Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥理學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29683
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蘇銘嘉
dc.contributor.authorTzong-Cherng Chien
dc.contributor.author紀宗呈zh_TW
dc.date.accessioned2021-06-13T01:14:45Z-
dc.date.available2007-08-08
dc.date.copyright2007-08-08
dc.date.issued2007
dc.date.submitted2007-07-19
dc.identifier.citationAdeghate, E., Ponery, A.S., Pallot, D., Parvez, S.H., Singh, J., 1999. Distribution of serotonin and its effect on insulin and glucagon secretion in normal and diabetic pancreatic tissues in rat. Neuro Endocrinology Letters 20 (5), 315-322.
Aggarwal, B.B., Bhardwaj, A., Aggarwal, R.S., Seeram, N.P., Shishodia, S., Takada, Y., 2004. Role of resveratrol in prevention and therapy of cancer: preclinical and clinical studies. Anticancer Research 24 (5A), 2783–2840.
Al-Awwadi, N., Azay, J., Poucheret, P., Cassanas, G., Krosniak, M., Auger, C., Gasc F., Rouanet, J.M., Cros, G., Teissedre, P.L., 2004. Antidiabetic activity of red wine polyphenolic extract, ethanol, or both in streptozotocin-treated rats. Journal of Agricultural Food Chemistry 52 (4), 1008–1016.
Atkinson, M.A., Maclaren, N.K., 1994. The pathogenesis of insulin-dependent diabetes mellitus. The New England Journal of Medicine. 331 (21), 428-36.
Attwood, P.A., and Keech, D.B., 1984. Pyruvate carboxylase. Current topics in Cellular Regulation 23, 1-55.
Baur J.A., Pearson, K.J., Price, N.L., Jamieson, H.A., Lerin, C., Kalra, A., Prabhu, V.V., Allard, J.S., Lopez-Lluch, G., Lewis, K., Pistell, P.J., Poosala, S., Becker, K.G., Boss, O., Gwinn, D., Wang, M., Ramaswamy, S., Fishbein, K.W., Spencer, R.G., Lakatta, E.G., Le Couteur, D., Shaw, R.J., Navas, P., Puigserver, P., Ingram, D.K., de Cabo, R., Sinclair, D.A., 2006. Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444 (7117), 337-42.
Berger, J., Biswas, C., Vicario, P.P., Strout, H.V., Saperstein, R., Pilch, P.F., 1989. Decreased expression of the insulin-responsive glucose transporter in diabetes and fasting. Nature 340 (628), 70-72.
Berwick, D.C., Dell, G.C., Welsh, G.I., Heesom, K.J., Hers, I., Fletcher, L.M., Cooke, F.T., Tavare, J.M., 2004. Protein Kinase B phosphorylation of PIKfyve regulates the trafficking of Glut4 vesicles. Journal Cell Science 117 (pt 25), 5985-5993.
Bessesen, D.H., 2001. The role of carbohydrates in insulin resistance. Journal of Nutrition 131 (10), S 2782-6.
Bruni, J.F., Hawkins, R.L., Yen, S.S., 1982. Serotonergic mechanism in the control of beta-endorphin and ACTH release in male rats. Life Science 30 (15), 1247-1254.
Bruton, J.D., Lemmens, R., Shi, C.L., Persson-Sjogren, S., Westerblad, H., Ahmed, M., Pyne, N.J., Frame, M., Furman, B.L., Islam, M.S., 2002. Ryanodine receptors of pancreatic beta-cells mediate a distinct context- dependent signal for insulin secretion. FASEB Journal 16 (14), 301-303.
Bryant, N.J., Govers, R., James, D.E., 2002. Regulated transport of the glucose transporter GLUT4. Nature Reviews Molecular Cell Biology 3 (4), 267-277.
Campbell, I.W., 2000. Antidiabetic drugs present and future: will improving insulin resistance benefit cardiovascular risk in type 2 diabetes mellitus? Drugs 60 (5), 1017-1028.
Chang, C.J., Wu, J.S., Lu, F.H., Liu, I.M., Cheng, J.T., 1998. Sympathetic hyperactivity in Wistar rats with insulin-resistance. Journal of the Autonomic Nervous System 74 (2-3), 116-119.
Chang, K.C., Tseng, C.D., Chou, T.F., Cho, Y.L., Chi, T.C., Su, M.J., Tseng, Y.Z., 2006. Arterial stiffening and cardiac hypertrophy in a new rat model of type 2 diabetes. European Journal of Clinical Investigation 36 (1), 1-7.
Chang, P., Wong, K.L., Liu, I.M., Tzeng, T.F., Yang, T.L., Cheng, J.T., 2003. Antihyperglycemic action of agiotensin II receptor antagonist, valsartan, in streptozotocin-induced diabetic rats. Hypertension 21 (4), 761-769.
Chen, W.P., Chi, T.C., Chuang, L.M., Su, M.J., 2007. Resveratrol enhances insulin secretion by blocking KATP and KV channels of beta cells. European Journal of Pharmacology 568 (1-3), 269-77.
Cheng, J.T., Liu I.M., Chi, T.C., Tzeng, T.F., 2001. Release of beta-endorphin by prostaglandin E2 to lower plasma glucose in streptozotocin-induced diabetic rats. Hormone and Metabolic Research 33 (7), 439-443.
Cheng, J.T., Liu, I.M., Chi, T.C., Tzeng, T.F., Lu, F.H., Chang, C.J., 2001. Plasma glucose-lowering effect of tramadol in streptozotocin-induced diabetic rats. Diabetes 50 (12), 2815-2821.
Cheng, J.T., Liu, I.M., Tzeng, T.F., Tsai, C.C., Lai, T.Y., 2002. Plasma glucose-lowering effect of beta-endorphin in streptozotocin-induced diabetic rats. Hormone and Metabolic Research 34 (10), 570-576.
Chi, T.C., Liu, I.M., Cheng, J.T., 1998. A simple and rapid model of insulin-resistance in Wistar rats. Chinese Pharmaceutical Journal. 50 (2), 113-121.
Chou, C.H., Tsai, Y.L., Hou, C.W., Lee, H.H., Chang, W.H., Lin, T.W., Hsu, T.H., Huang, Y.J., Kuo, C.H., 2005. Glycogen overload by postexercise insulin administration abolished the exercise-induced increase in GLUT4 protein. Journal of Biomedical Science 12 (6), 991–998.
Chou, P., Chen, H.H., Hsiao, K.J., 1992. Community-based epidemiological study on diabetes in Pu-Li, Taiwan. Diabetes Care 15 (1), 81-9.
Contesse, V., Lefebvre, H., Lenglet, S., Kuhn, J.M., Delarue, C., Vaudry, H., 2000. Role of 5-HT in the regulation of the brain-pituitary-adrenal axis: effects of 5-HT on adrenocortical cells. Canadian Journal of Physiology and Pharmacology 78 (12), 967-983.
Contesse, V., Lenglet, S., Grumolato, L., Anouar, Y., Ligrmann, I., Lefebvre, H., Delarue, C., Vaudry, H., 1999. Pharmacological and molecular characterization of 5-hydroxytryptamine-7 receptors in the rat adrenal gland. Molecular Pharmacology 56 (3), 552–561.
De-Fronzo, R.A., 1988. The triumvirate: β-cell, muscle, liver, A collusion responsible for NIDDM. Diabetes 37 (6), 667-687.
Eizirik, D.L., Sandler, S., Palmer, J.P., 1993. Repair of pancreatic beta-cells. A relevant phenomenon in early IDDM? Diabetes 42 (10), 1383-1391.
Ellenberg, M., 1980. Development of urinary bladder dysfunction in diabetes mellitus. Annals of Internal Medicine 92 (2 Pt 2), 321-323.
Erenmemisoglu, A., Ozdogan, U.L., Saraymen, R., Tutus, A., 1999. Effect of some antidepressants on glycaemia and insulin levels of normoglycaemic and alloxan-induced hyperglycaemic mice. The Journal of Pharmacy and Pharmacology 51 (6), 741-743.
Fischer, Y., Thomas, J., kamp, J., Jungling, E., Rose, H., Carpene, C., Kammermeier, H., 1995. 5-hydroxytryptamine stimulates glucose transport in cardiomyocytes via a monoamine oxidase-dependent reaction. The Biochemical Journal 311 (Pt 2), 575-83.
Forman L.J., Estilow, S., Lewis, M., Vasilenko, P., 1986. Streptozotocin diabetes alters immunoreactive beta-endorphin levels and pain perception after 8 wk in female rats. Diabetes 35 (12), 1309-1313.
Forman, L.J., Estilow, S., Meda, J., Vasilenko, P., 1988. Eight weeks of streptozotocin-induced diabetes induences the effects of cold stress on immunoreactive beta-endorphin levels in female rats. Hormone Metabolic and Research 20 (9), 555-558.
Forman, L.J., Marquis, D.E., Stevens, R., Adler, R., Vasilenko, P., 1985. Diabetes induced by streptozotocin results in a decrease in immunoreactive beta-endorphin levels in the pituitary and hypothalamus of female rats. Diabetes 34 (11), 1104-1107.
Furman, B.L., 1974. The hypoglycaemic effect of 5-hydroxytryptophan. British Journal of Pharmacology 50 (4), 575-580.
Furman, B.L., Wilson, G.A., 1978. Effects upon plasma glucose of inhibitors of 5-HT uptake and their interaction with 5-hydroxytryptophan in producing hypoglycaemia. The Journal of Pharmacy and Pharmacology 30 Suppl : 53P.
Garrel, D.R., Picq, R., Bajard, L., Harfouche, M., Tourniaire, J., 1987. Acute effect of glyburide on insulin sensitivity in type I diabetic patients. Journal of Clinical Endocrinology Metabolism 65 (5), 896-900.
Giachetti, A., 1981. Diabetic neuropathies: pathogenetic mechanisms and therapeutic perspectives. Pharmacological Research Communications 13 (2), 101-119.
Gibson, M.J., DeNicola, A.F., Krieger, D.T., 1985. Streptozotocin-induced diabetes is associated with reduced immunoreactive beta-endorphin concentrations in neurointermediate pituitary lobe and with disrupted circadian periodicity of plasma corticosterone levels. Neuroendocrinology 41(1), 64-71.
Giffin, B.F., Drake, R.L, Morris, R.E., Cardell, R.R., 1993. Hepatic lobular patterns of phosphoenolpyruvate carboxykinase, glycogen synthase, and glycogen phosphorylase in fasted and fed rats. Journal of Histochemistry Cytochemistry 41 (12), 1849-1862.
Gili, L., Mutalik, V.K., Venkates, K.V., 2004. A steady state analysis indicates that negative feedback regulation of PTP1B by Akt elicits bistability in insulin-stimulated GLUT4 translocation. Theoretical Biology Medical Modelling 3, 1: 2.
Goldstein, D.A., and Massry, S.G., 1978. Diabetic nephropathy: clinical course and effect of hemodialysis. Nephron 20 (5), 286-296.
Gomez, R., Huber, J., Lhullier, F., Barros, H.M., 2001. Plasma insulin levels are increased by sertraline in rats under oral glucose overload. Brazilian Journal of Medical and Biological Research 34 (12), 1569-1572.
Guinaudeau, H., Leboenf, L.M., Cave, A., 1975. Aporphine alkaloids. Journal of Natural Products 38 (4), 275-338.
Gupta, B., Awasthi, A., Jaju, B.P., 1992. Effect of acute chronic imipramine treatment on glucose homeostasis. The Indian Journal of Medical Research 96 (1), 65-71.
Hajduch, E., Rencurel, F., Balendran, A., Batty, I.H., Downes, C.P., Hundal, H.S., 1999. Serotonin (5-Hydroxytryptamine), a novel regulator of glucose transport in rat skeletal muscle. Journal of Biological Chemistry 274 (19), 13563-13568.
Harris, M.I., Hadden, W.C., Knowler, W.C. Bennett, P.H., 1987. Prevalence of diabetes and impaired glucose tolerance and plasma glucose levels in the U.S. population aged 20-74 yr. Diabetes, 36 (4), 523-534.
Hirshman, M.F., Goodyear, L.J., Wardzala, L.J., Horton, E.D., Horton, E.S., 1990. Identification of an intracellular pool of glucose transporters from basal and insulin stimulated rat skeletal muscle. Journal of Biological Chemistry 265 (2), 987-991.
Holfmann, C., Lorenz, K., Williams, D., Palazuk, B.J. and Colca, J.R. 1995. Insulin sensitization in diabetic rat liver by an antihyperglycemic agent. Metabolism Clinical and Experimental 44 (3), 384-389.
Hollenbeck, C., Reaven, G.M., 1987. Variations in insulin-stimulated glucose uptake in healthy individuals with normal glucose tolerance. Journal of Clinical Endocrinology and Metabolism 64 (6), 1169-1173.
Hoyer, D., Martin, G., 1997. 5-HT receptor classification and nomenclature: Toward a harmonization with the human genome. Neuropharmacology 36 (4-5), 419–428.
Hsu, F.L., Lai, C.W., Cheng, J.T., 1997. Antihyperglycemic effects of paeoniforin and 8-debenzoylpaeoniforin, glucosides from the root of Paeonia lactinflora. Planta Medica 63 (4), 323–325.
Huang, W.J., Chen, C.H., Singh, O.V., Lee, S.L., Lee, S.S., 2002. A facile method for the synthesis of glaucine and norglaucine from boldine. Synthetic Communications 32 (23), 3681-3686.
Huang, S., Czech, M.P., 2007. The GLUT4 glucose transporter. Cell Metabolism 5 (4), 237-52.
Hung, L.M., Lee, S.S., Chen, J.K., Huang, S.S., Su, M.J., 2001. Thaliporphine protects ischemic and ischemic-reperfused rat hearts via an NO-dependent mechanism. Drug Development Research 52 (3), 446–453.
Hung, L.M., Su, M.J., Chen, J.K., 2004. Resveratrol protects myocardial ischemia-reperfusion injury through both No-dependent and No-inependent mechanisms. Free Radical Biology and Medicine 36 (6), 774-781.
Jacobs, B.L., Azmitia, E.C., 1992. Structure and function of the brain serotonin system. Physiological Review 72 (1), 165-229.
Jansson, L., Carlsson, P. O., Bodin, B., Andersson, A., Kallskog, O., 2005. Neuronal nitric oxide synthase and splanchnic blood flow in anaesthetized rats. Acta Physiologica Scandinavica 183 (3), 257–262.
Johnson, M.B., Heineke, E.W., Rhinehart, B.L., Sheetz, M.J., Barnhart, R.L., Robinson, K.M., 1993. MDL29311. Antioxidant with marked lipid-and glucose-lowering activity in diabetic rats and mice. Diabetes 42 (8), 1179-1186.
Keen, H., 1986. What’s in a name? IDDM/NIDDM, type1/type2. Diabetic Medicine 3 (1), 11-12.
Koenig, J.I., Meltzer, H.Y., Devane, G.D., and Gudelsky, G.A., 1986. The concentration of arginine vasopressin in pituitary stalk plasma of the rat after adrenalectomy or morphine. Endocrinology 118 (6), 2534-2539.
Kolta, M.G., Wallace, L.J., Gerald, M.C., 1985. Streptozocin-induced diabetes affects rat urinary bladder response to autonomic agents. Diabetes 34 (9), 917-921.
Lagouge, M., Argmann, C., Gerhart-Hines, Z., Meziane, H., Lerin, C., Daussin, F., Messadeq, N., Milne, J., Lambert, P., Elliott, P., Geny, B., Laakso, M., Puigserver, P., Auwerx, J., 2006. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell 127 (6), 1109-22.
Lee, S.S., Lin, Y.J., Chen, M.Z., Wu, Y.C., Chen, C.H., 1992. A facile semisynthesis of litebamine, a novel phenanthrene alkaloid, from boldine via a biogenetical approach. Tetrahedron Letters 33 (42), 6309-6310.
Lefebvre, H., Cartier, D., Duparc, C., Lihrmann, I., Contesse, V., Delarue, C., Godin, M., Fischmeister, R., Vaudry, H., Kuhn, J.M., 2002. Characterization of serotonin (4) receptors in adrenocortical aldosterone-producing adenomas: in vivo and in vitro studies. The Journal of Clinical Endocrinology and Metabolism 87 (3), 1211-1216.
Lefebvre, H., Contesse, V., Delarue, C., Feuilloley, M., Grise, P., Raynaud, G., Verhofastad, A.A., Wolf, L.M., Vaudry, H., 1992. Serotonin-induced stimulation of cortisol secretion from human adrenocortical tissue is mediated through activation of a serotonin4 receptor subtype. Neuroscience 47 (4), 999-1007.
Lenglet, S., Louiset, E., Delarue, C., Vaudry, H., Contesse, V., 2002. Activation of 5-HT(7) receptor in rat glomerulosa cells is associated with an increase in adenylyl cyclase activity and calcium influx through T-type calcium channels. Endocrinology 143 (5), 1748-1760.
Liu, I.M., Chi, T.C., Chen, Y.C., Lu, F.H., Cheng, J.T., 1999. Activation of opioid mu-receptor by loperamide to lower plasma glucose in streptozotocin-induced diabetic rats. Neuroscience Letters 265 (3), 183-186.
Lo, H.C., Tu, S.T., Lin, S.C., 2004. The anti-hyperglycemic activity of the fruiting body of Cordyceps in diabetic rats induced by nicotinamide and streptozotocin. Life Sciences. 74 (23), 2897-908.
Lopez-Candales, A., 2001. Metabolic syndrome X: a comprehensive review of the pathophysiology and recommended therapy. Journal of Medicine 32 (5-6), 283-300.
Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J., (1951) Protein measurement with the folin phenol reagent. Journal of Biological Chemistry 193 (1), 265-275.
Lundquist, I., Ekholm, R., Ericson, L.E., 1971. Monoamines in the pancreatic islets of the mouse 5-hydroxytryptamine as an intracellular modifier of insulin secretion, and the hypoglycaemic action of monoamine oxidase inhibitors. Diabetologia 7 (6), 414-422.
Masheh, T., Menon, V.P., 2004. Quercetin allievates Oxidative stress in streptozotocin-induced diabetic rats. Phytotherapy Research 18 (2), 123-127.
Masiello, P., Broca, C., Gross, R., Roye, M., Manteghetti, M., Hillaire-Buye, D., Novelli, M., Ribes, G., 1998. Development of a new model in adult rats administered streptozotocin and nicotinamide. Diabetes 47 (2), 224-229.
McDaniel, H.G., Boshell, B.R., Reddy, W.J., 1973. Hypoglycemic action of tryptophan. Diabetes 22 (9), 713-718.
Muller, J., Ziegler, W.H., 1968. Stimulation of aldosterone biosynthesis in vitro by serotonin. Acta endocrinologica 59 (1), 23-35.
Musi, N., Goodyear, L.J., 2003. AMP-activated protein kinase and muscle glucose uptake. Acta Physiologica Scandinavica 178 (4), 337-45.
Oberley, L.W., 1988. Free radicals and diabetes. Free Radical Biology and Medicine 5, 113-124.
Pessin, J.E., Bell, G.I., 1992. Mammalian facilitative glucose transporter family: structure and molecular regulation. Annual Review of Physiology 54, 911-30
Pollak, P.T., Mukherjee, S.D., Fraser, A.D., 2001. Sertraline-induced hypoglycemia. The Annals of Pharmacotherapy 35 (11), 1371-1374.
Pratz, J., Mondot, S., Montier, F., Cavero, I., 1991. Effect of K+ channel activators, RP52891, Cromakalim and diazoxide, on the plasma insulin level, Plasma rennin activity and blood pressure in rats. The Journal of Pharmacology and Experimental Therapeutics 258 (1), 216-222.
Rader, D.J., 2007. Effect of insulin resistance, dyslipidemia, and intra-abdominal adiposity on the development of cardiovascular disease and diabetes mellitus. The American Journal of Medicine 120 (3 Suppl 1), S12-8.
Rao, NSK., Lee, S.S., 2000. Preparation of thaliporphine and lirioferine from glaucine by treatment with hydrogen bromide. Journal of the Chinese Chemical Society 47(6), 1227-1230.
Rapport , M.M., Virno, M., 1952. Metabolic effect of serotonin in the rat. Proceedings of the Society for Experimental Biology and Medicine 81 (1), 203-205.
Rognstad, R., 1979. Rate-limiting steps in metabolic pathways. The Journal of Biological Chemistry 254 (6), 1875-1878.
Roth, B.L., Craigo, S.C., Choudhary, M.S., Monsma, F.J., Shen, Y., Meltzer, H.Y., Sibley, D.R., 1994. Binding of typical and atypical antipsychotic agents to 5-hydroxytryptamine-6 and 5-hydroxytryptamine-7 receptors. The Journal of Pharmacology and Experimental Therapeutics 268 (3), 1403-1410.
Sheriff, S., Fischer, J.E., Balasubramaniam, A., 1992. Amylin inhibits insulin-stimulated glucose uptake in C2C12 muscle cell line through a cholera-toxin-sensitive mechanism. Biochimica et Biophysica Acta 1136 (2), 219-222.
Sivitz, W.I., DeSautel, S.L., Kayano, T., Bell, G.I., Pessin, J.E., 1989. Regulation of glucose transporter messenger RNA in insulin-deficient state. Nature 340 (6228), 72-74.
Smith, S.A., Pogson, C.L., 1977. Tryptophan and the control of plasma glucose concentrations in the rat. The Biochemcial Journal 168 (3), 495-506.
Stowe, R.L., Barnes N.M., 1998. Selective labelling of 5-HT7 receptor recognition sites in rat brain using [3H] 5-carboxamidotryptamine. Neuropharmacology 37 (12), 1611-1619.
Su, H.C., Hung, L.M., Chen, J.K., 2006. Resveratrol, a red wine antioxidant, possesses an insulin-like effect in Streptozotocin-induced diabetic rats. American Journal of Physiology-Endocrinology and Metabolism 290 (6), E-00487-2005.R2.
Su, M.J., Chang, Y.M., Chi, J.F., Lee, S.S., 1994. Thaliporphine, a positive inotropic agent with a negative chronotropic action. European Journal of Pharmacology 254 (12), 141-150.
Sugaya, A., Sugiyama, T., Yanase, S., Shen, X.X., Minoura, H. and Toyoda, N., 1999. Expression of glucose transporter 4 mRNA in adipose tissue and skeletal muscle of ovariectomized rats treated with sex steroid hormones Life Sciences. 66 (7), 641-648.
Sugimoto, Y., Kimura I., Yamada J., Watanabe Y., Takeuchi N., Horisaka K., 1990. Effects of serotonin on blood glucose and insulin levels of glucose- and streptozotocin-treated mice. Japanese Journal of Pharmacology. 54 (1), 93-96.
Sugimoto, Y., Yamada, J., 2000. Effects of the 5-HT2A receptor agonist 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) on plasma glucose and glucagon levels of rats. Biological Pharmaceutical Bulletin 23 (12), 1521-1523.
Tai, T.Y., Yang, C.L., Chang, C.J., Chang, S.M., Chen, Y.H., Lin, B.J., Ko, L.S., Chen, M.S., Chen, C.J., 1987. Epidemiology of diabetes mellitus in Taiwan, R.O.C.--comparison between urban and rural areas. Journal of the Medical Association of Thailand 70 (2), 49-53.
Thompson, L.U., Yoom, J.H., Jenkins D.J., Wolever, T.M., Jenkins, A.L., 1984. Relationship between polyphenol intake and blood glucose response of normal and diabetic individuals. American Journal of Clinical Nutrition 39 (5), 745-751.
Tomita, T., Sasaki, S., Doull, V., Bunag, R., Kimmel, J.R., 1986. Pancreatic hormones in streptozotocin-diabetic rats. International Journal of Pancreatology (3-4), 265-278.
Vatta, M.S., Presas, M.F., Bianciotti, G., Rodriguez-Fermepin, M., Ambros, R., and Fernandez, B.E., 1997. B and C types natriuretic peptides modify norepinephrine uptake and release in the rat adrenal medulla. Peptides 18 (10), 1483-1489.
Weidmann, P., Boehlen, L.M., and de Courten, M., 1993. Pathogenesis and treatment of hypertension associated with diabetes mellitus. American Heart Journal.125 (5), 1498-1513.
Wilson, G.A., Furman, B.L., 1982. Effects of inhibitors of 5-hydroxytryptamine uptake on plasma glucose and their interaction with 5-hydroxytryptophan in producing hypoglycaemia in mice. European Journal of Pharmacology 78 (3), 263-270.
Wu, Y.C., Hao, H.J., Liu, I.M., Liou, S.S., Su, H.C., Cheng, J.T., 2002. Increase of insulin sensitivity in diabetic rats received Die-Huang-Wan, a herbal mixture used in Chinese traditional medicine. Acta Pharmacologica Sinica 23 (12), 1181-1187.
Yamada, J., Sugimoto, Y., Kimura, I., Takeuchi, N., 1989. Serotonin-induced hypoglycemia and increased serum insulin level in mice. Life Science 45 (20), 1931-1936.
Yamada, J., Sugimoto, Y., Yoshikawa, T., 1998. p-Chloroamphetamine, a serotonin-releasing drug, elicited in rats a hyperglycemia mediated by the 5-HT1A and 5-HT2B/2C receptors. European Journal of Pharmacology 359 (2-3), 185-190.
Yamada, K., Yamakawa, K., and Terada, Y., 1999. Expression of GLUT4 glucose transporter protein in adipose and skeletal muscle from streptozotocin-induced diabetic pregnant rats. Hormone Metabolic and Research 31 (9), 508-513.
Yu, B.C., Hung, C.R., Chen, W.C., Cheng, J.T., 2003. Antihyperglycemic effect of andrographolide in streptozotocin-induced diabetic rats. Planta Medica 69 (12), 1075-1079.
Zawalich, W.S., Tesz, G.J., Zawalich, K.C., 2001. Are 5-hydroxytryptamine-preloaded beta-cells an appropriate physiologic model system for establishing that insulin stimulates insulin secretion? Journal of Biomedical Science 276 (40), 37120–37123.
Zhang, Y., Jayaprakasam, B., Seeram, N.P., Olson, L.K., Dewitt, D., Nair, M.G., 2004. Insulin secretion and cyclooxygenase enzyme inhibition by cabernet sauvignon grape skin compounds. Journal of Agricultural Food Chemistry 52 (2), 228-233.
Ziel, F.H., Venkatesan, N., Davidson, M.B., 1988. Glucose transport is rate limiting for skeletal muscle glucose metabolism in normal and STZ-induced diabetic rats. Diabetes 37 (7), 885-890.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29683-
dc.description.abstract近年來,糖尿病的病患有日益增加的趨勢,糖尿病也成為國人十大疾病之一。因此,為了有效控制血糖改善糖尿病症狀,因此分離或合成化學成分探討其降血糖作用為本論文之主要研究目標。本論文主要是探討白藜蘆醇 (resveratrol)、thaliporphine 及相關衍生物對正常及糖尿病大鼠之降血糖作用。由於thaliporphine被發現與血清素受體有很強結合能力,因此本論文更進一步探討血清素對大鼠血糖之調控作用及血清素受體亞型及其相關訊息路徑與thaliporphine降血糖作用之關係。
第一部份
Resveratrol在STZ誘發糖尿病大鼠降血糖作用與PI3-kinase訊息路徑之關係
白藜蘆醇 (resveratrol) 是一種多酚類結構的物質,存在於葡萄皮中,有研究報告指出紅酒對心臟血管有保護的作用。本論文利用正常及不同糖尿病模式包括STZ誘發之胰島素依賴型 (IDDM) 大鼠、Nicotinamide合併STZ誘發之非胰島素依賴型 (NIDDM) 糖尿病大鼠探討白黎蘆醇的血糖調控作用及其作用機制。研究發現口服給予白藜蘆醇在正常及NIDDM的大鼠可以產生劑量相關性的降血糖作用及增加胰島素的釋放。在第一型IDDM大鼠同樣口服給予白藜蘆醇後90分鐘可以產生有統計意義的降血糖作用。同時,利用外來的葡萄糖耐受性試驗 (oral glucose tolerance test) 顯示白藜蘆醇也可以增加正常大鼠對葡萄糖的利用率。口服給予白藜蘆醇產生降血糖的作用可以被PI3K的阻斷劑LY294002與Wortmannin所抑制。另外,以C2C12小鼠肌母細胞 (mouse myoblast cell line) 進行體外實驗發現白藜蘆醇亦能以劑量相關性增加C2C12小鼠肌母細胞對葡萄糖的吸回,此作用亦能被PI3K的阻斷劑LY294002與Wortmannin所抑制。在此阻斷劑的存在下可以抑制白藜蘆醇使IDDM糖尿病大鼠骨骼肌Akt磷酸化的作用。在第一型IDDM糖尿病大鼠以口服餵食白藜蘆醇3.0 mg/kg 每天三次治療7天發現可以改變骨骼肌葡萄糖轉運第四型蛋白質 (GLUT4) 及肝臟葡萄糖新生速率限制酵素 (PEPCK) 之表現量,白黎蘆醇可以增加GLUT4蛋白質的表現量並且使肝臟葡萄糖新生速率限制酵素 (PEPCK) 過度表現恢復正常。因此,從實驗結果發現,白藜蘆醇具降血糖作用,在非胰島素依賴型大鼠有促進胰島素釋放產生降血糖之作用,但在胰島素依賴型大鼠則可經由活化PI3K-Akt的訊息作用來增加葡萄糖的回收及利用而降血糖。
第二部份
血清素在STZ誘發糖尿病大鼠降血糖作用
血清素、血清素回收抑制劑和血清素的前趨物質,都會對人類或嚙齒動物產生降血糖作用,但血清素在胰島素依賴型的糖尿病大鼠是否有降低血糖的作用一直不是很清楚。本篇論文主要是探討血清素對此糖尿病大鼠血糖調節作用。評估血糖與胰島素、腦內啡和腎上腺素分泌量。血清素對STZ誘發糖尿病大鼠產生降血糖作用但沒有改變血漿中胰島素和腎上腺素的濃度,但是會增加血液中腦內啡的濃度。以腹腔注射方式給予血清素0.3 mg/kg 到糖尿病大鼠體內在90分鐘後可以增加骨骼肌肝醣合成量。血清素對STZ誘發糖尿病大鼠產生降血糖的作用可以被血清素接受體阻斷劑dihydroergotamine與pimozide所抑制。將STZ誘發糖尿病大鼠兩側的腎上腺摘除,發現血清素的降血糖作用也同樣被抑制。摘除糖尿病大鼠的腎上腺作離體實驗,發現血清素可以直接刺激腎上腺釋放腦內啡,同樣的離體實驗,在血清素接受體阻斷劑dihydroergotamine與pimozide的存在下血清素促進腦內啡的釋放作用受抑制。在STZ誘發糖尿病大鼠預先以腹腔注射投與鴉片受體阻斷劑naloxon 1.0 mg/kg再投與血清素,結果發現血清素的降血糖作用被抑制。上述實驗結果證明,血清素在STZ誘發糖尿病大鼠產生降血糖作用是藉由活化腎上腺血清素第七型接受器使腦內啡的釋放,並且刺激到鴉片接受體進而增加周邊組織對葡萄糖的利用率,因而達到降血糖的效果。
第三部份
Thaliporphine與相關衍生物在正常大鼠與糖尿病大鼠降血糖作用
糖尿病當今臨床常見的一種代謝性疾病,而且,隨著生活品質的提昇及物質充裕與飲食習慣改變,糖尿病的病例也日益增多。因此,新藥物的研究仍有需要。許多芳香環阿浦酚類的生物鹼存在於許多中草藥,並被發現具有抗高血壓或心臟保護作用。本實驗分別在正常大鼠、streptozotocin所誘導的第一型胰島素依賴型 (insulin-dependent DM, IDDM) 糖尿病大鼠及nicotinamide 與 streptozocin合併誘導的第二型非胰島素依賴型 (non-insulin-dependent DM, NIDDM) 糖尿病大鼠評估並比較各種阿浦酚化合物之降血糖效果。實驗上所評估的化合物包括有:thaliporphine、glaucine、boldine、N-methyl-laurotetanine 與predicentrine 及阿浦酚類衍生物有N-[2-(2-methoxyphenoxy)ethyl]norglaucine與diacetyl-N-allylsecoboldine。以靜脈注射方式給藥,注射不同劑量到正常大鼠及糖尿病大鼠,實驗結果發現,這些化合物接可以產生劑量相關性的降血糖作用。實驗過程中發現,thaliporphine具有刺激正常大鼠與NIDDM糖尿病大鼠胰臟分泌胰島素,同時,在外給的葡萄糖試驗 (glucose tolerance test) 發現thaliporphine 1mg/kg 可增加大鼠對葡萄糖的利用率。同樣的,thaliporphine對正常大鼠與糖尿病大鼠亦能促進骨骼肌肝醣合成。因此,實驗結果得知,thaliporphine及其衍生物皆具有降血糖作用,而thaliporphine降血糖機制則與促進胰島素釋放及增強葡萄糖的利用率有關。

第四部份
Thaliporphine在STZ誘發糖尿病大鼠降血糖作用
Thaliporphine在STZ誘發糖尿病大鼠可以劑量相關性的產生降血糖作用,同樣地,可以增加內生性腦內啡的釋放。Thaliporphine對STZ誘發糖尿病大鼠產生降血糖的作用可以被血清素接受體阻斷劑dihydroergotamine與pimozide所抑制。而且,在腎上腺摘除之STZ誘發糖尿病大鼠,thaliporphine的降血糖作用及刺激腦內啡的釋放之作用均消失。在STZ誘發糖尿病大鼠預先給予鴉片受體阻斷劑naloxon再投與thaliporphine,結果發現thaliporphine的降血糖作用被抑制。上述實驗結果證明,thaliporphine在STZ誘發糖尿病大鼠產生降血糖作用是藉由活化腎上腺血清素第七型接受器使腦內啡的釋放,然後刺激到鴉片接受體進而增加周邊組織對葡萄糖的利用率,因而達到降血糖的效果。
結論:
本論文證實resveratrol、thaliporphine及其相關衍生物在正常與糖尿病大鼠具有降血糖作用。Resveratrol之降血糖作用機制包括促進胰島素釋放與直接活化PI3-k-Akt signaling pathway以增加葡萄糖之利用。在thaliporphine與相關衍生物中以thaliporphine具有最好的降血糖作用。 Thaliporphine 之降血糖作用部分是因促進胰島素釋放所貢獻,但另外之作用機制是因thaliporphine活化腎上腺血清素受體而使腦內啡釋放進而產生降血糖作用,雖然thaliporphine會活化血清素受體引起降血糖作用,但增加3-10倍thaliporphine注射投與劑量並不會如注射較高劑量之血清素促進凝血作用與血管收縮反應及引起動物死亡。因此有關thaliporphine與血清素在其它藥理作用之差異與其對不同血清素受體亞型作用之差異仍需進一步研究。
zh_TW
dc.description.abstractRecently, the population of diabetic patients is increasing. It becomes one of the ten most common diseases in our country. Therefore, searching for chemical principles from plant or synthesis as antidiabetic agents become an important aim of this thesis. We examined and compared the antidiabetic activity of resveratrol, thaliporphine and its derivatives in normal and diabetic rat models. Since thaliporphine was found to have strong binding activity to serotonin receptors, we further investigated the pharmacological action of serotonin in plasma glucose regulation and characterize serotonin receptor subtype and the associated signaling pathway in mediating thaliporphine-induced antidiabetic action.
Part One : Antihyperglycemic action of resveratrol in streptozotocin-induced diabetic rats : The role of Phosphatidylinositol-3-kinase activation.
Resveratrol, a polyphenolic substance found in grape skin, is proposed to account in part for the protective effect of red wine in the cardiovascular system. The aim of the present study is to investigate the action and possible mechanisms of resveratrol-produced regulation in plasma glucose of normal and diabetic rats including the animal model of streptozotocin (STZ)-induced and nicotinamide-STZ-induced (NA-STZ), and insulin-resistance diabetic rats. Resveratrol (p.o.) produced a hypoglycemic effect in a dose-dependent manner in normal and diabetic rats, and the insulin level was increased following resveratrol treatment in normal and NA-STZ diabetic rats. In insulin-deficient STZ-diabetic rats, resveratrol significantly lowered the plasma glucose 90 min after oral treatment, and the hypoglycemic effect was abolished by PI3K inhibitors (LY294002 and wortmannin) which also inhibited resveratrol-induced Akt phosphorylation in soleus muscle of STZ-diabetic rats. The change in the protein expression level of glucose transporter subtype 4 (GLUT4) in the soleus muscle and phosphoenolpyruvate carboxykinase (PEPCK) in the liver of STZ-diabetic rats treated with resveratrol (3 mg/kg, p.o.) for 7 days were examined. Resveratrol normalized hepatic PEPCK expression and increased GLUT4 expression in the soleus muscle of STZ-diabetic rats. The results indicate that the mechanisms contributing to the hypoglycemic effect of resveratrol include insulin-dependent and insulin-independent pathway, and PI3K-Akt-signaling was involved in the latter mechanism to enhance glucose uptake in skeletal muscle.
Part Two : Antihyperglycemic action of serotonin in streptozotocin-induced diabetic rats.
Although serotonin, serotonin uptake inhibitor and serotonin precursor (including tryptophan or 5-hydroxytryptophan) are known to have hypoglycemic action in rodents or human, it is not clear whether serotonin has hypoglycemic effect in streptozotocin-induced diabetic rats (STZ-diabetic rats). The aim of this study was to investigate the action of serotonin in regulating the plasma glucose STZ-diabetic rats. Plasma glucose, insulin, β-endorphin (BER) and adrenaline were assessed after intraperitoneal administration with serotonin. Serotonin produced hypoglycemic effect without altering plasma insulin and adrenaline levels but increasing β-endorphin level in STZ-diabetic rats. The glycogen content in soleus muscle was increased at 90 min after applying serotonin 0.3 mg/kg in STZ-diabetic rats. Dihydroergotamine (non-selective 5-HT receptor blocker) and pimozide (5-HT7 receptor blocker) abolished the hypoglycemic effect of serotonin in STZ-diabetic rats. Serotonin-induced hypoglycemic effect in association with the increase of β-endorphin release was abolished in bilateral adrenalectomized STZ-diabetic rats. In isolated adrenal gland of STZ-diabetic rats, the increase of β-endorphin secretion in response to serotonin was reduced by either dihydroergotamine or pimozide. Naloxon (1.0 mg/kg, i.p.) pretreatment prevented serotonin-induced plasma glucose lowering effect in STZ-diabetic rat. The results demonstrated that serotonin may activate 5-HT7 receptor on rat adrenal gland to enhance of β-endorphin secretion, which then stimulated the opioid receptor to increase peripheral glucose utilization and resulted in lowering plasma glucose in STZ-diabetic rats.
Part three: Antihyperglycemic effect of aporphines and their derivatives in normal and diabetic rats.
The antihyperglycemic action of some aporphines and their derivatives in normal Wistar, streptozotocin (STZ)-induced diabetic (IDDM) and nicotinamide-STZ induced diabetic (NIDDM) rats were investigated and compared in this study. These compounds included the thaliporphine, glaucine, boldine, N-methyl-laurotetanine, and predicentrine and the derivatives, N-[2-(2-methoxyphenoxy)ethyl]norglaucine and diacetyl-N-allylsecoboldine. Bolus intravenous injection of these compounds decreased the plasma glucose levels dose-dependently both in normal and diabetic rats. Among them, thaliporphine was found to have the most potent antihyperglycemic effect in both NIDDM and IDDM diabetic rats. It was found that thaliporphine could stimulate the release of insulin both in normal and diabetic rats, and a dose of 1 mg per kg thaliporphine could significantly attenuate the increase of plasma glucose induced by an intravenous glucose challenge test in normal rats. Similar treatment with thaliporphine significantly increased the skeletal muscle glycogen synthesis in both normal and diabetic rats. Hence the hypoglycemic effect of thaliporphine in diabetic rats could be attributed to the stimulation of insulin release and the increase of glucose utilization.
Part four: Antihyperglycemic action of thaliporphine in streptozotocin-induced diabetic rats.
In STZ-diabetic rats, thaliporphine dose dependently lowered plasma glucose concentrations and increased plasma beta-endorphin-like immunoreactivity (BER). Both of these effects of thaliporphine were abolished by pretreatment of rats with dihydroergotamine (non-selective 5-HT receptor blocker) and pimozide (5-HT7 receptor blocker) at doses sufficient to block 5-HT7-serotonin receptor. Moreover, bilateral adrenalectomy in STZ-diabetic rats eliminated the activities of thaliporphine, including the plasma glucose-lowering effect and the plasma BER-elevating effect. Naloxon inhibited the plasma glucose-lowering activity of thaliporphine at doses sufficient to block opioid receptors. In conclusion, The results demonstrated that thaliporphine may activate 5-HT7 receptor on rat adrenal gland to enhance of β-endorphin secretion, which then stimulated the opioid receptor to increase peripheral glucose utilization and resulted in lowering plasma glucose in STZ-diabetic rats.
In conclusion, resveratrol、thaliporphine and many of its derivative were found to have hypoglycemic actions both in normal and diabetic rats. The hypoglycemic mechanism of resveratrol involved the activation of PI3K-Akt signaling pathway as demonstrated in IDDM rats and the increase of insulin secretion as demonstrated isolated in pancreatic beta cells or NIDDM rats. Thaliporphine was found to have the most potent antihyperglycemic effect among aporphine derivatives. Part of the hypoglycemic effect of thaliporphine could be attributed to the stimulation of insulin release. Part of the other hypoglycemic action of thaliporphine is related to the stimulation of glucose uptake probably via the release of endorphin from adrenal gland through the stimulation of 5-HT7 receptor. Although the activation of serotonin receptor contributed to the hypoglycemic effect of thaliporphine, intravenous administration of 3 to 10 folds the hypoglycemic dose of thaliporphine did not enhance blood coagulation, vasoconstriction, and animal death as serotonin per se did. Therefore, the difference between thaliporphine and serotonin in the hypoglycemic action and other biological activities and their involvement of different serotonin receptor subtypes remains to be further investigated.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T01:14:45Z (GMT). No. of bitstreams: 1
ntu-96-D90443002-1.pdf: 666733 bytes, checksum: 65b4a7f71215e753c41cb8c77e524d14 (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents目錄 ……………………………………………………………… i-iv
中文摘要 ……………………………………………………………… 1
英文摘要……………………………………………………………… 5
縮寫指引……………………………………………………………… 10
第一章 緒論………………………………………………………… 11
1.1 葡萄糖在身體內的衡定…………………………………………12
1.2 胰島素產生降血糖作用之機轉………………………………… 13
1.3 臨床上糖尿病用藥及其分類……………………………………13
1.4 研究目的……………………………………………………… 15
第二章 實驗材料與方法……………………………………………16
2.1 實驗動物及細胞…………………………………………………16
(一) 實驗動物模式……………………………………………………16
(二) 實驗用細胞株:C2C12 肌母細胞………………………………16
2.2 實驗材料………………………………………………………16
(一) 實驗試劑……………………………………………………… 16
(二) 實驗器材……………………………………………………… 19
(三) 實驗方法……………………………………………………… 20
第三章 題目:Resveratrol在STZ誘發糖尿病大鼠降血糖作用與PI3-kinase訊息路徑之關係………………31
前言…………………………………………………………………… 31
1. 白黎蘆醇對正常及糖尿病大鼠的降血糖作用……………………32
2. 白黎蘆醇與葡萄糖耐受性實驗……………………………………32
3. 白黎蘆醇對正常及糖尿病大鼠刺激胰島素釋放作用情形………33
4. PI3-kinase的抑制劑LY294002與wortmannin對白黎蘆醇在糖尿病大鼠產生降血糖作用影響…………………………………………… 33
5. 白黎蘆醇對糖尿病大鼠骨骼肌磷酸化態作用影響……………33
6. 白黎蘆醇增強C2C12 肌母細胞葡萄糖吸回作用之影響…………34
7. PI3-kinase的抑制劑LY294002與wortmannin對白黎蘆醇在C2C12肌母細胞葡萄糖回收作用之影響………………………………………34
8. 白黎蘆醇在糖尿病大鼠骨骼肌之葡萄糖轉運蛋白質的影響……34
9. 白黎蘆醇對糖尿病大鼠肝臟之葡萄糖新生限制酵素PEPCK蛋白質的影響……………………………………………………………………35
10. 討論………………………………………………………………36
11. 結論……………………………………………………………… 38
12. 附圖表……………………………………………………………39
第四章 題目:血清素在STZ誘發糖尿病大鼠降血糖作用………… 53
前言……………………………………………………………………53
1. 血清素對有腎上腺或腎上腺摘除之糖尿病大鼠的降血糖作用……………… 54
2. 血清素對糖尿病大鼠血液中β-endorphin濃度之影響………………………………54
3. 血清素對糖尿病大鼠血液中腎上腺素濃度之影響……………………… 54
4. 血清素對離體腎上腺之腎上腺素釋放之影響……………………………………………… 55
5. 血清素的阻斷劑對血清素在糖尿病大鼠產生降血糖作用與β-endorphin濃度之影響……………………………… 55
6. 血清素對離體腎上腺對釋放β-endorphin之影響……………………………………………………………… 55
7. 血清素阻斷劑對血清素在離體腎上腺對釋放β-endorphin之影響………………55
8. 嗎啡接受體阻斷劑Naloxon對血清素降血糖作用影響……………………………… 56
9. 嗎啡接受體阻斷劑對血清素在糖尿病大鼠增加骨骼肌肝醣合成作用影響……………… 56
10. 討論………………………………………………………………57
11. 結論……………………………………………………………… 60
12. 附圖表…………………………………………………………… 61
第五章 題目:Thaliporphine與相關衍生物在正常大鼠與糖尿病大鼠降血糖作用…………72
前言……………………………………………………………………72
1. Thaliporphine與aporphine的衍生物結構式……………… 73
2. Aporphine的衍生物在正常大鼠之降血糖作用…………………74
3. Aporphine的衍生物在NIDDM糖尿病大鼠之降血糖作用…………74
4. Aporphine的衍生物在IDDM糖尿病大鼠之降血糖作用…………75
5. Thaliporphine與葡萄糖耐受性試驗 (glucose tolerance test) …………………………………………………………………………75
6. Thaliporphine的衍生物在正常大鼠與糖尿病大鼠之降血糖作用…………………… 76
7. Thaliporphine對正常大鼠與糖尿病大鼠刺激胰島素釋放情形…………………… 76
8. Thaliporphine的衍生物對NIDDM糖尿病大鼠刺激胰島素釋放情形………………77
9. Norglaucinem 與Secoboldine對糖尿病大鼠刺激胰島素釋放情形………………77
10. Thaliporphine對正常大鼠與糖尿病大鼠刺激骨骼肌肝醣合成的情形…………………………………………………………………… 77
11. 討論………………………………………………………………78
12. 附圖表…………………………………………………………… 79
第六章 題目:Thaliporphine在胰島素依賴型糖尿病大鼠產生降血糖作用之機制… 86
1. 血清素受體阻斷劑對Thaliporphine在糖尿病大鼠降血糖作用之影響………… 86
2. 血清素受體阻斷劑對Thaliporphine在正常大鼠降血糖作用之影響………………86
3. Thaliporphine在腎上腺摘除之正常大鼠的降血糖作用…………………………… 86
4. Thaliporphine在腎上腺摘除之IDDM糖尿病大鼠降血糖作用…………………… 86
5. Thaliporphine對糖尿病大鼠血中β-endorphin濃度之影響…………………………… 87
6. 嗎啡接受體阻斷劑Naloxon對Thaliporphine在糖尿病大鼠降血糖作用影響……… 87
7. 討論……………………………………………………………… 88
8. 結論…………………………………………………………………90
9. 附圖表…………………………………………………………… 91
第七章 結論與未來展望…………………………………………… 99
參考文獻…………………………………………………………… 101
近五年發表之著作………………………………………………… 114
已發表之著作……………………………………………………… 115
參與學術研討會……………………………………………………… 119
dc.language.isozh-TW
dc.subject沙利浦酚zh_TW
dc.subject非胰島素依賴型糖尿病zh_TW
dc.subject白藜蘆醇zh_TW
dc.subject胰島素依賴型糖尿病zh_TW
dc.subjectNIDDMen
dc.subjectthaliporphineen
dc.subjectIDDMen
dc.subjectresveratrolen
dc.titleThaliporphine 與Resveratrol 降血糖作用之研究zh_TW
dc.titleStudies of hypoglycemic actions of thaliporphine and resveratrolen
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree博士
dc.contributor.oralexamcommittee顏茂雄,鄭瑞棠,黃怡超,莊立民
dc.subject.keyword白藜蘆醇,胰島素依賴型糖尿病,非胰島素依賴型糖尿病,沙利浦酚,zh_TW
dc.subject.keywordresveratrol,IDDM,NIDDM,thaliporphine,en
dc.relation.page113
dc.rights.note有償授權
dc.date.accepted2007-07-20
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept藥理學研究所zh_TW
顯示於系所單位:藥理學科所

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  未授權公開取用
651.11 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved