TaqMan primer/probe方法為基礎,基因轉殖木瓜大約於第25個增幅循環即可增測到螢光訊號,可大幅減少檢測時間且可同步定量以利分析。將所研發的方法直接應用於田間基因轉殖木瓜之鑑定:在南台灣與東台灣田間調查可以發現,抗木瓜輪點病毒的基因轉殖木瓜在田間已有種植,且其中有部份也已經受病毒危害而產生病徵,經病毒檢測發現為木瓜畸葉嵌紋病毒(Papaya leaf-distortion mosaic virus)與PRSV的危害;中國廣西與海南島所採集到的木瓜樣本更發現基因轉殖木瓜已經大規模種植,且也有部份受PRSV入侵。將基因轉殖木瓜分別接種PRSV中國廣西分離株與台灣之PRSV-DF與PRSV-SMN系統,只有廣西分離株可以成功感染,而台灣系統則否。為瞭解廣西分離株之分子特性,取其鞘蛋白基因進行選殖與定序,再與國內外所發表的各PRSV鞘蛋白基因做比對,發現基因轉殖木瓜上所帶的PRSV鞘蛋白核酸序列和台灣PRSV永康分離株完全一樣、與中國廣西分離株相似度為94.1 %、與台灣DF、SM、SMN系統的相似度為96.3~96.5 %、與夏威夷與墨西哥分離株相似度為90.8 %與89.6 %;在胺基酸序列的親緣關係研究發現廣西分離株似乎和已知國內外系統沒有太大的差異。 | zh_TW |
dc.description.abstract | This thesis was dedicated to develop various efficient methods with the DNA-based techniques for the identification of transgenic papayas resistant to PRSV. These developed methods contain (1) PCR detection:This was developed for detecting 35S promoter, PRSV coat protein gene, Nos terminator in transgenic papayas using our devised 35S-726, CP-739 and Nos-220 primer pairs. Nested-PCR assays were conducted using the 35S-348 and CP-372 primers to increase sensitivity. Both 35S-726 and Nos-220 primer pairs were used to perform multiplex PCR assays. Primer SC-670 could amplify the fragments between 35S promoter and PRSV CP gene;Primer CN-716 could amplify the fragments between PRSV CP gene and Nos terminator. Both SC-670 and CN-716 provide a more accurate and specific detection for the transgenic papayas. Primer RBNP-308 and NPTⅡ-718 designed to detect the right boarder region; Nos terminator and NPTⅡ gene were potential to be applied in the detection of other transgenic crops. All samples collected from young leaves, mature leaves, petioles, roots, flowers and fruits could be used in the detection of transgenic papayas. (2) Dot blot hybridization method: Dot blot hybridization provides a more accurate detection especially when gene-variation occurs in the inserted genes of transgenic papayas. AFLP techniques and fluoremetrical detection were used to increase sensitivity for dot blot hybridization in this study. (3) Real-time PCR method: This was applied for rapid detection and quantification of target gene for transgenic papayas. Our devised methods were directly applied in field survey for papaya plants. Many transgenic papaya plants were detected in the southern and eastern Taiwan. Interestingly, those transgenic papayas were also infected by PRSV in addition to PLDMV (Papaya leaf-distortion mosaic virus). Lots of papaya samples collected from Guangxi and Hainan (China) also showed positive for transgenic plants. It indicates that transgenic papayas have become the main cultivars in China. A PRSV isolate collected from Guangxi could infect transgenic papayas and caused typical symptoms whereas PSRV-DF and PRSV-SMN strains (from Taiwan) can not infect them. Molecular alignment and analysis of the coat protein gene revealed that the Guangxi isolate is somewhat different from the other reported PRSV isolates. Alignment of nucleic acid sequence demonstrated that this Guangxi isolate is 94.1% identical to the coat protein gene of transgenic papayas, and it is 96.3~96.5 % identical to the coat protein gene of PSRV-DF and PRSV-SMN strains. However, alignment of amino acid sequence did not show significant differences among them. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T01:15:01Z (GMT). No. of bitstreams: 1 ntu-96-R94633019-1.pdf: 3339457 bytes, checksum: 7dc174172089501cbaa1747a070681cf (MD5) Previous issue date: 2007 | en |
dc.description.tableofcontents | 中文摘要……………………………………………………………i
英文摘要…………………………………………………………iii 壹、前言……………………………………………………………1 貳、前人研究………………………………………………………5 一、木瓜輪點病之發生與危害…………………………………5 二、木瓜輪點病毒之病徵與傳播………………………………5 三、台灣木瓜輪點病毒之系統與細胞病理研究………………6 四、木瓜輪點病毒分類與基本分子特性………………………7 五、木瓜輪點病之防治進展……………………………………8 六、植物基因轉殖之目的與技術原理…………………………10 七、基因轉殖作物的研發情況..………………………………13 八、抗木瓜輪點病的基因轉殖木瓜之技術研發與現行常用的檢測方 法..14 參、材料方法………………………………………………………16 一、試驗植物準備………………………………………………16 二、病毒系統來源與保存………………………………………16 三、以PCR法偵測基因轉殖木瓜…………………………………17 1. 核酸萃取:總核酸抽取法 (total nucleic acids)…17 2. PCR增幅反應……………………………………………18 3. PCR產物電泳膠體分析…………………………………18 4. PCR產物之選殖與定序..........................19 四、以改良式墨點雜合與南方雜合偵測基因轉殖木瓜………20 1. AFLP………………………………………………………20 2. Restriction Endonucalease Digestion Reaction…20 3. Linker Ligation Reaction…………………………21 4. Pre-Selective PCR Amplification…………………21 5. 墨點雜合………………………………………………21 6. 南方雜合與轉漬………………………………………22 7. 雜合訊息之偵測………………………………………23 五、以Real-time PCR法偵測偵測基因轉殖木瓜...........24 六、田間調查GM木瓜與非GM木瓜之病理特異性分析........25 肆、結果……………………………………………………………27 一、基因轉殖木瓜的PCR偵測法之研發……………………… 27 二、以Dot Blot hybridization法偵測到基因轉殖木瓜....28 三、以Real-time PCR檢測基因轉殖木瓜……………………29 四、基因轉殖木瓜檢測之田間應用……………………………30 五、基因轉殖木瓜的溫室接種試驗……………………………31 六、基因轉殖木瓜所植入的PRSV鞘蛋白基因與各PRSV分離株之鞘蛋白基因序列比對.....32 伍、討論……………………………………………………………34 陸、參考文獻……………………………………………………40 柒、圖表……………………………………………………………52 捌、附錄……………………………………………………………86 | |
dc.language.iso | zh-TW | |
dc.title | 抗木瓜輪點病毒的基因轉殖木瓜高效能鑑別方法之研發與應用 | zh_TW |
dc.title | Development and Application of Highly Efficient Methods for Detection of Transgenic Papayas Resistant to Papaya ringspot virus | en |
dc.type | Thesis | |
dc.date.schoolyear | 95-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 張龍生(Loong-Sheng Chang),葉信宏(Hsin-Hung Yeh) | |
dc.subject.keyword | 木瓜輪點病毒,轉基因木瓜,聚合酵素連鎖反應,墨點雜合反應,即時定量聚合酵素連鎖反應, | zh_TW |
dc.subject.keyword | Papaya ringspot virus,Transgenic papayas,Polymerase chain reaction,Dot blot hybridization,Real-time PCR, | en |
dc.relation.page | 89 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2007-07-20 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 植物病理與微生物學研究所 | zh_TW |
顯示於系所單位: | 植物病理與微生物學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-96-1.pdf 目前未授權公開取用 | 3.26 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。